1
|
Shang Z, Liu S, Liu D, Wang Y, Pei X, Li S, He Y, Tong Y. Systematically Investigating CRISPR/Cas12a Fluorescent Biosensor for Sensitive and Specific Single Nucleotide Variants Detection. J Fluoresc 2025:10.1007/s10895-025-04360-5. [PMID: 40402429 DOI: 10.1007/s10895-025-04360-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2025] [Accepted: 05/05/2025] [Indexed: 05/23/2025]
Abstract
Precise identification and detection of single nucleotide variation (SNV) concomitant with excess wild-type DNA is greatly needed for invasive disease diagnosis, pathogens detection and early prediction of drug responsiveness. Many variants of the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), notably the D614G and N501Y mutations, have been shown to significantly increase the infectivity of pandemics. We herein investigated CRISPR/Cas12a integrated three types fluorescent reporters and two crRNAs for SNV detection by taking D614G and N501Y variants of SARS-CoV-2 as model examples. We systematically screened all possible base substitutions from positions 0 to 19 and identified the middle position of crRNA could efficiently increase the specificity from both theoretical and experimental standpoints. With selected mutation location of crRNA, we then investigated the specificity of ssDNA, dsDNA and molecular beacon (MB) fluorescent reporters and proved the MB reporters can efficiently increase the discriminatory factors. Furthermore, we designed an additional mutation site on crRNA to increase the specificity. For user convenience, we engineered the lateral flow strips to present the results visualized with the naked eyes. Results of specific variants from Omicron proved the feasibility of clinical applications. These findings indicated that the proposed method is a powerful tool for monitoring the key mutations in pathogens and allows for modifications to incorporate newer upcoming variants.
Collapse
Affiliation(s)
- Zhenlin Shang
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing, 100048, P. R. China
| | - Sitong Liu
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing, 100048, P. R. China
| | - Dongxu Liu
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing, 100048, P. R. China
| | - Yuer Wang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Xiaojing Pei
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing, 100048, P. R. China.
| | - Shujing Li
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing, 100048, P. R. China
| | - Yifan He
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing, 100048, P. R. China
| | - Yigang Tong
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
2
|
Dos Santos Natividade R, Danzer B, Somoza V, Koehler M. Atomic force microscopy at the forefront: unveiling foodborne viruses with biophysical tools. NPJ VIRUSES 2025; 3:25. [PMID: 40295860 PMCID: PMC11971264 DOI: 10.1038/s44298-025-00107-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 03/13/2025] [Indexed: 04/30/2025]
Abstract
Foodborne viruses are significant public health threats, capable of causing life-threatening infections and posing major risks for future pandemics. However, the development of vaccines and treatments remains limited due to gaps in understanding their biophysical properties. Among these viruses, noroviruses are currently the leading cause of viral gastroenteritis globally and are responsible for numerous foodborne outbreaks. In this review, we explore the use of biophysical methods, with a focus on atomic force microscopy (AFM), to study foodborne viruses. We demonstrate how AFM can provide crucial insights into virus-host interactions, transmission dynamics, and environmental stability. We also show that the integration of various biophysical approaches offers new opportunities for advancing our understanding of foodborne viruses, ultimately guiding the development of effective prevention strategies and antiviral therapies.
Collapse
Affiliation(s)
| | - Barbara Danzer
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
- School of Life Science, Technical University of Munich, Freising, Germany
| | - Veronika Somoza
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
- Chair of Nutritional Systems Biology, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
- Department of Physiological Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Melanie Koehler
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany.
- TUM Junior Fellow at the Chair of Nutritional Systems Biology, Technical University of Munich, Freising, Germany.
| |
Collapse
|
3
|
Mao W, Wang J, Li T, Wu J, Wang J, Wen S, Huang J, Shi Y, Zheng K, Zhai Y, Li X, Long Y, Lu J, Guo C. Hybrid Capture-Based Sequencing Enables Highly Sensitive Zoonotic Virus Detection Within the One Health Framework. Pathogens 2025; 14:264. [PMID: 40137749 PMCID: PMC11944581 DOI: 10.3390/pathogens14030264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/13/2025] [Accepted: 03/03/2025] [Indexed: 03/29/2025] Open
Abstract
Hybrid capture-based target enrichment prior to sequencing has been shown to significantly improve the sensitivity of detection for genetic regions of interest. In the context of One Health relevant pathogen detection, we present a hybrid capture-based sequencing method that employs an optimized probe set consisting of 149,990 probes, targeting 663 viruses associated with humans and animals. The detection performance was initially assessed using viral reference materials in a background of human nucleic acids. Compared to standard metagenomic next-generation sequencing (mNGS), our method achieved substantial read enrichment, with increases ranging from 143- to 1126-fold, and enhanced detection sensitivity by lowering the limit of detection (LoD) from 103-104 copies to as few as 10 copies based on whole genomes. This method was further validated using infectious samples from both animals and humans, including bovine rectal swabs and throat swabs from SARS-CoV-2 patients across various concentration gradients. In both sample types, our hybrid capture-based sequencing method exhibited heightened sensitivity, increased viral genome coverage, and more comprehensive viral identification and characterization. Our method bridges a critical divide between diagnostic detection and genomic surveillance. These findings illustrate that our hybrid capture-based sequencing method can effectively enhance sensitivity to as few as 10 viral copies and genome coverage to >99% in medium-to-high viral loads. This dual capability is particularly impactful for emerging pathogens like SARS-CoV-2, where early detection and genomic characterization are equally vital, thereby addressing the limitations of metagenomics in the surveillance of emerging infectious diseases in complex samples.
Collapse
Affiliation(s)
- Weiya Mao
- School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; (W.M.); (J.W.); (J.W.); (J.W.); (Y.Z.); (X.L.); (Y.L.)
| | - Jin Wang
- School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; (W.M.); (J.W.); (J.W.); (J.W.); (Y.Z.); (X.L.); (Y.L.)
| | - Ting Li
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou 325000, China;
| | - Jiani Wu
- School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; (W.M.); (J.W.); (J.W.); (J.W.); (Y.Z.); (X.L.); (Y.L.)
| | - Jiangrong Wang
- School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; (W.M.); (J.W.); (J.W.); (J.W.); (Y.Z.); (X.L.); (Y.L.)
| | - Shubo Wen
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao 028000, China;
| | - Jicheng Huang
- Guangzhou Customs District Technology Center, Guangzhou 510623, China; (J.H.); (Y.S.); (K.Z.)
| | - Yongxia Shi
- Guangzhou Customs District Technology Center, Guangzhou 510623, China; (J.H.); (Y.S.); (K.Z.)
| | - Kui Zheng
- Guangzhou Customs District Technology Center, Guangzhou 510623, China; (J.H.); (Y.S.); (K.Z.)
| | - Yali Zhai
- School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; (W.M.); (J.W.); (J.W.); (J.W.); (Y.Z.); (X.L.); (Y.L.)
| | - Xiaokang Li
- School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; (W.M.); (J.W.); (J.W.); (J.W.); (Y.Z.); (X.L.); (Y.L.)
| | - Yan Long
- School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; (W.M.); (J.W.); (J.W.); (J.W.); (Y.Z.); (X.L.); (Y.L.)
| | - Jiahai Lu
- School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; (W.M.); (J.W.); (J.W.); (J.W.); (Y.Z.); (X.L.); (Y.L.)
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou 325000, China;
- National Medical Products Administration Key Laboratory for Quality Monitoring and Evaluation of Vaccines and Biological Products, Guangzhou 510080, China
- One Health Research Center, Hainan Medical University, Haikou 571199, China
- Research Institute of Sun Yat-Sen University in Shenzhen, Shenzhen 518057, China
- Key Laboratory of Tropical Diseases Control, Sun Yat-Sen University, Ministry of Education, Guangzhou 510080, China
- One Health Research Center, Baotou Medical College, Baotou 014040, China
- One Health Research Center, Wenzhou Medical University, Wenzhou 325000, China
| | - Cheng Guo
- School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; (W.M.); (J.W.); (J.W.); (J.W.); (Y.Z.); (X.L.); (Y.L.)
- National Medical Products Administration Key Laboratory for Quality Monitoring and Evaluation of Vaccines and Biological Products, Guangzhou 510080, China
| |
Collapse
|
4
|
Chen H, Liu J, Tang G, Hao G, Yang G. Bioinformatic Resources for Exploring Human-virus Protein-protein Interactions Based on Binding Modes. GENOMICS, PROTEOMICS & BIOINFORMATICS 2024; 22:qzae075. [PMID: 39404802 PMCID: PMC11658832 DOI: 10.1093/gpbjnl/qzae075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 10/05/2024] [Accepted: 10/11/2024] [Indexed: 12/21/2024]
Abstract
Historically, there have been many outbreaks of viral diseases that have continued to claim millions of lives. Research on human-virus protein-protein interactions (PPIs) is vital to understanding the principles of human-virus relationships, providing an essential foundation for developing virus control strategies to combat diseases. The rapidly accumulating data on human-virus PPIs offer unprecedented opportunities for bioinformatics research around human-virus PPIs. However, available detailed analyses and summaries to help use these resources systematically and efficiently are lacking. Here, we comprehensively review the bioinformatic resources used in human-virus PPI research, and discuss and compare their functions, performance, and limitations. This review aims to provide researchers with a bioinformatic toolbox that will hopefully better facilitate the exploration of human-virus PPIs based on binding modes.
Collapse
Affiliation(s)
- Huimin Chen
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, China
| | - Jiaxin Liu
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, China
| | - Gege Tang
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, China
| | - Gefei Hao
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, China
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, China
| | - Guangfu Yang
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, China
| |
Collapse
|
5
|
Hosnedlova B, Werle J, Cepova J, Narayanan VHB, Vyslouzilova L, Fernandez C, Parikesit AA, Kepinska M, Klapkova E, Kotaska K, Stepankova O, Bjorklund G, Prusa R, Kizek R. Electrochemical Sensors and Biosensors for Identification of Viruses: A Critical Review. Crit Rev Anal Chem 2024:1-30. [PMID: 38753964 DOI: 10.1080/10408347.2024.2343853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Due to their life cycle, viruses can disrupt the metabolism of their hosts, causing diseases. If we want to disrupt their life cycle, it is necessary to identify their presence. For this purpose, it is possible to use several molecular-biological and bioanalytical methods. The reference selection was performed based on electronic databases (2020-2023). This review focused on electrochemical methods with high sensitivity and selectivity (53% voltammetry/amperometry, 33% impedance, and 12% other methods) which showed their great potential for detecting various viruses. Moreover, the aforementioned electrochemical methods have considerable potential to be applicable for care-point use as they are portable due to their miniaturizability and fast speed analysis (minutes to hours), and are relatively easy to interpret. A total of 2011 articles were found, of which 86 original papers were subsequently evaluated (the majority of which are focused on human pathogens, whereas articles dealing with plant pathogens are in the minority). Thirty-two species of viruses were included in the evaluation. It was found that most of the examined research studies (77%) used nanotechnological modifications. Other ones performed immunological (52%) or genetic analyses (43%) for virus detection. 5% of the reports used peptides to increase the method's sensitivity. When evaluable, 65% of the research studies had LOD values in the order of ng or nM. The vast majority (79%) of the studies represent proof of concept and possibilities with low application potential and a high need of further research experimental work.
Collapse
Affiliation(s)
- Bozena Hosnedlova
- BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czech Republic
| | - Julia Werle
- Department of Medical Chemistry and Clinical Biochemistry, 2nd Faculty of Medicine, Charles University, University Hospital Motol, Prague, Czech Republic
| | - Jana Cepova
- Department of Medical Chemistry and Clinical Biochemistry, 2nd Faculty of Medicine, Charles University, University Hospital Motol, Prague, Czech Republic
| | - Vedha Hari B Narayanan
- Pharmaceutical Technology Lab, School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur, India
| | - Lenka Vyslouzilova
- Czech Institute of Informatics, Robotics and Cybernetics, Department of Biomedical Engineering & Assistive Technologies, Czech Technical University in Prague, Prague, Czech Republic
| | - Carlos Fernandez
- School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen, United Kingdom
| | - Arli Aditya Parikesit
- Department of Bioinformatics, School of Life Sciences, Indonesia International Institute for Life Sciences, Jakarta, Timur, Indonesia
| | - Marta Kepinska
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland
| | - Eva Klapkova
- Department of Medical Chemistry and Clinical Biochemistry, 2nd Faculty of Medicine, Charles University, University Hospital Motol, Prague, Czech Republic
| | - Karel Kotaska
- Department of Medical Chemistry and Clinical Biochemistry, 2nd Faculty of Medicine, Charles University, University Hospital Motol, Prague, Czech Republic
| | - Olga Stepankova
- Czech Institute of Informatics, Robotics and Cybernetics, Department of Biomedical Engineering & Assistive Technologies, Czech Technical University in Prague, Prague, Czech Republic
| | - Geir Bjorklund
- Council for Nutritional and Environmental Medicine (CONEM), Mo i Rana, Norway
| | - Richard Prusa
- Department of Medical Chemistry and Clinical Biochemistry, 2nd Faculty of Medicine, Charles University, University Hospital Motol, Prague, Czech Republic
| | - Rene Kizek
- Department of Medical Chemistry and Clinical Biochemistry, 2nd Faculty of Medicine, Charles University, University Hospital Motol, Prague, Czech Republic
| |
Collapse
|
6
|
Abugattas-Núñez del Prado J, Quintana Reyes A, Leon J, Blume La Torre J, Gutiérrez Loli R, Pinzón Olejua A, Chamorro Chirinos ER, Loza Mauricio FA, Maguiña JL, Rodriguez-Aliaga P, Málaga-Trillo E. Clinical validation of RCSMS: A rapid and sensitive CRISPR-Cas12a test for the molecular detection of SARS-CoV-2 from saliva. PLoS One 2024; 19:e0290466. [PMID: 38527001 PMCID: PMC10962837 DOI: 10.1371/journal.pone.0290466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 08/08/2023] [Indexed: 03/27/2024] Open
Abstract
Peru's holds the highest COVID death rate per capita worldwide. Key to this outcome is the lack of robust, rapid, and accurate molecular tests to circumvent the elevated costs and logistics of SARS-CoV-2 detection via RT-qPCR. To facilitate massive and timely COVID-19 testing in rural and socioeconomically deprived contexts, we implemented and validated RCSMS, a rapid and sensitive CRISPR-Cas12a test for the molecular detection of SARS-CoV-2 from saliva. RCSMS uses the power of CRISPR-Cas technology and lateral flow strips to easily visualize the presence of SARS-CoV-2 even in laboratories with limited equipment. We show that a low-cost thermochemical treatment with TCEP/EDTA is sufficient to inactivate viral particles and cellular nucleases in saliva, eliminating the need to extract viral RNA with commercial kits, as well as the cumbersome nasopharyngeal swab procedure and the requirement of biosafety level 2 laboratories for molecular analyses. Notably, RCSMS performed outstandingly in a clinical validation done with 352 patients from two hospitals in Lima, detecting as low as 50 viral copies per 10 μl reaction in 40 min, with sensitivity and specificity of 96.5% and 99.0%, respectively, relative to RT-qPCR. The negative and positive predicted values obtained from this field validation indicate that RCSMS can be confidently deployed in both high and low prevalence settings. Like other CRISPR-Cas-based biosensors, RCSMS can be easily reprogrammed for the detection of new SARS-CoV-2 variants. We conclude that RCSMS is a fast, efficient and inexpensive alternative to RT-qPCR for expanding COVID-19 testing capacity in Peru and other low- and middle-income countries with precarious healthcare systems.
Collapse
Affiliation(s)
| | | | - Julio Leon
- IMS RIKEN Center for Integrative Medical Sciences, Japan
- University of California San Francisco, San Francisco, California, United States of America
| | - Juan Blume La Torre
- Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Renzo Gutiérrez Loli
- Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Perú
| | | | | | | | - Jorge L. Maguiña
- Instituto de Evaluación de Tecnologías en Salud e Investigación (IETSI), EsSalud, Lima, Perú
| | - Piere Rodriguez-Aliaga
- Department of Biology, Stanford University, Stanford, California, United States of America
| | - Edward Málaga-Trillo
- Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Perú
| |
Collapse
|
7
|
Feng R, Fu S, Liu H, Wang Y, Liu S, Wang K, Chen B, Zhang X, Hu L, Chen Q, Cai T, Han X, Wang C. Single-Atom Site SERS Chip for Rapid, Ultrasensitive, and Reproducible Direct-Monitoring of RNA Binding. Adv Healthc Mater 2024; 13:e2301146. [PMID: 38176000 DOI: 10.1002/adhm.202301146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 12/11/2023] [Indexed: 01/06/2024]
Abstract
Ribonucleic acids (RNA) play active roles within cells or viruses by catalyzing biological reactions, controlling gene expression, and communicating responses to cellular signals. Rapid monitoring RNA variation has become extremely important for appropriate clinical decisions and frontier biological research. However, the most widely used method for RNA detection, nucleic acid amplification, is restricted by a mandatory temperature cycling period of ≈1 h required to reach target detection criteria. Herein, a direct detection approach via single-atom site integrated surface-enhanced Raman scattering (SERS) monitoring nucleic acid pairing reaction, can be completed within 3 min and reaches high sensitivity and extreme reproducibility for COVID-19 and two other influenza viruses' detection. The mechanism is that a single-atom site on SERS chip, enabled by positioning a single-atom oxide coordinated with a specific complementary RNA probe on chip nanostructure hotspots, can effectively bind target RNA analytes to enrich them at designed sites so that the binding reaction can be detected through Raman signal variation. This ultrafast, sensitive, and reproducible single-atom site SERS chip approach paves the route for an alternative technique of immediate RNA detection. Moreover, single-atom site SERS is a novel surface enrichment strategy for SERS active sites for other analytes at ultralow concentrations.
Collapse
Affiliation(s)
- Ran Feng
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Ningbo No. 2 Hospital, Ningbo, 315012, China
- Beijing Key Laboratory of Microstructure and Properties of Solids, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, China
| | - Shaohua Fu
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing, 100044, China
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | | | - Ying Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Simiao Liu
- Thorgene Co., Ltd, Beijing, 100176, China
| | - Kaiwen Wang
- Beijing Key Laboratory of Microstructure and Properties of Solids, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, China
| | - Binbin Chen
- Beijing Key Laboratory of Microstructure and Properties of Solids, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, China
| | - Xiaoxian Zhang
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing, 100044, China
| | - Liming Hu
- Beijing Key Laboratory of Microstructure and Properties of Solids, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, China
| | - Qian Chen
- Thorgene Co., Ltd, Beijing, 100176, China
| | - Ting Cai
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Ningbo No. 2 Hospital, Ningbo, 315012, China
| | - Xiaodong Han
- Beijing Key Laboratory of Microstructure and Properties of Solids, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, China
| | - Cong Wang
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Ningbo No. 2 Hospital, Ningbo, 315012, China
- Beijing Key Laboratory of Microstructure and Properties of Solids, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, China
- Thorgene Co., Ltd, Beijing, 100176, China
| |
Collapse
|
8
|
Sakhabutdinova AR, Chemeris AV, Garafutdinov RR. Detection of Specific RNA Targets by Multimerization. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:679-686. [PMID: 37331713 DOI: 10.1134/s0006297923050103] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/26/2023] [Accepted: 03/09/2023] [Indexed: 06/20/2023]
Abstract
Detection of specific RNA targets via amplification-mediated techniques is widely used in fundamental studies and medicine due to essential role of RNA in transfer of genetic information and development of diseases. Here, we report on an approach for detection of RNA targets based on the particular type of isothermal amplification, namely, reaction of nucleic acid multimerization. The proposed technique requires only a single DNA polymerase possessing reverse transcriptase, DNA-dependent DNA polymerase, and strand-displacement activities. Reaction conditions that lead to efficient detection of the target RNAs through multimerization mechanism were determined. The approach was verified by using genetic material of the SARS-CoV-2 coronavirus as a model viral RNA. Reaction of multimerization allowed to differentiate the SARS-CoV-2 RNA-positive samples from the SARS-CoV-2 negative samples with high reliability. The proposed technique allows detection of RNA even in the samples, which were subjected to multiple freezing-thawing cycles.
Collapse
Affiliation(s)
- Assol R Sakhabutdinova
- Institute of Biochemistry and Genetics, Ufa Federal Research Center, Russian Academy of Sciences, Ufa, 450054, Bashkortostan, Russia
| | - Alexey V Chemeris
- Institute of Biochemistry and Genetics, Ufa Federal Research Center, Russian Academy of Sciences, Ufa, 450054, Bashkortostan, Russia
| | - Ravil R Garafutdinov
- Institute of Biochemistry and Genetics, Ufa Federal Research Center, Russian Academy of Sciences, Ufa, 450054, Bashkortostan, Russia.
| |
Collapse
|
9
|
Kantak M, Batra P, Shende P. Integration of DNA barcoding and nanotechnology in drug delivery. Int J Biol Macromol 2023; 230:123262. [PMID: 36646350 DOI: 10.1016/j.ijbiomac.2023.123262] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/05/2023] [Accepted: 01/08/2023] [Indexed: 01/15/2023]
Abstract
In recent years' development in nanotechnology utilization of DNA barcodes with potential benefit of nanoparticulate system is a hallmark for novel advancement in healthcare, biomedical and research sector. Interplay of biological barcoding with nanodimensional system encompasses innovative technologies to offer unique advantages of ultra-sensitivity, error-free, accuracy with minimal label reagents, and less time consumption in comparison to conventional techniques like ELISA, PCR, culture media, electrophoresis. DNA barcoding systems used as universal novel tool for identification and multiplex structural detection of proteins, DNAs, toxins, allergens, and nucleic acids of humans, viruses, animals, bacteria, plants as well as personalized treatment in ovarian cancer, AIDS-related Kaposi sarcoma, breast cancer and cardiovascular diseases. Barcoding tools offer substantial attention in drug delivery, in-vivo screening, gene transport for theranostics, bioimaging, and nano-biosensors applications. This review article outlines the recent advances in nano-mediated DNA barcodes to explore various applications in detection of cancer markers, tumor cells, pathogens, allergens, as theranostics, biological sensors, and plant authentication. Furthermore, it summarizes the diverse newer technologies such as bio-barcode amplification (BBA), Profiling Relative Inhibition Simultaneously in Mixtures (PRISM) and CRISPR-Cas9 gene knockout and their applications as sensors for detections of antigens, allergens, and other specimens.
Collapse
Affiliation(s)
- Maithili Kantak
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, V. L. Mehta Road, Vile Parle (W), Mumbai, India
| | - Priyanka Batra
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, V. L. Mehta Road, Vile Parle (W), Mumbai, India
| | - Pravin Shende
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, V. L. Mehta Road, Vile Parle (W), Mumbai, India.
| |
Collapse
|
10
|
Effects of Bacillus subtilis Natto Strains on Antiviral Responses in Resiquimod-Stimulated Human M1-Phenotype Macrophages. Foods 2023; 12:foods12020313. [PMID: 36673407 PMCID: PMC9858497 DOI: 10.3390/foods12020313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/03/2023] [Accepted: 01/06/2023] [Indexed: 01/11/2023] Open
Abstract
Bacillus subtilis natto is used in the production of natto, a traditional fermented soy food, and has beneficial immunomodulatory effects in humans. Single-stranded RNA (ssRNA) viruses, including influenza and coronavirus, often cause global pandemics. We proposed a human cell culture model mimicking ssRNA viral infection and investigated the ability of B. subtilis natto to induce antiviral effects in the model. The gene expressions were analyzed using quantitative real-time reverse transcription PCR. M1-phenotype macrophages derived from THP-1 cells strongly express the Toll-like receptor 8 (76.2-hold), CD80 (64.2-hold), and CCR7 (45.7-hold) mRNA compared to M0 macrophages. One µg/mL of resiquimod (RSQ)-stimulation induced the expression of IRF3 (1.9-hold), CXCL10 (14.5-hold), IFNβ1 (3.5-hold), ISG20 (4.4-hold), and MxA (1.7-hold) mRNA in the M1-phenotype macrophages. Based on these results, the RSQ-stimulated M1-phenotype macrophages were used as a cell culture model mimicking ssRNA viral infection. Moreover, the B. subtilis natto XF36 strain induced the expression of genes associated with antiviral activities (IFNβ1, IFNλ1, ISG20, and RNase L) and anti-inflammatory activities (IL-10) in the cell culture model. Thus, it is suggested that the XF36 suppresses viral infections and excessive inflammation by inducing the expression of genes involved in antiviral and anti-inflammatory activities.
Collapse
|
11
|
Moza A, Duica F, Antoniadis P, Bernad ES, Lungeanu D, Craina M, Bernad BC, Paul C, Muresan C, Nitu R, Dumache R, Iacob D. Outcome of Newborns with Confirmed or Possible SARS-CoV-2 Vertical Infection-A Scoping Review. Diagnostics (Basel) 2023; 13:245. [PMID: 36673058 PMCID: PMC9858608 DOI: 10.3390/diagnostics13020245] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/27/2022] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
Severe acute respiratory syndrome virus 2 (SARS-CoV-2), the virus that causes 2019 coronavirus disease (COVID-19), has been isolated from various tissues and body fluids, including the placenta, amniotic fluid, and umbilical cord of newborns. In the last few years, much scientific effort has been directed toward studying SARS-CoV-2, focusing on the different features of the virus, such as its structure and mechanisms of action. Moreover, much focus has been on developing accurate diagnostic tools and various drugs or vaccines to treat COVID-19. However, the available evidence is still scarce and consistent criteria should be used for diagnosing vertical transmission. Applying the PRISMA ScR guidelines, we conducted a scoping review with the primary objective of identifying the types, and examining the range, of available evidence of vertical transmission of SARS-CoV-2 from mother to newborn. We also aimed to clarify the key concepts and criteria for diagnosis of SARS-CoV-2 vertical infection in neonates and summarize the existing evidence and advance the awareness of SARS-CoV-2 vertical infection in pregnancy. Most studies we identified were case reports or case series (about 30% of poor quality and inconsistent reporting of the findings). Summarizing the existing classification criteria, we propose an algorithm for consistent diagnosis. Registration: INPLASY2022120093.
Collapse
Affiliation(s)
- Andreea Moza
- Department of Obstetrics and Gynecology, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
- Clinic of Obstetrics and Gynecology, “Pius Brinzeu” County Clinical Emergency Hospital, 300723 Timisoara, Romania
| | - Florentina Duica
- Bucharest Emergency Clinical Hospital, 014461 Bucharest, Romania
- Alessandrescu-Rusescu National Institute for Mother and Child Health, Fetal Medicine Excellence Research Center, 020395 Bucharest, Romania
| | - Panagiotis Antoniadis
- Department of Biochemistry and Molecular Biology, Faculty of Science, University of Southern Denmark, 5230 Odense, Denmark
| | - Elena S. Bernad
- Department of Obstetrics and Gynecology, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
- Clinic of Obstetrics and Gynecology, “Pius Brinzeu” County Clinical Emergency Hospital, 300723 Timisoara, Romania
- Center for Laparoscopy, Laparoscopic Surgery and In Vitro Fertilization, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Diana Lungeanu
- Center for Modeling Biological Systems and Data Analysis, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
- Department of Functional Sciences, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Marius Craina
- Department of Obstetrics and Gynecology, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
- Clinic of Obstetrics and Gynecology, “Pius Brinzeu” County Clinical Emergency Hospital, 300723 Timisoara, Romania
- Center for Laparoscopy, Laparoscopic Surgery and In Vitro Fertilization, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Brenda C. Bernad
- Department of Neuroscience, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
- Center for Neuropsychology and Behavioral Medicine, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Corina Paul
- Department of Pediatrics, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Cezara Muresan
- Department of Obstetrics and Gynecology, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
- Clinic of Obstetrics and Gynecology, “Pius Brinzeu” County Clinical Emergency Hospital, 300723 Timisoara, Romania
- Center for Laparoscopy, Laparoscopic Surgery and In Vitro Fertilization, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Razvan Nitu
- Department of Obstetrics and Gynecology, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
- Clinic of Obstetrics and Gynecology, “Pius Brinzeu” County Clinical Emergency Hospital, 300723 Timisoara, Romania
- Center for Laparoscopy, Laparoscopic Surgery and In Vitro Fertilization, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Raluca Dumache
- Department of Neuroscience, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Daniela Iacob
- Department of Obstetrics and Gynecology, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
- Clinic of Neonatology, “Pius Brinzeu” County Clinical Emergency Hospital, 300723 Timisoara, Romania
| |
Collapse
|
12
|
Sakhabutdinova AR, Gazizov RR, Chemeris AV, Garafutdinov RR. Reverse transcriptase-free detection of viral RNA using Hemo Klentaq DNA polymerase. Anal Biochem 2022; 659:114960. [PMID: 36306819 PMCID: PMC9597527 DOI: 10.1016/j.ab.2022.114960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/07/2022] [Accepted: 10/17/2022] [Indexed: 12/14/2022]
Abstract
COVID-19 pandemic highlighted the demand for the fast and reliable detection of viral RNA. Although various methods for RNA amplification and detection have been proposed, some limitations, including those caused by reverse transcription (RT), need to be overcome. Here, we report on the direct detection of specific RNA by conventional polymerase chain reaction (PCR) requiring no prior RT step. It was found that Hemo KlenTaq (HKTaq), which is posed as DNA-dependent DNA polymerase, possesses reverse transcriptase activity and provides reproducible amplification of RNA targets with an efficiency comparable to common RT-PCR. Using nasopharyngeal swab extracts from COVID-19-positive patients, the high reliability of SARS-CoV-2 detection based on HKTaq was demonstrated. The most accurate detection of specific targets are provided by nearby primers, which allow to determine RNA in solutions affected to multiple freeze-thaw cycles. HKTaq can be used for elaboration of simplified amplification techniques intended for the analysis of any specific RNA and requiring only one DNA polymerase.
Collapse
|
13
|
Štukovnik Z, Bren U. Recent Developments in Electrochemical-Impedimetric Biosensors for Virus Detection. Int J Mol Sci 2022; 23:ijms232415922. [PMID: 36555560 PMCID: PMC9788240 DOI: 10.3390/ijms232415922] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/07/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Viruses, including influenza viruses, MERS-CoV (Middle East respiratory syndrome coronavirus), SARS-CoV (severe acute respiratory syndrome coronavirus), HAV (Hepatitis A virus), HBV (Hepatitis B virus), HCV (Hepatitis C virus), HIV (human immunodeficiency virus), EBOV (Ebola virus), ZIKV (Zika virus), and most recently SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2), are responsible for many diseases that result in hundreds of thousands of deaths yearly. The ongoing outbreak of the COVID-19 disease has raised a global concern and intensified research on the detection of viruses and virus-related diseases. Novel methods for the sensitive, rapid, and on-site detection of pathogens, such as the recent SARS-CoV-2, are critical for diagnosing and treating infectious diseases before they spread and affect human health worldwide. In this sense, electrochemical impedimetric biosensors could be applied for virus detection on a large scale. This review focuses on the recent developments in electrochemical-impedimetric biosensors for the detection of viruses.
Collapse
Affiliation(s)
- Zala Štukovnik
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia
| | - Urban Bren
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia
- Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Glagoljaška ulica 8, 6000 Koper, Slovenia
- Institute for Environmental Protection and Sensors, Beloruska ulica 7, 2000 Maribor, Slovenia
| |
Collapse
|
14
|
Loop-Mediated Isothermal Amplification-Based Microfluidic Platforms for the Detection of Viral Infections. Curr Infect Dis Rep 2022; 24:205-215. [PMID: 36341307 PMCID: PMC9628606 DOI: 10.1007/s11908-022-00790-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/15/2022] [Indexed: 11/09/2022]
Abstract
Purpose of Review Easy-to-use, fast, and accurate virus detection method is essential for patient management and epidemic surveillance, especially during severe pandemics. Loop-mediated isothermal amplification (LAMP) on a microfluidic platform is suitable for detecting infectious viruses, regardless of the availability of medical resources. The purpose of this review is to introduce LAMP-based microfluidic devices for virus detection, including their detection principles, methods, and application. Recent Findings Facing the uncontrolled spread of viruses, the large-scale deployment of LAMP-based microfluidic platforms at the grassroots level can help expand the coverage of nucleic acid testing and shorten the time to obtain test reports. Microfluidic chip technology is highly integrated and miniaturized, enabling precise fluid control for effective virus detection. Performing LAMP on miniaturized systems can reduce analysis time, reagent consumption and risk of sample contamination, and improve analytical performance. Summary Compared to traditional benchtop protocols, LAMP-based microfluidic devices reduce the testing time, reagent consumption, and the risk of sample contamination. In addition to simultaneous detection of multiple target genes by special channel design, microfluidic chips can also integrate digital LAMP to achieve absolute quantification of target genes.
Collapse
|
15
|
Tran VV. Conjugated Polymers-Based Biosensors for Virus Detection: Lessons from COVID-19. BIOSENSORS 2022; 12:748. [PMID: 36140133 PMCID: PMC9496581 DOI: 10.3390/bios12090748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 11/16/2022]
Abstract
Human beings continue to endure the coronavirus disease (COVID-19) pandemic, which has spread throughout the world and significantly affected all countries and territories, causing a socioeconomic crunch. Human pathogenic viruses are considered a global burden for public health, both in the present and the future. Therefore, the early and accurate diagnosis of viruses has been and still is critical and should be accorded a degree of priority that is equivalent to vaccinations and drugs. We have opened a Special Issue titled "Conjugated polymers-based biosensors for virus detection". This editorial seeks to emphasize the importance and potential of conjugated polymers in the design and development of biosensors. Furthermore, we briefly provide an overview, scientific evidence, and opinions on promising strategies for the development of CP-based electrochemical biosensors for virus detection.
Collapse
Affiliation(s)
- Vinh Van Tran
- Laser and Thermal Engineering Laboratory, Department of Mechanical Engineering, Gachon University, Seongnam 13120, Korea
| |
Collapse
|
16
|
Zhang Z, Ma P, Ahmed R, Wang J, Akin D, Soto F, Liu BF, Li P, Demirci U. Advanced Point-of-Care Testing Technologies for Human Acute Respiratory Virus Detection. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2103646. [PMID: 34623709 DOI: 10.1002/adma.202103646] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 08/25/2021] [Indexed: 04/14/2023]
Abstract
The ever-growing global threats to human life caused by the human acute respiratory virus (RV) infections have cost billions of lives, created a significant economic burden, and shaped society for centuries. The timely response to emerging RVs could save human lives and reduce the medical care burden. The development of RV detection technologies is essential for potentially preventing RV pandemic and epidemics. However, commonly used detection technologies lack sensitivity, specificity, and speed, thus often failing to provide the rapid turnaround times. To address this problem, new technologies are devised to address the performance inadequacies of the traditional methods. These emerging technologies offer improvements in convenience, speed, flexibility, and portability of point-of-care test (POCT). Herein, recent developments in POCT are comprehensively reviewed for eight typical acute respiratory viruses. This review discusses the challenges and opportunities of various recognition and detection strategies and discusses these according to their detection principles, including nucleic acid amplification, optical POCT, electrochemistry, lateral flow assays, microfluidics, enzyme-linked immunosorbent assays, and microarrays. The importance of limits of detection, throughput, portability, and specificity when testing clinical samples in resource-limited settings is emphasized. Finally, the evaluation of commercial POCT kits for both essential RV diagnosis and clinical-oriented practices is included.
Collapse
Affiliation(s)
- Zhaowei Zhang
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, National Reference Laboratory for Agricultural Testing (Biotoxin), Key Laboratory of Biology and Genetic Improvement of Oil Crops, Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan, 430062, P. R. China
- Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford School of Medicine, Palo Alto, CA, 94304, USA
| | - Peng Ma
- Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford School of Medicine, Palo Alto, CA, 94304, USA
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Rajib Ahmed
- Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford School of Medicine, Palo Alto, CA, 94304, USA
| | - Jie Wang
- Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford School of Medicine, Palo Alto, CA, 94304, USA
| | - Demir Akin
- Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford School of Medicine, Palo Alto, CA, 94304, USA
| | - Fernando Soto
- Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford School of Medicine, Palo Alto, CA, 94304, USA
| | - Bi-Feng Liu
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Peiwu Li
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, National Reference Laboratory for Agricultural Testing (Biotoxin), Key Laboratory of Biology and Genetic Improvement of Oil Crops, Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan, 430062, P. R. China
| | - Utkan Demirci
- Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford School of Medicine, Palo Alto, CA, 94304, USA
| |
Collapse
|
17
|
Convective polymerase chain reaction in standard microtubes. Anal Biochem 2022; 641:114565. [DOI: 10.1016/j.ab.2022.114565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 11/17/2022]
|
18
|
Detection and Prevention of Virus Infection. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1368:21-52. [DOI: 10.1007/978-981-16-8969-7_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
19
|
Scholtz A, Ramoji A, Silge A, Jansson JR, de Moura IG, Popp J, Sram JP, Armani AM. COVID-19 Diagnostics: Past, Present, and Future. ACS PHOTONICS 2021; 8:2827-2838. [PMID: 37556281 PMCID: PMC8482784 DOI: 10.1021/acsphotonics.1c01052] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/02/2021] [Accepted: 09/02/2021] [Indexed: 05/25/2023]
Abstract
In winter of 2020, SARS-CoV-2 emerged as a global threat, impacting not only health but also financial and political stability. To address the societal need for monitoring the spread of SARS-CoV-2, many existing diagnostic technologies were quickly adapted to detect SARS-CoV-2 RNA and antigens as well as the immune response, and new testing strategies were developed to accelerate time-to-decision. In parallel, the infusion of research support accelerated the development of new spectroscopic methods. While these methods have significantly reduced the impact of SARS-CoV-2 on society when coupled with behavioral changes, they also lay the groundwork for a new generation of platform technologies. With several epidemics on the horizon, such as the rise of antibiotic-resistant bacteria, the ability to quickly pivot the target pathogen of this diagnostic toolset will continue to have an impact.
Collapse
Affiliation(s)
- Alexis Scholtz
- Department of Biomedical Engineering,
University of Southern California, Los Angeles, California
90089, United States of America
| | - Anuradha Ramoji
- Institute of Physical Chemistry (IPC) and
Abbe Center of Photonics, Helmholtzweg 4, 07743 Jena,
Germany
- Leibniz Institute of Photonic Technology
(IPHT) Jena, Member of the Leibniz Research Alliance - Leibniz Health
Technologies, Albert-Einstein-Straße 9, 07745 Jena, Germany
| | - Anja Silge
- Institute of Physical Chemistry (IPC) and
Abbe Center of Photonics, Helmholtzweg 4, 07743 Jena,
Germany
- Leibniz Institute of Photonic Technology
(IPHT) Jena, Member of the Leibniz Research Alliance - Leibniz Health
Technologies, Albert-Einstein-Straße 9, 07745 Jena, Germany
- InfectoGnostics Research Campus
Jena, Centre of Applied Research, Philosophenweg 7, D-07743 Jena,
Germany
| | - Jakob R. Jansson
- Fulgent Genetics, Temple
City, California 91780, United States of America
| | - Ian G. de Moura
- Fulgent Genetics, Temple
City, California 91780, United States of America
| | - Jürgen Popp
- Institute of Physical Chemistry (IPC) and
Abbe Center of Photonics, Helmholtzweg 4, 07743 Jena,
Germany
- Leibniz Institute of Photonic Technology
(IPHT) Jena, Member of the Leibniz Research Alliance - Leibniz Health
Technologies, Albert-Einstein-Straße 9, 07745 Jena, Germany
- InfectoGnostics Research Campus
Jena, Centre of Applied Research, Philosophenweg 7, D-07743 Jena,
Germany
| | - Jakub P. Sram
- Fulgent Genetics, Temple
City, California 91780, United States of America
| | - Andrea M. Armani
- Department of Biomedical Engineering,
University of Southern California, Los Angeles, California
90089, United States of America
- Mork Family Department of Chemical Engineering,
University of Southern California, Los Angeles, California
90089, United States of America
| |
Collapse
|
20
|
Xi H, Jiang H, Juhas M, Zhang Y. Multiplex Biosensing for Simultaneous Detection of Mutations in SARS-CoV-2. ACS OMEGA 2021; 6:25846-25859. [PMID: 34632242 PMCID: PMC8491437 DOI: 10.1021/acsomega.1c04024] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/10/2021] [Indexed: 05/02/2023]
Abstract
COVID-19 pandemic caused by the severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) has become the world's largest public health emergency of the past few decades. Thousands of mutations were identified in the SARS-CoV-2 genome. Some mutants are more infectious and may replace the original strains. Recently, B.1.1.7(Alpha), B1.351(Beta), and B.1.617.2(Delta) strains, which appear to have increased transmissibility, were detected. These strains accounting for the high proportion of newly diagnosed cases spread rapidly over the world. Particularly, the Delta variant has been reported to account for a vast majority of the infections in several countries over the last few weeks. The application of biosensors in the detection of SARS-CoV-2 is important for the control of the COVID-19 pandemic. Due to high demand for SARS-CoV-2 genotyping, it is urgent to develop reliable and efficient systems based on integrated multiple biosensor technology for rapid detection of multiple SARS-CoV-2 mutations simultaneously. This is important not only for the detection and analysis of the current but also for future mutations. Novel biosensors combined with other technologies can be used for the reliable and effective detection of SARS-CoV-2 mutants.
Collapse
Affiliation(s)
- Hui Xi
- College
of Science, Harbin Institute of Technology
(Shenzhen), Shenzhen, Guangdong 518055, China
| | - Hanlin Jiang
- College
of Science, Harbin Institute of Technology
(Shenzhen), Shenzhen, Guangdong 518055, China
| | - Mario Juhas
- Medical
and Molecular Microbiology Unit, Department of Medicine, Faculty of
Science and Medicine, University of Fribourg, Fribourg CH-1700, Switzerland
| | - Yang Zhang
- College
of Science, Harbin Institute of Technology
(Shenzhen), Shenzhen, Guangdong 518055, China
| |
Collapse
|
21
|
Shi Y, Xu M, Duan X, Li S, Ding JW, Chen L. WarmStart colorimetric loop-mediated isothermal amplification for the one-tube, contamination-free and visualization detection of Shigella flexneri. Int J Infect Dis 2021; 112:55-62. [PMID: 34517048 DOI: 10.1016/j.ijid.2021.09.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/16/2021] [Accepted: 09/06/2021] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVES Shigella flexneri (S. flexneri) is prevalent worldwide and the most common Shigella in many countries, causing highly contagious diarrhea, which seriously threatens public health. This study aimed to develop a colorimetric loop-mediated isothermal amplification (LAMP) for the rapid, accurate, and visualization detection of S. flexneri. METHODS According to the screened specific genes of S. flexneri, three groups of LAMP primers were designed and evaluated, and the colorimetric LAMP reaction volume was optimized. The specificity of the colorimetric LAMP was validated by 20 S. flexneri and 96 non-S. flexneri clinical isolates. In addition, the sensitivity of the developed assay was evaluated by the serial 10-fold dilutions of plasmid DNA. RESULTS A colorimetric LAMP assay was developed based on the specific S. flexneri hypothetical protein gene (Accession: AE014073 Region: 4170556.4171068). The colorimetric LAMP method had good specificity for detecting S. flexneri and enabled detection of S. flexneri within 30 minutes, with a plasmid detection limit of 7*10° copies/μL. The results of amplification could be easily identified by color. CONCLUSIONS This colorimetric LAMP assay could be used for rapid and accurate diagnosis of S. flexneri infection, especially in remote hospitals and laboratories with under-equipped medical facilities, and in situations where an urgent diagnosis is needed.
Collapse
Affiliation(s)
- Yaoqiang Shi
- Provincial Key Laboratory for Transfusion-Transmitted Infectious Diseases, Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, Sichuan, China
| | - Min Xu
- Provincial Key Laboratory for Transfusion-Transmitted Infectious Diseases, Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, Sichuan, China
| | - Xiaoqiong Duan
- Provincial Key Laboratory for Transfusion-Transmitted Infectious Diseases, Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, Sichuan, China
| | - Shilin Li
- Provincial Key Laboratory for Transfusion-Transmitted Infectious Diseases, Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, Sichuan, China
| | - Jia-Wei Ding
- Clinical Laboratory Department, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan, China
| | - Limin Chen
- Provincial Key Laboratory for Transfusion-Transmitted Infectious Diseases, Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, Sichuan, China; Toronto General Research Institute, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
22
|
Sakhabutdinova AR, Kamalov MI, Salakhieva DV, Mavzyutov AR, Garafutdinov RR. Inhibition of nonspecific polymerase activity using Poly(Aspartic) acid as a model anionic polyelectrolyte. Anal Biochem 2021; 628:114267. [PMID: 34089699 DOI: 10.1016/j.ab.2021.114267] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/26/2021] [Accepted: 05/28/2021] [Indexed: 01/04/2023]
Abstract
DNA polymerases with strand-displacement activity allow to amplify nucleic acids under isothermal conditions but often lead to undesirable by-products. Here, we report the increase of specificity of isothermal amplification in the presence of poly (aspartic) acids (pAsp). We hypothesized that side reactions occur due to the binding of the phosphate backbone of synthesized DNA strands with surface amino groups of the polymerase, and weakly acidic polyelectrolytes could shield polymerase molecules from DNA and thereby inhibit nonspecific amplification. Suppression of nonspecific polymerase activity by pAsp was studied on multimerization as a model side reaction. It was found that a low concentration of pAsp (0.01%) provides successful amplification of specific DNA targets. The inhibitory effect of pAsp is due to its polymeric structure since aspartic acid did affect neither specific nor nonspecific amplification. Strongly acidic polyelectrolyte heparin does not possess the same selectivity since it suppresses any DNA synthesis. The applicability of pAsp to prevent nonspecific reactions and reliable detection of the specific target has been demonstrated on the genetic material of SARS-CoV-2 coronavirus using Loop-mediated isothermal amplification.
Collapse
Affiliation(s)
- Assol R Sakhabutdinova
- Institute of Biochemistry and Genetics, Ufa Federal Research Center, Russian Academy of Sciences, 450054, Prosp. Oktyabrya, 71, Ufa, Bashkortostan, Russia.
| | - Marat I Kamalov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420021, Parizhskoy Kommuny Str., 9, Kazan, Tatarstan, Russia.
| | - Diana V Salakhieva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420021, Parizhskoy Kommuny Str., 9, Kazan, Tatarstan, Russia.
| | - Ayrat R Mavzyutov
- Bashkir State Medical University, 450008, Lenin Str., 3, Ufa, Bashkortostan, Russia; Research Center «LABORATORY», Ltd, 450501, PO Box, 147, Bulgakovo, Ufa District, Bashkortostan, Russia.
| | - Ravil R Garafutdinov
- Institute of Biochemistry and Genetics, Ufa Federal Research Center, Russian Academy of Sciences, 450054, Prosp. Oktyabrya, 71, Ufa, Bashkortostan, Russia.
| |
Collapse
|