1
|
Pentlavalli S, Coulter SM, An Y, Cross ER, Sun H, Moore JV, Sabri AB, Greer B, Vora L, McCarthy HO, Laverty G. D-peptide hydrogels as a long-acting multipurpose drug delivery platform for combined contraception and HIV prevention. J Control Release 2025; 379:30-44. [PMID: 39724948 DOI: 10.1016/j.jconrel.2024.12.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/16/2024] [Accepted: 12/19/2024] [Indexed: 12/28/2024]
Abstract
New multipurpose prevention technology products for use by women, focused on reducing HIV infection and preventing unwanted pregnancies, are a global health priority. Discreet long-acting formulations will empower women with greater choice around their sexual health. This paper outlines the development of a long-acting technology that enables multiple drugs to be incorporated within one injectable platform. This fixed-dose combination product is formed from a phosphorylated D-peptide (naphthalene-2-ly)-acetyl-diphenylalanine-lysine-tyrosine-glycine-OH (Napffky(p)G-OH) that enables the highly hydrophobic drugs MIV-150 (HIV antiretroviral) and etonogestrel (contraceptive) to be solubilized together within aqueous solvents. Upon subcutaneous injection, this D-peptide-drug combination self-assembles in response to phosphatase enzymes present within the skin space to form an in situ forming drug-releasing hydrogel depot. Oscillatory rheology confirmed the formation of hydrogels, which began within ∼10 s exposure to 3.98 U/mL phosphatase enzymes and continued for ∼198 mins for a Napffk(MIV-150)y(p)G-OH + Napffk(ENG)y(p)G-OH combination (8:2 ratio). Biostability against proteases, an important consideration for long-acting injectables, was demonstrated for at least 28 days in vitro. Covalent attachment of each drug to the D-peptide via an ester linkage enabled sustained release of the drug in an unmodified form via hydrolysis of the D-peptide-drug linker. This significantly reduced the initial drug burst. Low toxicity was also demonstrated in vitro via cell culture (MTS, LHS, Live/Dead®) and within in vivo studies (H&E staining). The fixed dose combination was able to deliver clinically relevant concentrations of each drug to Sprague-Dawley rats for at least 49 days, providing proof-of-concept for the use of hydrogel-forming D-peptides (Napffky(p)G-OH) as a long-acting injectable platform for the delivery of multiple hydrophobic drugs.
Collapse
Affiliation(s)
- Sreekanth Pentlavalli
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, Northern Ireland BT9 7BL, United Kingdom
| | - Sophie M Coulter
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, Northern Ireland BT9 7BL, United Kingdom
| | - Yuming An
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, Northern Ireland BT9 7BL, United Kingdom
| | - Emily R Cross
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, Northern Ireland BT9 7BL, United Kingdom
| | - Han Sun
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, Northern Ireland BT9 7BL, United Kingdom
| | - Jessica V Moore
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, Northern Ireland BT9 7BL, United Kingdom
| | - Akmal Bin Sabri
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, Northern Ireland BT9 7BL, United Kingdom
| | - Brett Greer
- School of Biological Sciences, Biological Sciences Building, 19 Chlorine Gardens, Belfast, Northern Ireland BT9 5DL, United Kingdom
| | - Lalitkumar Vora
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, Northern Ireland BT9 7BL, United Kingdom
| | - Helen O McCarthy
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, Northern Ireland BT9 7BL, United Kingdom
| | - Garry Laverty
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, Northern Ireland BT9 7BL, United Kingdom.
| |
Collapse
|
2
|
Ginesi RE, Draper ER. Methods of changing low molecular weight gel properties through gelation kinetics. SOFT MATTER 2024; 20:3887-3896. [PMID: 38691131 DOI: 10.1039/d4sm00238e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Low molecular weight gels continue to attract notable interest, with many potential applications. However, there are still significant gaps in our understanding of these systems and the correlation between the pre-gel and final gel states. The kinetics of the gelation process plays a crucial role in the bulk properties of the hydrogel and presents an opportunity to fine-tune these systems to meet the requirements of the chosen application. Therefore, it is possible to use a single gelator for multiple applications. This review discusses four ways to modify the pre-gelled structures before triggering gelation. Such modifications can enhance the material's intended performance, which may result in significant advancements in high-tech areas, such as drug delivery, cell culturing, electronics, and tissue engineering.
Collapse
Affiliation(s)
- Rebecca E Ginesi
- School of Chemistry, University of Glasgow, Glasgow, UK, G12 8QQ, UK.
| | - Emily R Draper
- School of Chemistry, University of Glasgow, Glasgow, UK, G12 8QQ, UK.
| |
Collapse
|
3
|
Illescas-Lopez S, Martin-Romera JD, Mañas-Torres MC, Lopez-Lopez MT, Cuerva JM, Gavira JA, Carmona FJ, Álvarez de Cienfuegos L. Short-Peptide Supramolecular Hydrogels for In Situ Growth of Metal-Organic Framework-Peptide Biocomposites. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37390355 DOI: 10.1021/acsami.3c06943] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2023]
Abstract
The development of bio-MOFs or MOF biocomposites through the combination of MOFs with biopolymers offers the possibility of expanding the potential applications of MOFs, making use of more environmentally benign processes and reagents and giving rise to a new generation of greener and more bio-oriented composite materials. Now, with the increasing use of MOFs for biotechnological applications, the development of new protocols and materials to obtain novel bio-MOFs compatible with biomedical or biotechnological uses is needed. Herein, and as a proof of concept, we have explored the possibility of using short-peptide supramolecular hydrogels as media to promote the growth of MOF particles, giving rise to a new family of bio-MOFs. Short-peptide supramolecular hydrogels are very versatile materials that have shown excellent in vitro and in vivo biomedical applications such as tissue engineering and drug delivery vehicles, among others. These peptides self-assemble by noncovalent interactions, and, as such, these hydrogels are easily reversible, being more biocompatible and biodegradable. These peptides can self-assemble by a multitude of stimuli, such as changes in pH, temperature, solvent, adding salts, enzymatic activity, and so forth. In this work, we have taken advantage of this ability to promote peptide self-assembly with some of the components required to form MOF particles, giving rise to more homogeneous and well-integrated composite materials. Hydrogel formation has been triggered using Zn2+ salts, required to form ZIF-8, and formic acid, required to form MOF-808. Two different protocols for the in situ MOF growth have been developed. Finally, the MOF-808 composite hydrogel has been tested for the decontamination of water polluted with phosphate ions as well as for the catalytic degradation of toxic organophosphate methyl paraoxon in an unbuffered solution.
Collapse
Affiliation(s)
- Sara Illescas-Lopez
- Departamento de Química Orgánica, Unidad de Excelencia Química Aplicada a Biomedicina y Medioambiente (UEQ), Universidad de Granada, C. U. Fuentenueva, Avda. Severo Ochoa s/n, E-18071 Granada, Spain
| | - Javier D Martin-Romera
- Departamento de Química Inorgánica, UEQ, Universidad de Granada, C. U. Fuentenueva, Avda. Severo Ochoa s/n, E-18071 Granada, Spain
| | - Mari C Mañas-Torres
- Departamento de Química Orgánica, Unidad de Excelencia Química Aplicada a Biomedicina y Medioambiente (UEQ), Universidad de Granada, C. U. Fuentenueva, Avda. Severo Ochoa s/n, E-18071 Granada, Spain
| | - Modesto T Lopez-Lopez
- Departamento de Física Aplicada, Universidad de Granada, C. U. Fuentenueva, Avda. Severo Ochoa s/n, E-18071 Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Av. De Madrid, 15, 18016 Granada, Spain
| | - Juan M Cuerva
- Departamento de Química Orgánica, Unidad de Excelencia Química Aplicada a Biomedicina y Medioambiente (UEQ), Universidad de Granada, C. U. Fuentenueva, Avda. Severo Ochoa s/n, E-18071 Granada, Spain
| | - José A Gavira
- Laboratorio de Estudios Cristalográficos, Instituto Andaluz de Ciencias de la Tierra, Consejo Superior de Investigaciones Científicas-UGR, Avenida de las Palmeras 4, 18100 Armilla, Granada, Spain
| | - Francisco J Carmona
- Departamento de Química Inorgánica, UEQ, Universidad de Granada, C. U. Fuentenueva, Avda. Severo Ochoa s/n, E-18071 Granada, Spain
| | - Luis Álvarez de Cienfuegos
- Departamento de Química Orgánica, Unidad de Excelencia Química Aplicada a Biomedicina y Medioambiente (UEQ), Universidad de Granada, C. U. Fuentenueva, Avda. Severo Ochoa s/n, E-18071 Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Av. De Madrid, 15, 18016 Granada, Spain
| |
Collapse
|
4
|
Guan Q, McAulay K, Xu T, Rogers SE, Edwards-Gayle C, Schweins R, Cui H, Seddon AM, Adams DJ. Self-Sorting in Diastereomeric Mixtures of Functionalized Dipeptides. Biomacromolecules 2023. [PMID: 37257089 DOI: 10.1021/acs.biomac.3c00246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Self-sorting in functionalized dipeptide systems can be driven by the chirality of a single amino acid, both at a high pH in the micellar state and at a low pH in the gel state. The structures formed are affected to some degree by the relative concentrations of each component showing the complexity of such an approach. The structures underpinning the gel network are predefined by the micellar structures at a high pH. Here, we describe the systems prepared from two dipeptide-based gelators that differ only by the chirality of one of the amino acids. We provide firm evidence for self-sorting in the micellar and gel phases using small-angle neutron scattering and cryo-transmission electron microscopy (cryo-TEM), showing that complete self-sorting occurs across a range of relative concentrations.
Collapse
Affiliation(s)
- Qingwen Guan
- School of Chemistry, University of Glasgow, Glasgow G12 8QQ, U.K
| | - Kate McAulay
- School of Chemistry, University of Glasgow, Glasgow G12 8QQ, U.K
| | - Tian Xu
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Sarah E Rogers
- ISIS Pulsed Neutron Source, Rutherford Appleton Laboratory, Didcot, OX11 0QX, U.K
| | | | - Ralf Schweins
- Large Scale Structures Group, Institut Laue-Langevin, 71 Avenue des Martyrs, CS 20156, F-38042 Grenoble,CEDEX 9, France
| | - Honggang Cui
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Annela M Seddon
- School of Physics, HH Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL, U.K
| | - Dave J Adams
- School of Chemistry, University of Glasgow, Glasgow G12 8QQ, U.K
| |
Collapse
|
5
|
Marshall LJ, Wallace M, Mahmoudi N, Ciccone G, Wilson C, Vassalli M, Adams DJ. Hierarchical Composite Self-Sorted Supramolecular Gel Noodles. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2211277. [PMID: 36720202 PMCID: PMC11475401 DOI: 10.1002/adma.202211277] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/17/2023] [Indexed: 05/17/2023]
Abstract
Multicomponent supramolecular systems can be used to achieve different properties and new behaviors compared to their corresponding single component systems. Here, a two-component system is used, showing that a non-gelling component modifies the assembly of the gelling component, allowing access to co-assembled structures that cannot be formed from the gelling component alone. The systems are characterized across multiple length scales, from the molecular level by NMR and CD spectroscopy to the microstructure level by SANS and finally to the material level using nanoindentation and rheology. By exploiting the enhanced mechanical properties achieved through addition of the second component, multicomponent noodles are formed with superior mechanical properties to those formed by the single-component system. Furthermore, the non-gelling component can be triggered to crystallize within the multicomponent noodles, allowing the preparation of new types of hierarchical composite noodles.
Collapse
Affiliation(s)
| | - Matthew Wallace
- School of PharmacyUniversity of East AngliaNorwich Research ParkNorwichNR4 7TJUK
| | - Najet Mahmoudi
- ISIS Neutron and Muon SourceRutherford Appleton LaboratoryDidcotOX11 0QXUK
| | - Giuseppe Ciccone
- Centre for the Cellular MicroenvironmentAdvanced Research CentreUniversity of GlasgowGlasgowG11 6EWUK
| | - Claire Wilson
- School of ChemistryUniversity of GlasgowGlasgowG12 8QQUK
| | - Massimo Vassalli
- Centre for the Cellular MicroenvironmentAdvanced Research CentreUniversity of GlasgowGlasgowG11 6EWUK
| | - Dave J. Adams
- School of ChemistryUniversity of GlasgowGlasgowG12 8QQUK
| |
Collapse
|
6
|
Gila-Vilchez C, Mañas-Torres MC, García-García ÓD, Escribano-Huesca A, Rodríguez-Arco L, Carriel V, Rodriguez I, Alaminos M, Lopez-Lopez MT, Álvarez de Cienfuegos L. Biocompatible Short-Peptides Fibrin Co-assembled Hydrogels. ACS APPLIED POLYMER MATERIALS 2023; 5:2154-2165. [PMID: 36935654 PMCID: PMC10013376 DOI: 10.1021/acsapm.2c02164] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/12/2023] [Indexed: 06/18/2023]
Abstract
Fibrin hydrogels made by self-assembly of fibrinogen obtained from human plasma have shown excellent biocompatible and biodegradable properties and are widely used in regenerative medicine. The fibrinogen self-assembly process can be triggered under physiological conditions by the action of thrombin, allowing the injection of pregel mixtures that have been used as cell carriers, wound-healing systems, and bio-adhesives. However, access to fibrinogen from human plasma is expensive and fibrin gels have limited mechanical properties, which make them unsuitable for certain applications. One solution to these problems is to obtain composite gels made of fibrin and other polymeric compounds that improve their mechanical properties and usage. Herein, we prepared composite hydrogels made by the self-assembly of fibrinogen together with Fmoc-FF (Fmoc-diphenylalanine) and Fmoc-RGD (Fmoc-arginine-glycine-aspartic acid). We have shown that the mixture of these three peptides co-assembles and gives rise to a unique type of supramolecular fiber, whose morphology and mechanical properties can be modulated. We have carried out a complete characterization of these materials from chemical, physical, and biological points of view. Composite gels have improved mechanical properties compared to pure fibrin gels, as well as showing excellent biocompatibility ex vivo. In vivo experiments have shown that these gels do not cause any type of inflammatory response or tissue damage and are completely resorbed in short time, which would enable their use as vehicles for cell, drug, or growth factor release.
Collapse
Affiliation(s)
- Cristina Gila-Vilchez
- Departamento
de Física Aplicada, Universidad de
Granada (UGR), C. U. Fuentenueva, Avenida Severo Ochoa s/n, E-18071 Granada, Spain
- Instituto
de Investigación Biosanitaria ibs.GRANADA, Avenida de Madrid, 15, 18016, Granada, Spain
| | - Mari Carmen Mañas-Torres
- Departamento
de Química Orgánica, Unidad de Excelencia Química
Aplicada a Biomedicina y Medioambiente (UEQ), Universidad de Granada (UGR), C. U. Fuentenueva, Avenida Severo Ochoa s/n, E-18071 Granada, Spain
- Instituto
de Investigación Biosanitaria ibs.GRANADA, Avenida de Madrid, 15, 18016, Granada, Spain
| | - Óscar Darío García-García
- Department
of Histology, Universidad de Granada (UGR), Avenida de Madrid 11, 18012 Granada, Spain
- Instituto
de Investigación Biosanitaria ibs.GRANADA, Avenida de Madrid, 15, 18016, Granada, Spain
| | - Alfredo Escribano-Huesca
- Departamento
de Física Aplicada, Universidad de
Granada (UGR), C. U. Fuentenueva, Avenida Severo Ochoa s/n, E-18071 Granada, Spain
| | - Laura Rodríguez-Arco
- Departamento
de Física Aplicada, Universidad de
Granada (UGR), C. U. Fuentenueva, Avenida Severo Ochoa s/n, E-18071 Granada, Spain
- Instituto
de Investigación Biosanitaria ibs.GRANADA, Avenida de Madrid, 15, 18016, Granada, Spain
| | - Víctor Carriel
- Department
of Histology, Universidad de Granada (UGR), Avenida de Madrid 11, 18012 Granada, Spain
- Instituto
de Investigación Biosanitaria ibs.GRANADA, Avenida de Madrid, 15, 18016, Granada, Spain
| | - Ismael Rodriguez
- Department
of Histology, Universidad de Granada (UGR), Avenida de Madrid 11, 18012 Granada, Spain
- Instituto
de Investigación Biosanitaria ibs.GRANADA, Avenida de Madrid, 15, 18016, Granada, Spain
| | - Miguel Alaminos
- Department
of Histology, Universidad de Granada (UGR), Avenida de Madrid 11, 18012 Granada, Spain
- Instituto
de Investigación Biosanitaria ibs.GRANADA, Avenida de Madrid, 15, 18016, Granada, Spain
| | - Modesto Torcuato Lopez-Lopez
- Departamento
de Física Aplicada, Universidad de
Granada (UGR), C. U. Fuentenueva, Avenida Severo Ochoa s/n, E-18071 Granada, Spain
- Instituto
de Investigación Biosanitaria ibs.GRANADA, Avenida de Madrid, 15, 18016, Granada, Spain
| | - Luis Álvarez de Cienfuegos
- Departamento
de Química Orgánica, Unidad de Excelencia Química
Aplicada a Biomedicina y Medioambiente (UEQ), Universidad de Granada (UGR), C. U. Fuentenueva, Avenida Severo Ochoa s/n, E-18071 Granada, Spain
- Instituto
de Investigación Biosanitaria ibs.GRANADA, Avenida de Madrid, 15, 18016, Granada, Spain
| |
Collapse
|
7
|
Hamley IW. Self-Assembly, Bioactivity, and Nanomaterials Applications of Peptide Conjugates with Bulky Aromatic Terminal Groups. ACS APPLIED BIO MATERIALS 2023; 6:384-409. [PMID: 36735801 PMCID: PMC9945136 DOI: 10.1021/acsabm.2c01041] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The self-assembly and structural and functional properties of peptide conjugates containing bulky terminal aromatic substituents are reviewed with a particular focus on bioactivity. Terminal moieties include Fmoc [fluorenylmethyloxycarbonyl], naphthalene, pyrene, naproxen, diimides of naphthalene or pyrene, and others. These provide a driving force for self-assembly due to π-stacking and hydrophobic interactions, in addition to the hydrogen bonding, electrostatic, and other forces between short peptides. The balance of these interactions leads to a propensity to self-assembly, even for conjugates to single amino acids. The hybrid molecules often form hydrogels built from a network of β-sheet fibrils. The properties of these as biomaterials to support cell culture, or in the development of molecules that can assemble in cells (in response to cellular enzymes, or otherwise) with a range of fascinating bioactivities such as anticancer or antimicrobial activity, are highlighted. In addition, applications of hydrogels as slow-release drug delivery systems and in catalysis and other applications are discussed. The aromatic nature of the substituents also provides a diversity of interesting optoelectronic properties that have been demonstrated in the literature, and an overview of this is also provided. Also discussed are coassembly and enzyme-instructed self-assembly which enable precise tuning and (stimulus-responsive) functionalization of peptide nanostructures.
Collapse
|
8
|
Thomson L, McDowall D, Marshall L, Marshall O, Ng H, Homer WJA, Ghosh D, Liu W, Squires AM, Theodosiou E, Topham PD, Serpell LC, Poole RJ, Seddon A, Adams DJ. Transferring Micellar Changes to Bulk Properties via Tunable Self-Assembly and Hierarchical Ordering. ACS NANO 2022; 16:20497-20509. [PMID: 36441928 PMCID: PMC9798853 DOI: 10.1021/acsnano.2c06898] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 11/21/2022] [Indexed: 06/16/2023]
Abstract
Hierarchical self-assembly is an effective means of preparing useful materials. However, control over assembly across length scales is a difficult challenge, often confounded by the perceived need to redesign the molecular building blocks when new material properties are needed. Here, we show that we can treat a simple dipeptide building block as a polyelectrolyte and use polymer physics approaches to explain the self-assembly over a wide concentration range. This allows us to determine how entangled the system is and therefore how it might be best processed, enabling us to prepare interesting analogues to threads and webs, as well as films that lose order on heating and "noodles" which change dimensions on heating, showing that we can transfer micellar-level changes to bulk properties all from a single building block.
Collapse
Affiliation(s)
- Lisa Thomson
- School
of Chemistry, University of Glasgow, Glasgow G12 8QQ, U.K.
| | - Daniel McDowall
- School
of Chemistry, University of Glasgow, Glasgow G12 8QQ, U.K.
| | - Libby Marshall
- School
of Chemistry, University of Glasgow, Glasgow G12 8QQ, U.K.
| | - Olivia Marshall
- School
of Chemistry, University of Glasgow, Glasgow G12 8QQ, U.K.
| | - Henry Ng
- School
of Engineering, University of Liverpool, Liverpool L69 3GH, U.K.
| | - W. Joseph A. Homer
- Aston
Institute of Materials Research, Aston University, Birmingham B4 7ET, U.K.
| | - Dipankar Ghosh
- School
of Chemistry, University of Glasgow, Glasgow G12 8QQ, U.K.
| | - Wanli Liu
- Department
of Chemistry, University of Bath, Bath BA2 7AY, U.K.
| | - Adam M. Squires
- Department
of Chemistry, University of Bath, Bath BA2 7AY, U.K.
| | - Eirini Theodosiou
- Aston
Institute of Materials Research, Aston University, Birmingham B4 7ET, U.K.
| | - Paul D. Topham
- Aston
Institute of Materials Research, Aston University, Birmingham B4 7ET, U.K.
| | - Louise C. Serpell
- Sussex
Neuroscience, School of Life Sciences, University
of Sussex, Falmer BN1 9QG, U.K.
| | - Robert J. Poole
- School
of Engineering, University of Liverpool, Liverpool L69 3GH, U.K.
| | - Annela Seddon
- School of
Physics, HH Wills Physics Laboratory, University
of Bristol, Tyndall Avenue, Bristol BS8 1TL, U.K.
| | - Dave J. Adams
- School
of Chemistry, University of Glasgow, Glasgow G12 8QQ, U.K.
| |
Collapse
|
9
|
Rahman MW, Mañas-Torres MC, Firouzeh S, Illescas-Lopez S, Cuerva JM, Lopez-Lopez MT, de Cienfuegos LÁ, Pramanik S. Chirality-Induced Spin Selectivity in Heterochiral Short-Peptide-Carbon-Nanotube Hybrid Networks: Role of Supramolecular Chirality. ACS NANO 2022; 16:16941-16953. [PMID: 36219724 DOI: 10.1021/acsnano.2c07040] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Supramolecular short-peptide assemblies have been widely used for the development of biomaterials with potential biomedical applications. These peptides can self-assemble in a multitude of chiral hierarchical structures triggered by the application of different stimuli, such as changes in temperature, pH, solvent, etc. The self-assembly process is sensitive to the chemical composition of the peptides, being affected by specific amino acid sequence, type, and chirality. The resulting supramolecular chirality of these materials has been explored to modulate protein and cell interactions. Recently, significant attention has been focused on the development of chiral materials with potential spintronic applications, as it has been shown that transport of charge carriers through a chiral environment polarizes the carrier spins. This effect, named chirality-induced spin selectivity or CISS, has been studied in different chiral organic molecules and materials, as well as carbon nanotubes functionalized with chiral molecules. Nevertheless, this effect has been primarily explored in homochiral systems in which the chirality of the medium, and hence the resulting spin polarization, is defined by the chirality of the molecule, with limited options for tunability. Herein, we have developed heterochiral carbon-nanotube-short-peptide materials made by the combination of two different chiral sources: that is, homochiral peptides (l/d) + glucono-δ-lactone. We show that the presence of a small amount of glucono-δ-lactone with fixed chirality can alter the supramolecular chirality of the medium, thereby modulating the sign of the spin signal from "up" to "down" and vice versa. In addition, small amounts of glucono-δ-lactone can even induce nonzero spin polarization in an otherwise achiral and spin-inactive peptide-nanotube composite. Such "chiral doping" strategies could allow the development of complementary CISS-based spintronic devices and circuits on a single material platform.
Collapse
Affiliation(s)
- Md Wazedur Rahman
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AlbertaT6G 1H9, Canada
| | - Mari C Mañas-Torres
- Universidad de Granada, Departamento de Química Orgánica, Unidad de Excelencia Química Aplicada a Biomedicina y Medioambiente, C. U. Fuentenueva, Avda. Severo Ochoa s/n, E-18071Granada, Spain
| | - Seyedamin Firouzeh
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AlbertaT6G 1H9, Canada
| | - Sara Illescas-Lopez
- Universidad de Granada, Departamento de Química Orgánica, Unidad de Excelencia Química Aplicada a Biomedicina y Medioambiente, C. U. Fuentenueva, Avda. Severo Ochoa s/n, E-18071Granada, Spain
| | - Juan Manuel Cuerva
- Universidad de Granada, Departamento de Química Orgánica, Unidad de Excelencia Química Aplicada a Biomedicina y Medioambiente, C. U. Fuentenueva, Avda. Severo Ochoa s/n, E-18071Granada, Spain
| | - Modesto T Lopez-Lopez
- Universidad de Granada, Departamento de Física Aplicada, C. U. Fuentenueva, Avda. Severo Ochoa s/n, E-18071Granada, Spain
- Instituto de Investigación Biosanitaria ibs.Avda. De Madrid, 15, E-18012Granada, Spain
| | - Luis Álvarez de Cienfuegos
- Universidad de Granada, Departamento de Química Orgánica, Unidad de Excelencia Química Aplicada a Biomedicina y Medioambiente, C. U. Fuentenueva, Avda. Severo Ochoa s/n, E-18071Granada, Spain
- Instituto de Investigación Biosanitaria ibs.Avda. De Madrid, 15, E-18012Granada, Spain
| | - Sandipan Pramanik
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AlbertaT6G 1H9, Canada
| |
Collapse
|
10
|
Petschacher P, Ghanbari R, Sampl C, Wiltsche H, Kádár R, Spirk S, Nypelö T. Dynamic and Static Assembly of Sulfated Cellulose Nanocrystals with Alkali Metal Counter Cations. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3131. [PMID: 36144921 PMCID: PMC9502719 DOI: 10.3390/nano12183131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 06/16/2023]
Abstract
Sulfate groups on cellulose particles such as cellulose nanocrystals (CNCs) provide colloidal stability credit to electrostatic repulsion between the like-charged particles. The introduction of sodium counter cations on the sulfate groups enables drying of the CNC suspensions without irreversible aggregation. Less is known about the effect of other counter cations than sodium on extending the properties of the CNC particles. Here, we introduce the alkali metal counter cations, Li+, Na+, K+, Rb+, and Cs+, on sulfated CNCs without an ion exchange resin, which, so far, has been a common practice. We demonstrate that the facile ion exchange is an efficient method to exchange to any alkali metal cation of sulfate half esters, with exchange rates between 76 and 89%. The ability to form liquid crystalline order in rest was observed by the presence of birefringence patterns and followed the Hofmeister series prediction of a decreasing ability to form anisotropy with an increasing element number. However, we observed the K-CNC rheology and birefringence as a stand-out case within the series of alkali metal modifications, with dynamic moduli and loss tangent indicating a network disruptive effect compared to the other counter cations, whereas observation of the development of birefringence patterns in flow showed the absence of self- or dynamically-assembled liquid crystalline order.
Collapse
Affiliation(s)
- Patrick Petschacher
- Institute of Bioproducts and Paper Technology, Graz University of Technology, Inffeldgasse 23, 8010 Graz, Austria
| | - Reza Ghanbari
- Department of Industrial Materials Science, Chalmers University of Technology, 41296 Gothenburg, Sweden
| | - Carina Sampl
- Institute of Bioproducts and Paper Technology, Graz University of Technology, Inffeldgasse 23, 8010 Graz, Austria
| | - Helmar Wiltsche
- Institute of Analytical Chemistry and Food Chemistry, Graz University of Technology, 8010 Graz, Austria
| | - Roland Kádár
- Department of Industrial Materials Science, Chalmers University of Technology, 41296 Gothenburg, Sweden
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296 Gothenburg, Sweden
| | - Stefan Spirk
- Institute of Bioproducts and Paper Technology, Graz University of Technology, Inffeldgasse 23, 8010 Graz, Austria
| | - Tiina Nypelö
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296 Gothenburg, Sweden
- Wallenberg Wood Science Center, Chalmers University of Technology, 41296 Gothenburg, Sweden
| |
Collapse
|
11
|
Huang R, McDowall D, Ng H, Thomson L, Al-Hilaly YK, Doutch J, Burholt S, Serpell LC, Poole RJ, Adams DJ. Charge screening wormlike micelles affects extensional relaxation time and noodle formation. Chem Commun (Camb) 2022; 58:10388-10391. [PMID: 36039700 DOI: 10.1039/d2cc03646k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A functionalised dipeptide that self-assembles to form wormlike micelles at high pH can be treated as a surfactant. By varying salt concentration, the self-assembled structures and interactions between them change, resulting in solutions with very different shear and extensional viscosity. From these, gel noodles with different mechanical properties can be prepared.
Collapse
Affiliation(s)
- Rui Huang
- School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, UK.
| | - Daniel McDowall
- School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, UK.
| | - Henry Ng
- School of Engineering, University of Liverpool, Liverpool, L69 3GH, UK
| | - Lisa Thomson
- School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, UK.
| | - Youssra K Al-Hilaly
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Falmer, BN1 9QG, UK.,Chemistry Department, College of Science, Mustansiriyah University, Baghdad, Iraq
| | - James Doutch
- ISIS Pulsed Neutron and Muon Source, Harwell Science and Innovation Campus, Didcot, OX11 0QX, UK
| | - Sam Burholt
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot, OX11 0QX, UK
| | - Louise C Serpell
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Falmer, BN1 9QG, UK
| | - Robert J Poole
- School of Engineering, University of Liverpool, Liverpool, L69 3GH, UK
| | - Dave J Adams
- School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, UK.
| |
Collapse
|
12
|
Mañas-Torres MC, Ramírez-Rodríguez GB, García-Peiro JI, Parra-Torrejón B, Cuerva JM, Lopez-Lopez MT, Álvarez de Cienfuegos L, Delgado-López JM. Organic/inorganic hydrogels by simultaneous self-assembly and mineralization of aromatic short-peptides. Inorg Chem Front 2022. [DOI: 10.1039/d1qi01249e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Hybrid hydrogels with a tunable structure–function relationship were prepared by simultaneous self-assembly and mineralization of aromatic short-peptides. Sub-stoichiometric Ca concentrations resulted in nanoapatite oriented along the peptide fiber.
Collapse
Affiliation(s)
- Mari C. Mañas-Torres
- Dpto de Química Orgánica, Facultad de Ciencias, Unidad de Excelencia Química Aplicada a Biomedicina y Medioambiente, Universidad de Granada (UGR), 18071-Granada, Spain
| | - Gloria B. Ramírez-Rodríguez
- Dpto de Química Inorgánica, Facultad de Ciencias, Unidad de Excelencia Química Aplicada a Biomedicina y Medioambiente (UGR), Spain
| | - José I. García-Peiro
- Instituto de Nanociencia y Materiales de Aragón, CSIC-Universidad de Zaragoza, 50009, Zaragoza, y Departamento de Ingeniería Química y Tecnología Medioambiental (IQTMA), Universidad de Zaragoza, 50018 Zaragoza, Spain
| | - Belén Parra-Torrejón
- Dpto de Química Inorgánica, Facultad de Ciencias, Unidad de Excelencia Química Aplicada a Biomedicina y Medioambiente (UGR), Spain
| | - Juan M. Cuerva
- Dpto de Química Orgánica, Facultad de Ciencias, Unidad de Excelencia Química Aplicada a Biomedicina y Medioambiente, Universidad de Granada (UGR), 18071-Granada, Spain
| | - Modesto T. Lopez-Lopez
- Dpto de Física Aplicada, Facultad de Ciencias, (UGR), Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Spain
| | - Luis Álvarez de Cienfuegos
- Dpto de Química Orgánica, Facultad de Ciencias, Unidad de Excelencia Química Aplicada a Biomedicina y Medioambiente, Universidad de Granada (UGR), 18071-Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Spain
| | - José M. Delgado-López
- Dpto de Química Inorgánica, Facultad de Ciencias, Unidad de Excelencia Química Aplicada a Biomedicina y Medioambiente (UGR), Spain
| |
Collapse
|
13
|
Li L, Xie L, Zheng R, Sun R. Self-Assembly Dipeptide Hydrogel: The Structures and Properties. Front Chem 2021; 9:739791. [PMID: 34540806 PMCID: PMC8440803 DOI: 10.3389/fchem.2021.739791] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 08/09/2021] [Indexed: 01/20/2023] Open
Abstract
Self-assembly peptide-based hydrogels are well known and popular in biomedical applications due to the fact that they are readily controllable and have biocompatibility properties. A dipeptide is the shortest self-assembling motif of peptides. Due to its small size and simple synthesis method, dipeptide can provide a simple and easy-to-use method to study the mechanism of peptides' self-assembly. This review describes the design and structures of self-assembly linear dipeptide hydrogels. The strategies for preparing the new generation of linear dipeptide hydrogels can be divided into three categories based on the modification site of dipeptide: 1) COOH-terminal and N-terminal modified dipeptide, 2) C-terminal modified dipeptide, and 3) uncapped dipeptide. With a deeper understanding of the relationship between the structures and properties of dipeptides, we believe that dipeptide hydrogels have great potential application in preparing minimal biocompatible materials.
Collapse
Affiliation(s)
- Liangchun Li
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Li Xie
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Renlin Zheng
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Rongqin Sun
- School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| |
Collapse
|
14
|
Panja S, Dietrich B, Trabold A, Zydel A, Qadir A, Adams DJ. Varying the hydrophobic spacer to influence multicomponent gelation. Chem Commun (Camb) 2021; 57:7898-7901. [PMID: 34286734 DOI: 10.1039/d1cc02786g] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Mixing low molecular weight gelators (LMWGs) shows promise as a means of preparing innovative materials with exciting properties. Here, we investigate the effect of increasing hydrophobic chain length on the properties of the resulting multicomponent systems which are capable of showing ambidextrous phase behaviour on pH perturbation.
Collapse
Affiliation(s)
- Santanu Panja
- School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, UK.
| | - Bart Dietrich
- School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, UK.
| | - Adriana Trabold
- School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, UK.
| | - Agata Zydel
- School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, UK.
| | - Aleena Qadir
- School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, UK.
| | - Dave J Adams
- School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, UK.
| |
Collapse
|
15
|
Jiang Y, Zhao Y, Zhang AQ, Lei X, Qin SY. Solvent-tailored ordered self-assembly of oligopeptide amphiphiles to create an anisotropic meso-matrix. Chem Commun (Camb) 2021; 57:6181-6184. [PMID: 34047742 DOI: 10.1039/d1cc02034j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Herein, we have developed a solvent-tailored ordered self-assembly strategy to create anisotropic nanomaterials. A trace amount of water has been found to be a predominant factor to direct peptide self-assembly into an anisotropic meso-matrix in DMSO. The obtained meso-matrix was applied to measure the anisotropic RDC parameter of organic molecules for structural elucidation.
Collapse
Affiliation(s)
- Yan Jiang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan 430074, China.
| | - You Zhao
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan 430074, China.
| | - Ai-Qing Zhang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan 430074, China.
| | - Xinxiang Lei
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, 430074, P. R. China.
| | - Si-Yong Qin
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan 430074, China.
| |
Collapse
|
16
|
Panja S, Adams DJ. Stimuli responsive dynamic transformations in supramolecular gels. Chem Soc Rev 2021; 50:5165-5200. [PMID: 33646219 DOI: 10.1039/d0cs01166e] [Citation(s) in RCA: 211] [Impact Index Per Article: 52.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Supramolecular gels are formed by the self-assembly of small molecules under the influence of various non-covalent interactions. As the interactions are individually weak and reversible, it is possible to perturb the gels easily, which in turn enables fine tuning of their properties. Synthetic supramolecular gels are kinetically trapped and usually do not show time variable changes in material properties after formation. However, such materials potentially become switchable when exposed to external stimuli like temperature, pH, light, enzyme, redox, and chemical analytes resulting in reconfiguration of gel matrix into a different type of network. Such transformations allow gel-to-gel transitions while the changes in the molecular aggregation result in alteration of physical and chemical properties of the gel with time. Here, we discuss various methods that have been used to achieve gel-to-gel transitions by modifying a pre-formed gel material through external perturbation. We also describe methods that allow time-dependent autonomous switching of gels into different networks enabling synthesis of next generation functional materials. Dynamic modification of gels allows construction of an array of supramolecular gels with various properties from a single material which eventually extend the limit of applications of the gels. In some cases, gel-to-gel transitions lead to materials that cannot be accessed directly. Finally, we point out the necessity and possibility of further exploration of the field.
Collapse
Affiliation(s)
- Santanu Panja
- School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, UK.
| | - Dave J Adams
- School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, UK.
| |
Collapse
|
17
|
Chibh S, Mishra J, Kour A, Chauhan VS, Panda JJ. Recent advances in the fabrication and bio-medical applications of self-assembled dipeptide nanostructures. Nanomedicine (Lond) 2021; 16:139-163. [PMID: 33480272 DOI: 10.2217/nnm-2020-0314] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Molecular self-assembly is a widespread natural phenomenon and has inspired several researchers to synthesize a compendium of nano/microstructures with widespread applications. Biomolecules like proteins, peptides and lipids are used as building blocks to fabricate various nanomaterials. Supramolecular peptide self-assembly continue to play a significant role in forming diverse nanostructures with numerous biomedical applications; however, dipeptides offer distinctive supremacy in their ability to self-assemble and produce a variety of nanostructures. Though several reviews have articulated the progress in the field of longer peptides or polymers and their self-assembling behavior, there is a paucity of reviews or literature covering the emerging field of dipeptide-based nanostructures. In this review, our goal is to present the recent advancements in dipeptide-based nanostructures with their potential applications.
Collapse
Affiliation(s)
- Sonika Chibh
- Chemical Biology Unit, Institute of Nano Science & Technology, Mohali, Punjab 160062, India
| | - Jibanananda Mishra
- Cell and Molecular Biology Division, AAL Research & Solutions Pvt. Ltd., Panchkula, Haryana 134113, India
| | - Avneet Kour
- Chemical Biology Unit, Institute of Nano Science & Technology, Mohali, Punjab 160062, India
| | - Virander S Chauhan
- International Centre for Genetic Engineering & Biotechnology, New Delhi 110067, India
| | - Jiban J Panda
- Chemical Biology Unit, Institute of Nano Science & Technology, Mohali, Punjab 160062, India
| |
Collapse
|
18
|
Gila-Vilchez C, Mañas-Torres MC, González-Vera JA, Franco-Montalban F, Tamayo JA, Conejero-Lara F, Cuerva JM, Lopez-Lopez MT, Orte A, Álvarez de Cienfuegos L. Insights into the co-assemblies formed by different aromatic short-peptide amphiphiles. Polym Chem 2021. [DOI: 10.1039/d1py01366a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The mechanism of co-assembly of different aromatic dipeptides has been studied using a combination of microscopy and spectroscopy techniques. At an equimolar ratio, the kinetics of the process is favored giving rise to alternate copolymers.
Collapse
Affiliation(s)
- Cristina Gila-Vilchez
- Universidad de Granada, Departamento de Física Aplicada, Facultad de Ciencias, 18071 Granada, Spain
| | - Mari C. Mañas-Torres
- Universidad de Granada, Dpto de Química Orgánica, Facultad de Ciencias, Unidad de Excelencia Química Aplicada a Biomedicina y Medioambiente (UEQ), 18071-Granada, Spain
| | - Juan A. González-Vera
- Universidad de Granada, Nanoscopy-UGR Laboratory. Dpto de FisicoQuímica, Facultad de Farmacia, UEQ, 18072-Granada, Spain
| | - Francisco Franco-Montalban
- Universidad de Granada, Dpto de Química Farmacéutica y Orgánica, Facultad de Farmacia, 18072-Granada, Spain
| | - Juan A. Tamayo
- Universidad de Granada, Dpto de Química Farmacéutica y Orgánica, Facultad de Farmacia, 18072-Granada, Spain
| | | | - Juan Manuel Cuerva
- Universidad de Granada, Dpto de Química Orgánica, Facultad de Ciencias, Unidad de Excelencia Química Aplicada a Biomedicina y Medioambiente (UEQ), 18071-Granada, Spain
| | - Modesto T. Lopez-Lopez
- Universidad de Granada, Departamento de Física Aplicada, Facultad de Ciencias, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Spain
| | - Angel Orte
- Universidad de Granada, Nanoscopy-UGR Laboratory. Dpto de FisicoQuímica, Facultad de Farmacia, UEQ, 18072-Granada, Spain
| | - Luis Álvarez de Cienfuegos
- Universidad de Granada, Dpto de Química Orgánica, Facultad de Ciencias, Unidad de Excelencia Química Aplicada a Biomedicina y Medioambiente (UEQ), 18071-Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Spain
| |
Collapse
|
19
|
Chivers PRA, Dookie RS, Gough JE, Webb SJ. Photo-dissociation of self-assembled (anthracene-2-carbonyl)amino acid hydrogels. Chem Commun (Camb) 2020; 56:13792-13795. [PMID: 33078185 DOI: 10.1039/d0cc05292b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Amino acids modified with an N-terminal anthracene group self-assemble into supramolecular hydrogels upon the addition of a range of salts or cell culture medium. Gel-phase photo-dimerisation of gelators results in hydrogel disassembly and was used to recover cells from 3D culture.
Collapse
Affiliation(s)
- Phillip R A Chivers
- Department of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
| | | | | | | |
Collapse
|
20
|
Cowieson NP, Edwards-Gayle CJC, Inoue K, Khunti NS, Doutch J, Williams E, Daniels S, Preece G, Krumpa NA, Sutter JP, Tully MD, Terrill NJ, Rambo RP. Beamline B21: high-throughput small-angle X-ray scattering at Diamond Light Source. JOURNAL OF SYNCHROTRON RADIATION 2020; 27:1438-1446. [PMID: 32876621 PMCID: PMC7467336 DOI: 10.1107/s1600577520009960] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 07/20/2020] [Indexed: 05/06/2023]
Abstract
B21 is a small-angle X-ray scattering (SAXS) beamline with a bending magnet source in the 3 GeV storage ring at the Diamond Light Source Ltd synchrotron in the UK. The beamline utilizes a double multi-layer monochromator and a toroidal focusing optic to deliver 2 × 1012 photons per second to a 34 × 40 µm (FWHM) focal spot at the in-vacuum Eiger 4M (Dectris) detector. A high-performance liquid chromatography system and a liquid-handling robot make it possible to load solution samples into a temperature-controlled in-vacuum sample cell with a high level of automation. Alternatively, a range of viscous or solid materials may be loaded manually using a range of custom sample cells. A default scattering vector range from 0.0026 to 0.34 Å-1 and low instrument background make B21 convenient for measuring a wide range of biological macromolecules. The beamline has run a full user programme since 2013.
Collapse
Affiliation(s)
- Nathan P. Cowieson
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | | | - Katsuaki Inoue
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - Nikul S. Khunti
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - James Doutch
- ISIS Neutron and Muon Source, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Didcot, Oxfordshire OX11 0QX, United Kingdom
| | - Eugene Williams
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - Steven Daniels
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - Geoff Preece
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - Nicholas A. Krumpa
- Projects and Mechanical Engineering Group, Science and Technology Facilities Council, Daresbury Laboratory, Warrington, Cheshire WA4 4AD, United Kingdom
| | - John P. Sutter
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - Mark D. Tully
- BM29 BIOSAXS, European Synchroton Radiation Facility, 71 avenue des Martyrs, Grenoble, Isère 38043, France
| | - Nick J. Terrill
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - Robert P. Rambo
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| |
Collapse
|