1
|
Shukla MK, Wilkes P, Bargary N, Meagher K, Khamar D, Bailey D, Hudson SP. Identification of monoclonal antibody drug substances using non-destructive Raman spectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 299:122872. [PMID: 37209478 DOI: 10.1016/j.saa.2023.122872] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 05/05/2023] [Accepted: 05/10/2023] [Indexed: 05/22/2023]
Abstract
Monoclonal antibodies provide highly specific and effective therapies for the treatment of chronic diseases. These protein-based therapeutics, or drug substances, are transported in single used plastic packaging to fill finish sites. According to good manufacturing practice guidelines, each drug substance needs to be identified before manufacturing of the drug product. However, considering their complex structure, it is challenging to correctly identify therapeutic proteins in an efficient manner. Common analytical techniques for therapeutic protein identification are SDS-gel electrophoresis, enzyme linked immunosorbent assays, high performance liquid chromatography and mass spectrometry-based assays. Although effective in correctly identifying the protein therapeutic, most of these techniques need extensive sample preparation and removal of samples from their containers. This step not only risks contamination but the sample taken for the identification is destroyed and cannot be re-used. Moreover, these techniques are often time consuming, sometimes taking several days to process. Here, we address these challenges by developing a rapid and non-destructive identification technique for monoclonal antibody-based drug substances. Raman spectroscopy in combination with chemometrics were used to identify three monoclonal antibody drug substances. This study explored the impact of laser exposure, time out of refrigerator and multiple freeze thaw cycles on the stability of monoclonal antibodies. and demonstrated the potential of using Raman spectroscopy for the identification of protein-based drug substances in the biopharmaceutical industry.
Collapse
Affiliation(s)
- Mahendra K Shukla
- SSPC, The Science Foundation Ireland Research Centre for Pharmaceuticals & Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland; Department of Chemical Sciences, University of Limerick, Limerick V94 T9PX, Ireland
| | - Philippa Wilkes
- SSPC, The Science Foundation Ireland Research Centre for Pharmaceuticals & Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland; Department of Mathematics and Statistics, University of Limerick, Limerick V94 T9PX, Ireland
| | - Norma Bargary
- SSPC, The Science Foundation Ireland Research Centre for Pharmaceuticals & Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland; Department of Mathematics and Statistics, University of Limerick, Limerick V94 T9PX, Ireland
| | - Katherine Meagher
- Manufacturing Science and Technology, Sanofi Ireland, Old Kilmeaden Road, Waterford, Ireland
| | - Dikshitkumar Khamar
- Manufacturing Science and Technology, Sanofi Ireland, Old Kilmeaden Road, Waterford, Ireland
| | - Donal Bailey
- Manufacturing Science and Technology, Sanofi Ireland, Old Kilmeaden Road, Waterford, Ireland
| | - Sarah P Hudson
- SSPC, The Science Foundation Ireland Research Centre for Pharmaceuticals & Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland; Department of Mathematics and Statistics, University of Limerick, Limerick V94 T9PX, Ireland.
| |
Collapse
|
2
|
Plass C, Adebar N, Hiessl R, Kleber J, Grimm A, Langsch A, Otter R, Liese A, Gröger H. Structure‐Performance Guided Design of Sustainable Plasticizers from Biorenewable Feedstocks. European J Org Chem 2021. [DOI: 10.1002/ejoc.202101014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Carmen Plass
- Chair of Industrial Organic Chemistry and Biotechnology Faculty of Chemistry Bielefeld University Universitätsstraße 25 33615 Bielefeld Germany
| | - Niklas Adebar
- Chair of Industrial Organic Chemistry and Biotechnology Faculty of Chemistry Bielefeld University Universitätsstraße 25 33615 Bielefeld Germany
| | - Robert Hiessl
- Institute of Technical Biocatalysis Hamburg University of Technology Denickestr. 15 21073 Hamburg Germany
| | - Joscha Kleber
- Institute of Technical Biocatalysis Hamburg University of Technology Denickestr. 15 21073 Hamburg Germany
| | - Axel Grimm
- BASF SE Carl-Bosch-Strasse 38 67056 Ludwigshafen am Rhein Germany
| | - Angelika Langsch
- BASF SE Carl-Bosch-Strasse 38 67056 Ludwigshafen am Rhein Germany
| | - Rainer Otter
- BASF SE Carl-Bosch-Strasse 38 67056 Ludwigshafen am Rhein Germany
| | - Andreas Liese
- Institute of Technical Biocatalysis Hamburg University of Technology Denickestr. 15 21073 Hamburg Germany
| | - Harald Gröger
- Chair of Industrial Organic Chemistry and Biotechnology Faculty of Chemistry Bielefeld University Universitätsstraße 25 33615 Bielefeld Germany
| |
Collapse
|