1
|
Huang C, Zhou C, Zhao C, Zhang P. Recent Advances in Superspreading-Based Confined Synthesis and Assembly of Functional Nanomaterials. ACS NANO 2025; 19:10766-10778. [PMID: 40094218 DOI: 10.1021/acsnano.4c17878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
The rapid and complete spreading of liquids on surfaces, which is defined as superspreading, is of great importance in academic research and practical applications. The strong shear flow force during the superspreading process and the obtained confined stable and homogeneous thin liquid layers have great potential in the assembly of functional nanomaterials and confined synthesis. This review aims to summarize the fundamental understanding and emerging applications of superspreading-based confined synthesis and assembly of functional nanomaterials. First, several typical superspreading processes are briefly introduced, followed by highlighting the unique properties and design principles. Then, details about the confined superspreading liquid layers for highly efficient synthesis of functional thin films and the superspreading-induced shear flow to assembly nanomaterials into high-quality nanocomposite materials are presented. The following section then describes the emerging applications of the fabricated functional thin films and nanocomposites. Finally, an outlook for future development is also proposed.
Collapse
Affiliation(s)
- Cheng Huang
- Hubei Longzhong Laboratory, Wuhan University of Technology Xiangyang Demonstration Zone, Xiangyang 441000, China
- Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
- Sanya Science and Education Innovation Park, Wuhan University of Technology, Sanya 572024, China
| | - Can Zhou
- Key Laboratory of Bioinspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, China
| | - Chuangqi Zhao
- University of Science and Technology of China, Hefei 230026, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, China
| | - Pengchao Zhang
- Hubei Longzhong Laboratory, Wuhan University of Technology Xiangyang Demonstration Zone, Xiangyang 441000, China
- Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
- Sanya Science and Education Innovation Park, Wuhan University of Technology, Sanya 572024, China
| |
Collapse
|
2
|
Liu Y, Zhou C, Chen L, Du J, Li Q, Lu C, Tan L, Huang X, Liu J, Dong L. Self-standing membranes for separation: Achievements and opportunities. Adv Colloid Interface Sci 2024; 332:103269. [PMID: 39128434 DOI: 10.1016/j.cis.2024.103269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/28/2024] [Accepted: 08/03/2024] [Indexed: 08/13/2024]
Abstract
Supported membranes and mixed matrix membranes have a limitation of harming the mass transfer due to the incompatibility between the support layer or the matrix and the active components of the membrane. Self-standing membranes, which could structurally abandon the support layer, altogether avoid the adverse effect, thus greatly facilitating the transmembrane mass transfer process. However, the abandonment of the support layer also reduces the membrane's mechanical properties and formability. In this review, our emphasis will be on self-standing membranes within the realm of materials and separation engineering. We will explore the materials employed in the fabrication of self-standing membranes, highlighting their ability to simultaneously enhance membrane performance and promote self-standing characteristics. Additionally, we will delve into the diverse techniques utilized for crafting self-standing membranes, encompassing interfacial polymerization, filtration, solvent casting, Langmuir-Blodgett & layer-by-layer assembly, electrospinning, compression, etc. Throughout the discussion, the merits and drawbacks associated with each of these preparation methods were elucidated. We also provide a brief overview of the applications of self-standing membranes, including water purification, gas separation, organic solvent nanofiltration, electrochemistry, and membrane reactor, as well as a brief description of the general strategies for performance enhancement of self-standing membranes. Finally, the current status of self-standing membranes and the challenges they may encounter were discussed.
Collapse
Affiliation(s)
- Yunhao Liu
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, PR China
| | - Cailong Zhou
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, PR China.
| | - Li Chen
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, PR China
| | - Jingcheng Du
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230052, PR China
| | - Qun Li
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, PR China
| | - Chenyang Lu
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, PR China
| | - Luxi Tan
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, PR China.
| | - Xiaowei Huang
- Department of Pharmacy, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou 362000, PR China.
| | - Jiangtao Liu
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230052, PR China
| | - Lichun Dong
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, PR China
| |
Collapse
|
3
|
Shen Y, Li Y, Yuan S, Shen J, Wang D, Zhang N, Niu J, Wang Z, Wang Z. Polyfunctional Arylamine Based Nanofiltration Membranes with Enhanced Aggressive Organic Solvents Resistance. NANO LETTERS 2024; 24:10169-10176. [PMID: 39109989 DOI: 10.1021/acs.nanolett.4c02403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Organic solvent nanofiltration (OSN) membranes with high separation performance and excellent stability in aggressive organic solvents are urgently desired for chemical separation. Herein, we utilized a polyfunctional arylamine tetra-(4-aminophenyl) ethylene (TAPE) to prepare a highly cross-linked polyamide membrane with a low molecular weight cut-off (MWCO) of 312 Da. Owing to its propeller-like conformation, TAPE formed micropores within the polyamide membrane and provided fast solvent transport channels. Importantly, the rigid conjugated skeleton and high connectivity between micropores effectively prevented the expansion of the polyamide matrix in aggressive organic solvents. The membrane maintained high separation performance even immersed in N,N-dimethylformamide for 90 days. Based on the aggregation-induced emission (AIE) effect of TAPE, the formation of polyamide membrane can be visually monitored by fluorescence imaging technology, which achieved visual guidance for membrane fabrication. This work provides a vital foundation for utilizing polyfunctional monomers in the interfacial polymerization reaction to prepare high-performance OSN membranes.
Collapse
Affiliation(s)
- Yun Shen
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, P. R. China
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, P. R. China
| | - Yiming Li
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, P. R. China
| | - Shideng Yuan
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, P. R. China
| | - Jiangnan Shen
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Dong Wang
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, P. R. China
| | - Na Zhang
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, P. R. China
| | - Jingyu Niu
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, P. R. China
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, P. R. China
| | - Ziming Wang
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, P. R. China
| | - Zhining Wang
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, P. R. China
| |
Collapse
|
4
|
Zhu CY, Li HN, Guo BB, Fang Y, Liu C, Yang HC, Zhang C, Liang HQ, Xu ZK. Leveraging Janus Substrates as a Confined "Interfacial Reactor" to Synthesize Ultrapermeable Polyamide Nanofilms. RESEARCH (WASHINGTON, D.C.) 2024; 7:0359. [PMID: 38694199 PMCID: PMC11062503 DOI: 10.34133/research.0359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 03/29/2024] [Indexed: 05/04/2024]
Abstract
Porous substrates act as open "interfacial reactors" during the synthesis of polyamide composite membranes via interfacial polymerization. However, achieving a thin and dense polyamide nanofilm with high permeance and selectivity is challenging when using a conventional substrate with uniform wettability. To overcome this limitation, we propose the use of Janus porous substrates as confined interfacial reactors to decouple the local monomer concentration from the total monomer amount during interfacial polymerization. By manipulating the location of the hydrophilic/hydrophobic interface in a Janus porous substrate, we can precisely control the monomer solution confined within the hydrophilic layer without compromising its concentration. The hydrophilic surface ensures the uniform distribution of monomers, preventing the formation of defects. By employing Janus substrates fabricated through single-sided deposition of polydopamine/polyethyleneimine, we significantly reduce the thickness of the polyamide nanofilms from 88.4 to 3.8 nm by decreasing the thickness of the hydrophilic layer. This reduction leads to a remarkable enhancement in water permeance from 7.2 to 52.0 l/m2·h·bar while still maintaining ~96% Na2SO4 rejection. The overall performance of this membrane surpasses that of most reported membranes, including state-of-the-art commercial products. The presented strategy is both simple and effective, bringing ultrapermeable polyamide nanofilms one step closer to practical separation applications.
Collapse
Affiliation(s)
- Cheng-Ye Zhu
- MOE Engineering Research Center of Membrane and Water Treatment Technology, and Key Lab of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering,
Zhejiang University, Hangzhou 310058, China
- The “Belt and Road” Sino-Portugal Joint Lab on Advanced Materials, International Research Center for X Polymers,
Zhejiang University, Hangzhou 310058, China
| | - Hao-Nan Li
- MOE Engineering Research Center of Membrane and Water Treatment Technology, and Key Lab of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering,
Zhejiang University, Hangzhou 310058, China
| | - Bian-Bian Guo
- MOE Engineering Research Center of Membrane and Water Treatment Technology, and Key Lab of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering,
Zhejiang University, Hangzhou 310058, China
| | - Yu Fang
- MOE Engineering Research Center of Membrane and Water Treatment Technology, and Key Lab of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering,
Zhejiang University, Hangzhou 310058, China
| | - Chang Liu
- MOE Engineering Research Center of Membrane and Water Treatment Technology, and Key Lab of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering,
Zhejiang University, Hangzhou 310058, China
- The “Belt and Road” Sino-Portugal Joint Lab on Advanced Materials, International Research Center for X Polymers,
Zhejiang University, Hangzhou 310058, China
| | - Hao-Cheng Yang
- MOE Engineering Research Center of Membrane and Water Treatment Technology, and Key Lab of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering,
Zhejiang University, Hangzhou 310058, China
- The “Belt and Road” Sino-Portugal Joint Lab on Advanced Materials, International Research Center for X Polymers,
Zhejiang University, Hangzhou 310058, China
| | - Chao Zhang
- MOE Engineering Research Center of Membrane and Water Treatment Technology, and Key Lab of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering,
Zhejiang University, Hangzhou 310058, China
- The “Belt and Road” Sino-Portugal Joint Lab on Advanced Materials, International Research Center for X Polymers,
Zhejiang University, Hangzhou 310058, China
| | - Hong-Qing Liang
- MOE Engineering Research Center of Membrane and Water Treatment Technology, and Key Lab of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering,
Zhejiang University, Hangzhou 310058, China
- The “Belt and Road” Sino-Portugal Joint Lab on Advanced Materials, International Research Center for X Polymers,
Zhejiang University, Hangzhou 310058, China
| | - Zhi-Kang Xu
- MOE Engineering Research Center of Membrane and Water Treatment Technology, and Key Lab of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering,
Zhejiang University, Hangzhou 310058, China
- The “Belt and Road” Sino-Portugal Joint Lab on Advanced Materials, International Research Center for X Polymers,
Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
5
|
Xin JH, Fan HY, Guo BB, Yang HC, Zhu CY, Zhang C, Xu ZK. Interfacial polymerization at unconventional interfaces: an emerging strategy to tailor thin-film composite membranes. Chem Commun (Camb) 2023; 59:13258-13271. [PMID: 37869905 DOI: 10.1039/d3cc04171a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
Interfacial polymerization is a well-known process to synthesize separation layers for thin film composite membranes at an immiscible organic liquid-aqueous liquid interface. The organic-aqueous interface determines the diffusion dynamics of monomers and the chemical environment for polymerization, exerting a critical influence on the formation of polymer thin films. This review summarizes recent advances in tailoring interfacial polymerization using interfaces beyond the conventional alkane-water interface to achieve high-performance separation films with designed structures. Diverse liquid-liquid interfaces are introduced for synthesizing separation films by adding co-solvents into the organic phase and/or the aqueous phase, respectively, or by replacing one of the liquid phases with other solvents. Innovative liquid-gel and liquid-gas interfaces are then summarized for the synthesis of polymer thin films for separation. Novel strategies to form reaction interfaces, such as spray-coating, are also presented and discussed. In addition, we discuss the details of how a physically or chemically patterned substrate affects interfacial polymerization. Finally, the potential of unconventional interfaces in interfacial polymerization is forecast with both challenges and opportunities.
Collapse
Affiliation(s)
- Jia-Hui Xin
- MOE Engineering Research Center of Membrane and Water Treatment, and Key Lab of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
- The "Belt and Road" Sino-Portugal Joint Lab on Advanced Materials, International Research Center for X Polymers, Zhejiang University, Hangzhou 310027, China
| | - Hong-Yu Fan
- MOE Engineering Research Center of Membrane and Water Treatment, and Key Lab of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
- The "Belt and Road" Sino-Portugal Joint Lab on Advanced Materials, International Research Center for X Polymers, Zhejiang University, Hangzhou 310027, China
| | - Bian-Bian Guo
- MOE Engineering Research Center of Membrane and Water Treatment, and Key Lab of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
- The "Belt and Road" Sino-Portugal Joint Lab on Advanced Materials, International Research Center for X Polymers, Zhejiang University, Hangzhou 310027, China
| | - Hao-Cheng Yang
- MOE Engineering Research Center of Membrane and Water Treatment, and Key Lab of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
- The "Belt and Road" Sino-Portugal Joint Lab on Advanced Materials, International Research Center for X Polymers, Zhejiang University, Hangzhou 310027, China
| | - Cheng-Ye Zhu
- MOE Engineering Research Center of Membrane and Water Treatment, and Key Lab of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
- The "Belt and Road" Sino-Portugal Joint Lab on Advanced Materials, International Research Center for X Polymers, Zhejiang University, Hangzhou 310027, China
| | - Chao Zhang
- MOE Engineering Research Center of Membrane and Water Treatment, and Key Lab of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
- The "Belt and Road" Sino-Portugal Joint Lab on Advanced Materials, International Research Center for X Polymers, Zhejiang University, Hangzhou 310027, China
| | - Zhi-Kang Xu
- MOE Engineering Research Center of Membrane and Water Treatment, and Key Lab of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
- The "Belt and Road" Sino-Portugal Joint Lab on Advanced Materials, International Research Center for X Polymers, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
6
|
SUZ-4 Zeolite Interlayer Enhanced Thin-film Composite Pervaporation Membrane for Ethanol Dehydration. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
7
|
Fang YX, Lin YF, Xu ZL, Mo JW, Li PP. A novel clover-like COFs membrane fabricated via one-step interfacial polymerization for dye/salt separation. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
8
|
Xue YR, Ma ZY, Liu C, Zhu CY, Wu J, Xu ZK. Polyamide Nanofilms Synthesized by a Sequential Process of Blade Coating – Spraying - Interfacial Polymerization toward Reverse Osmosis. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
9
|
Zheng D, Hua D, Cheng X, Pan J, Ibrahim A, Hua H, Zhang P, Cha X, Xu K, Zhan G. Polyamide Composite Membranes for Enhanced
OSN
Performance by Metal Ions Assisted Interfacial Polymerization Method. AIChE J 2022. [DOI: 10.1002/aic.17896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Dayuan Zheng
- College of Chemical Engineering, Integrated Nanocatalysts Institute (INCI), Huaqiao University 668 Jimei Avenue Xiamen Fujian P. R. China
| | - Dan Hua
- College of Chemical Engineering, Integrated Nanocatalysts Institute (INCI), Huaqiao University 668 Jimei Avenue Xiamen Fujian P. R. China
| | - Xi Cheng
- College of Chemical Engineering, Integrated Nanocatalysts Institute (INCI), Huaqiao University 668 Jimei Avenue Xiamen Fujian P. R. China
| | - Junyang Pan
- College of Chemical Engineering, Integrated Nanocatalysts Institute (INCI), Huaqiao University 668 Jimei Avenue Xiamen Fujian P. R. China
| | - Abdul‐Rauf Ibrahim
- Department of Mechanical Engineering, Faculty of Engineering and Built Environment Tamale Technical University Education Ridge Avenue, Sagnarigu District Tamale Ghana
| | - Haiming Hua
- College of Energy & School of Energy Research Xiamen University Xiamen Fujian P. R. China
| | - Peng Zhang
- College of Energy & School of Energy Research Xiamen University Xiamen Fujian P. R. China
| | - Xingwen Cha
- College of Chemical Engineering, Integrated Nanocatalysts Institute (INCI), Huaqiao University 668 Jimei Avenue Xiamen Fujian P. R. China
| | - Kaiji Xu
- College of Chemical Engineering, Integrated Nanocatalysts Institute (INCI), Huaqiao University 668 Jimei Avenue Xiamen Fujian P. R. China
| | - Guowu Zhan
- College of Chemical Engineering, Integrated Nanocatalysts Institute (INCI), Huaqiao University 668 Jimei Avenue Xiamen Fujian P. R. China
| |
Collapse
|
10
|
Zhang S, Shen L, Deng H, Liu Q, You X, Yuan J, Jiang Z, Zhang S. Ultrathin Membranes for Separations: A New Era Driven by Advanced Nanotechnology. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2108457. [PMID: 35238090 DOI: 10.1002/adma.202108457] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 02/23/2022] [Indexed: 06/14/2023]
Abstract
Ultrathin membranes are at the forefront of membrane research, offering great opportunities in revolutionizing separations with ultrafast transport. Driven by advanced nanomaterials and manufacturing technology, tremendous progresses are made over the last 15 years in the fabrications and applications of sub-50 nm membranes. Here, an overview of state-of-the-art ultrathin membranes is first introduced, followed by a summary of the fabrication techniques with an emphasis on how to realize such extremely low thickness. Then, different types of ultrathin membranes, categorized based on their structures, that is, network, laminar, or framework structures, are discussed with a focus on the interplays among structure, fabrication methods, and separation performances. Recent research and development trends are highlighted. Meanwhile, the performances and applications of current ultrathin membranes for representative separations (gas separation and liquid separation) are thoroughly analyzed and compared. Last, the challenges in material design, structure construction, and coordination are given, in order to fully realize the potential of ultrathin membranes and facilitate the translation from scientific achievements to industrial productions.
Collapse
Affiliation(s)
- Shiyu Zhang
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, P. R. China
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Liang Shen
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Hao Deng
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, P. R. China
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Qinze Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, P. R. China
| | - Xinda You
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, China
| | - Jinqiu Yuan
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, China
| | - Zhongyi Jiang
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, P. R. China
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, China
| | - Sui Zhang
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, P. R. China
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| |
Collapse
|
11
|
Ma ZY, Xue YR, Yang HC, Wu J, Xu ZK. Surface and Interface Engineering of Polymer Membranes: Where We Are and Where to Go. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c02647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Zhao-Yu Ma
- MOE Key Lab of Macromolecular Synthesis and Functionalization, and Key Lab of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
- The “Belt and Road” Sino-Portugal Joint Lab on Advanced Materials, International Research Center for X Polymers, Zhejiang University, Hangzhou 310027, China
| | - Yu-Ren Xue
- MOE Key Lab of Macromolecular Synthesis and Functionalization, and Key Lab of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
- The “Belt and Road” Sino-Portugal Joint Lab on Advanced Materials, International Research Center for X Polymers, Zhejiang University, Hangzhou 310027, China
| | - Hao-Cheng Yang
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| | - Jian Wu
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Zhi-Kang Xu
- MOE Key Lab of Macromolecular Synthesis and Functionalization, and Key Lab of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
- The “Belt and Road” Sino-Portugal Joint Lab on Advanced Materials, International Research Center for X Polymers, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
12
|
Guo BB, Zhu CY, Xu ZK. Surface and Interface Engineering for Advanced Nanofiltration Membranes. CHINESE JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1007/s10118-022-2654-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
13
|
Gupta N, Liang YN, Chew JW, Hu X. Highly Robust Interfacially Polymerized PA Layer on Thermally Responsive Semi-IPN Hydrogel: Toward On-Demand Tuning of Porosity and Surface Charge. ACS APPLIED MATERIALS & INTERFACES 2021; 13:60590-60601. [PMID: 34726903 DOI: 10.1021/acsami.1c16639] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Hydrogel composites with skin layer that allows fast and selective rejection of molecules possess high potential for numerous applications, including sample preconcentration for point-of-use detection and analysis. The stimuli-responsive hydrogels are particularly promising due to facile regenerability. However, poor adhesion of the skin layer due to swelling-degree difference during continuous swelling/deswelling of the hydrogel hinders its further development. In this work, a polyamide skin layer with strong adhesion was fabricated via gel-liquid interfacial polymerization (GLIP) of branched polyethyleneimine (PEI) with trimesoyl chloride (TMC) on a cross-linked N-isopropyl acrylamide hydrogel network containing dispersed poly sodium acrylate (PSA), while the traditional m-phenylenediamine (MPD)-TMC polyamide layer readily delaminates. We investigated the mechanistic design principle, which not only resulted in strong anchoring of the polyamide layer to the hydrogel surface but also enabled manipulation of the surface morphology, porosity, and surface charge by tailoring interfacial reaction conditions. The polyamide/hydrogel composite was able to withstand 100 cycles of swelling/deswelling without any delamination or a significant decrease in its rejection performance of the model dye, i.e., methylene blue. Regeneration can be done by deswelling the swollen beads at 60 °C, which also releases any loosely bound molecules together with absorbed water. This work provides insights into the development of a physically and chemically robust skin layer on various types of hydrogels for applications such as preconcentration, antifouling-coating, selective compound extraction, etc.
Collapse
Affiliation(s)
- Nupur Gupta
- School of Material Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore
- Interdisciplinary Graduate Programme, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore
- Environmental Chemistry and Materials Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 637141 Singapore
| | - Yen Nan Liang
- Environmental Chemistry and Materials Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 637141 Singapore
| | - Jia Wei Chew
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore
| | - Xiao Hu
- School of Material Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore
- Environmental Chemistry and Materials Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 637141 Singapore
| |
Collapse
|
14
|
Wang K, Wang X, Januszewski B, Liu Y, Li D, Fu R, Elimelech M, Huang X. Tailored design of nanofiltration membranes for water treatment based on synthesis-property-performance relationships. Chem Soc Rev 2021; 51:672-719. [PMID: 34932047 DOI: 10.1039/d0cs01599g] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Tailored design of high-performance nanofiltration (NF) membranes is desirable because the requirements for membrane performance, particularly ion/salt rejection and selectivity, differ among the various applications of NF technology ranging from drinking water production to resource mining. However, this customization greatly relies on a comprehensive understanding of the influence of membrane fabrication methods and conditions on membrane properties and the relationships between the membrane structural and physicochemical properties and membrane performance. Since the inception of NF, much progress has been made in forming the foundation of tailored design of NF membranes and the underlying governing principles. This progress includes theories regarding NF mass transfer and solute rejection, further exploitation of the classical interfacial polymerization technique, and development of novel materials and membrane fabrication methods. In this critical review, we first summarize the progress made in controllable design of NF membrane properties in recent years from the perspective of optimizing interfacial polymerization techniques and adopting new manufacturing processes and materials. We then discuss the property-performance relationships based on solvent/solute mass transfer theories and mathematical models, and draw conclusions on membrane structural and physicochemical parameter regulation by modifying the fabrication process to improve membrane separation performance. Next, existing and potential applications of these NF membranes in water treatment processes are systematically discussed according to the different separation requirements. Finally, we point out the prospects and challenges of tailored design of NF membranes for water treatment applications. This review bridges the long-existing gaps between the pressing demand for suitable NF membranes from the industrial community and the surge of publications by the scientific community in recent years.
Collapse
Affiliation(s)
- Kunpeng Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment and International Joint Laboratory on Low Carbon Clean Energy Innovation, Tsinghua University, Beijing, 100084, P. R. China.
| | - Xiaomao Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment and International Joint Laboratory on Low Carbon Clean Energy Innovation, Tsinghua University, Beijing, 100084, P. R. China.
| | - Brielle Januszewski
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT 06520-8286, USA
| | - Yanling Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment and International Joint Laboratory on Low Carbon Clean Energy Innovation, Tsinghua University, Beijing, 100084, P. R. China. .,State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Danyang Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment and International Joint Laboratory on Low Carbon Clean Energy Innovation, Tsinghua University, Beijing, 100084, P. R. China.
| | - Ruoyu Fu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment and International Joint Laboratory on Low Carbon Clean Energy Innovation, Tsinghua University, Beijing, 100084, P. R. China.
| | - Menachem Elimelech
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT 06520-8286, USA
| | - Xia Huang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment and International Joint Laboratory on Low Carbon Clean Energy Innovation, Tsinghua University, Beijing, 100084, P. R. China.
| |
Collapse
|
15
|
|
16
|
Wang Z, Liang S, Kang Y, Zhao W, Xia Y, Yang J, Wang H, Zhang X. Manipulating interfacial polymerization for polymeric nanofilms of composite separation membranes. Prog Polym Sci 2021. [DOI: 10.1016/j.progpolymsci.2021.101450] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
17
|
Yang G, Zhang Z, Yin C, Shi X, Wang Y. Polyamide membranes enabled by covalent organic framework nanofibers for efficient reverse osmosis. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210664] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Guanghui Yang
- State Key Laboratory of Materials‐Oriented Chemical Engineering College of Chemical Engineering, Nanjing Tech University Nanjing P. R. China
| | - Zhe Zhang
- State Key Laboratory of Materials‐Oriented Chemical Engineering College of Chemical Engineering, Nanjing Tech University Nanjing P. R. China
| | - Congcong Yin
- State Key Laboratory of Materials‐Oriented Chemical Engineering College of Chemical Engineering, Nanjing Tech University Nanjing P. R. China
| | - Xiansong Shi
- State Key Laboratory of Materials‐Oriented Chemical Engineering College of Chemical Engineering, Nanjing Tech University Nanjing P. R. China
| | - Yong Wang
- State Key Laboratory of Materials‐Oriented Chemical Engineering College of Chemical Engineering, Nanjing Tech University Nanjing P. R. China
| |
Collapse
|
18
|
Alginate Hydrogel Assisted Controllable Interfacial Polymerization for High-Performance Nanofiltration Membranes. MEMBRANES 2021; 11:membranes11060435. [PMID: 34200579 PMCID: PMC8228237 DOI: 10.3390/membranes11060435] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/05/2021] [Accepted: 06/07/2021] [Indexed: 11/20/2022]
Abstract
The deepening crisis of freshwater resources has been driving the further development of new types of membrane-based desalination technologies represented by nanofiltration membranes. Solving the existing trade-off limitation on enhancing the water permeance and the rejection of salts is currently one of the most concerned research interests. Here, a facile and scalable approach is proposed to tune the interfacial polymerization by constructing a calcium alginate hydrogel layer on the porous substrates. The evenly coated thin hydrogel layer can not only store amine monomers like the aqueous phase but also suppress the diffusion of amine monomers inside, as well as provide a flat and stable interface to implement the interfacial polymerization. The resultant polyamide nanofilms have a relatively smooth morphology, negatively charged surface, and reduced thickness which facilitate a fast water permeation while maintaining rejection efficiency. As a result, the as-prepared composite membranes show improved water permeance (~30 Lm−2h−1bar−1) and comparable rejection of Na2SO4 (>97%) in practical applications. It is proved to be a feasible approach to manufacturing high-performance nanofiltration membranes with the assist of alginate hydrogel regulating interfacial polymerization.
Collapse
|
19
|
Guo BB, Liu C, Xin JH, Zhu CY, Xu ZK. Visualizing and monitoring interfacial polymerization by aggregation-induced emission. Polym Chem 2021. [DOI: 10.1039/d1py00594d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The aggregation-induced emission effect is used to visualize and monitor interfacial polymerization at the alkane–ionic liquid interface by virtue of the quantitative fluorescence of arylamine luminogens.
Collapse
Affiliation(s)
- Bian-Bian Guo
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- and Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
| | - Chang Liu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- and Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
| | - Jia-Hui Xin
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- and Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
| | - Cheng-Ye Zhu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- and Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
| | - Zhi-Kang Xu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- and Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
| |
Collapse
|
20
|
Zhu X, Tang X, Luo X, Yang Z, Cheng X, Gan Z, Xu D, Li G, Liang H. Stainless steel mesh supported thin-film composite nanofiltration membranes for enhanced permeability and regeneration potential. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118738] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
21
|
Progress of Interfacial Polymerization Techniques for Polyamide Thin Film (Nano)Composite Membrane Fabrication: A Comprehensive Review. Polymers (Basel) 2020; 12:polym12122817. [PMID: 33261079 PMCID: PMC7760071 DOI: 10.3390/polym12122817] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/17/2020] [Accepted: 11/19/2020] [Indexed: 01/12/2023] Open
Abstract
In this paper, we review various novel/modified interfacial polymerization (IP) techniques for the fabrication of polyamide (PA) thin film composite (TFC)/thin film nanocomposite (TFN) membranes in both pressure-driven and osmotically driven separation processes. Although conventional IP technique is the dominant technology for the fabrication of commercial nanofiltration (NF) and reverse osmosis (RO) membranes, it is plagued with issues of low membrane permeability, relatively thick PA layer and susceptibility to fouling, which limit the performance. Over the past decade, we have seen a significant growth in scientific publications related to the novel/modified IP techniques used in fabricating advanced PA-TFC/TFN membranes for various water applications. Novel/modified IP lab-scale studies have consistently, so far, yielded promising results compared to membranes made by conventional IP technique, in terms of better filtration efficiency (increased permeability without compensating solute rejection), improved chemical properties (crosslinking degree), reduced surface roughness and the perfect embedment of nanomaterials within selective layers. Furthermore, several new IP techniques can precisely control the thickness of the PA layer at sub-10 nm and significantly reduce the usage of chemicals. Despite the substantial improvements, these novel IP approaches have downsides that hinder their extensive implementation both at the lab-scale and in manufacturing environments. Herein, this review offers valuable insights into the development of effective IP techniques in the fabrication of TFC/TFN membrane for enhanced water separation.
Collapse
|