1
|
Bazi M, Bracciotti E, Fioravanti L, Marchetti F, Rancan M, Armelao L, Samaritani S, Labella L. Mononuclear Rare-Earth Metalloligands Exploiting a Divergent Ligand. Inorg Chem 2024; 63:7678-7691. [PMID: 38623915 DOI: 10.1021/acs.inorgchem.3c04532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Rare-earth tris-diketonato [RE(dike)3pyterpy] metalloligands can be prepared reacting at room temperature [RE(dike)3dme] (dme = 1,2-dimethoxyethane; dike = tta with Htta = 2-thenoyltrifluoroacetone and RE = La, 1; Y, 2; Eu, 3; Dy, 4; or dike = hfac with Hhfac hexafluoroacetylacetone, and RE = Eu, 5; Tb, 6; Yb 7) with 4'-(4‴-pyridil)-2,2':6',2″-terpyridine (pyterpy). The molecular structures of 1, 5, 6, and 7 have been studied through single-crystal X-ray diffraction showing mononuclear neutral complexes with the rare-earth ion in coordination number nine and with a muffin-like coordination geometry. [RE(tta)3pyterpy] promptly reacts with [M(tta)2dme] with formation of [Mpyterpy2][RE(tta)4]2 (M = Zn, RE = Y, 8; M = Co, RE = Dy, 9). Consistently, [Zn(hfac)2dme] reacts at room temperature with 2 equiv of pyterpy yielding [Znpyterpy2][hfac]2 10 that easily can be transformed by reaction with 2 equiv of [Eu(hfac)3] in [Znpyterpy2][Eu(hfac)4]2 11 that has been structurally characterized. Finally, 1, 2, 3, 5, and 7 metalloligands react at room temperature in few minutes with [PtCl(μ-Cl)PPh3]2 yielding the heterometallic molecular complexes [RE(dike)3pyterpyPtCl2PPh3] (dike = tta, RE = La, 12; Y, 13; Eu; 14; dike = hfac, RE = Eu, 15; Yb, 16).
Collapse
Affiliation(s)
- Marco Bazi
- Dipartimento di Chimica e Chimica Industriale and CIRCC, Università di Pisa, via Giuseppe Moruzzi 13, I-56124 Pisa, Italy
| | - Edoardo Bracciotti
- Dipartimento di Chimica e Chimica Industriale and CIRCC, Università di Pisa, via Giuseppe Moruzzi 13, I-56124 Pisa, Italy
| | - Lorenzo Fioravanti
- Dipartimento di Chimica e Chimica Industriale and CIRCC, Università di Pisa, via Giuseppe Moruzzi 13, I-56124 Pisa, Italy
| | - Fabio Marchetti
- Dipartimento di Chimica e Chimica Industriale and CIRCC, Università di Pisa, via Giuseppe Moruzzi 13, I-56124 Pisa, Italy
| | - Marzio Rancan
- CNR ICMATE and INSTM, c/o Dipartimento di Scienze Chimiche, Università di Padova, via Marzolo 1, I-35131 Padova, Italy
| | - Lidia Armelao
- Dipartimento di Scienze Chimiche and CIRCC, Università di Padova, via Marzolo 1, I-35131 Padova, Italy
- CNR DSCTM, Piazzale A. Moro 7, 00185 Roma, Italy
| | - Simona Samaritani
- Dipartimento di Chimica e Chimica Industriale and CIRCC, Università di Pisa, via Giuseppe Moruzzi 13, I-56124 Pisa, Italy
| | - Luca Labella
- Dipartimento di Chimica e Chimica Industriale and CIRCC, Università di Pisa, via Giuseppe Moruzzi 13, I-56124 Pisa, Italy
| |
Collapse
|
2
|
Reid AG, Moberg ME, Koellner CA, Machan CW, Thornton DA, Dickenson JC, Stober JJ, Turner DA, Tarring TJ, Brown CA, Harrison DP. Sterically attenuated electronic communication in cobalt complexes of meridional isoquinoline-derived ligands for applications in electrocatalysis. J Chem Phys 2023; 159:194306. [PMID: 37982482 DOI: 10.1063/5.0174177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/19/2023] [Indexed: 11/21/2023] Open
Abstract
The ability to synthetically tune the ligand frameworks of redox-active molecules is of critical importance to the economy of solar fuels because manipulating their redox properties can afford control over the operating potentials of sustained electrocatalytic or photoelectrocatalytic processes. The electronic and steric properties of 2,2':6',2″-terpyridine (Terpy) ligand frameworks can be tuned by functional group substitution on ligand backbones, and these correlate strongly to their Hammett parameters. The synthesis of a new series of tridentate meridional ligands of 2,4,6-trisubstituted pyridines that engineers the ability to finely tune the redox potentials of cobalt complexes to more positive potentials than that of their Terpy analogs is achieved by aryl-functionalizing at the four-position and by including isoquinoline at the two- and six-positions of pyridine (Aryl-DiQ). Their cobalt complex syntheses, their electronic properties, and their catalytic activity for carbon dioxide (CO2) reduction are reported and compared to their Terpy analogs. The cobalt derivatives generally experience a positive shift in their redox features relative to the Terpy-based analogs, covering a complementary potential range. Although those evaluated fail to produce any quantifiable products for the reduction of CO2 and suffer from long-term instability, these results suggest possible alternate strategies for stabilizing these compounds during catalysis. We speculate that lower equilibrium association constants to the cobalt center are intrinsic to these ligands, which originate from a steric interaction between protons on the pyridine and isoquinoline moieties. Nevertheless, the new Aryl-DiQ ligand framework has been engineered to selectively tune homoleptic cobalt complexes' redox potentials.
Collapse
Affiliation(s)
- Amelia G Reid
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904-4319, USA
| | - Megan E Moberg
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904-4319, USA
| | - Connor A Koellner
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904-4319, USA
| | - Charles W Machan
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904-4319, USA
| | - Diana A Thornton
- Virginia Tech, Department of Chemistry, Blacksburg, Virginia 24060, USA
| | - John C Dickenson
- Virginia Military Institute, Department of Chemistry, Lexington, Virginia 24450, USA
| | - Jeffry J Stober
- Virginia Military Institute, Department of Chemistry, Lexington, Virginia 24450, USA
| | - David A Turner
- Virginia Military Institute, Department of Chemistry, Lexington, Virginia 24450, USA
| | - Travis J Tarring
- Virginia Military Institute, Department of Chemistry, Lexington, Virginia 24450, USA
| | - Caleb A Brown
- Virginia Military Institute, Department of Chemistry, Lexington, Virginia 24450, USA
| | - Daniel P Harrison
- Virginia Military Institute, Department of Chemistry, Lexington, Virginia 24450, USA
| |
Collapse
|
3
|
Panebianco R, Viale M, Loiacono F, Lanza V, Milardi D, Vecchio G. Terpyridine Glycoconjugates and Their Metal Complexes: Antiproliferative Activity and Proteasome Inhibition. ChemMedChem 2023; 18:e202200701. [PMID: 36773283 DOI: 10.1002/cmdc.202200701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/10/2023] [Accepted: 02/10/2023] [Indexed: 02/12/2023]
Abstract
Metal terpyridine complexes have gained substantial interest in many application fields, such as catalysis and supramolecular chemistry. In recent years, the biological activity of terpyridine and its metal complexes has aroused considerable regard. On this basis, we synthesised new terpyridine derivatives of trehalose and glucose to improve the water solubility of terpyridine ligands and target them in cancer cells through glucose transporters. Glucose derivative and its copper(II) and iron(II) complexes showed antiproliferative activity. Interestingly, trehalose residue reduced the cytotoxicity of terpyridine. Moreover, we tested the ability of parent terpyridine ligands and their copper complexes to inhibit proteasome activity as an antineoplastic mechanism.
Collapse
Affiliation(s)
- Roberta Panebianco
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale A. Doria 6, 95125, Catania, Italy
| | - Maurizio Viale
- U.O.C. Bioterapie, IRCCS Ospedale Policlinico San Martino, L.go R. Benzi 10, 16132, Genova, Italy
| | - Fabrizio Loiacono
- U.O.C. Immunologia, IRCCS Ospedale Policlinico San Martino, L.go R. Benzi 10, 16132, Genova, Italy
| | - Valeria Lanza
- Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, CNR, Via Paolo Gaifami 9, 95126, Catania, Italy
| | - Danilo Milardi
- Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, CNR, Via Paolo Gaifami 9, 95126, Catania, Italy
| | - Graziella Vecchio
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale A. Doria 6, 95125, Catania, Italy
| |
Collapse
|
4
|
Structure, Optical and Magnetic Properties of Two Isomeric 2-Bromomethylpyridine Cu(II) Complexes [Cu(C 6H 9NBr) 2(NO 3) 2] with Very Different Binding Motives. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020731. [PMID: 36677789 PMCID: PMC9866386 DOI: 10.3390/molecules28020731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 12/29/2022] [Accepted: 01/05/2023] [Indexed: 01/12/2023]
Abstract
Two isomeric 2-bromomethylpyridine Cu(II) complexes [Cu(C6H9NBr)2(NO3)2] with 2-bromo-5-methylpyridine (L1) and 2-bromo-4-methylpyridine (L2) were synthesized as air-stable blue materials in good yields. The crystal structures were different with [Cu(L1)2(NO3)2] (CuL1) crystallizing in the monoclinic space group P21/c, while the 4-methyl derivative CuL2 was solved and refined in triclinic P1¯. The orientation of the Br substituents in the molecular structure (anti (CuL1) vs. syn (CuL2) conformations) and the geometry around Cu(II) in an overall 4 + 2 distorted coordination was very different with two secondary (axially elongated) Cu-O bonds on each side of the CuN2O2 basal plane in CuL1 or both on one side in CuL2. The two Br substituents in CuL2 come quite close to the Cu(II) centers and to each other (Br⋯Br ~3.7 Å). Regardless of these differences, the thermal behavior (TG/DTA) of both materials is very similar with decomposition starting at around 160 °C and CuO as the final product. In contrast to this, FT-IR and Raman frequencies are markedly different for the two isomers and the UV-vis absorption spectra in solution show marked differences in the π-π* absorptions at 263 (CuL2) or 270 (CuL1) nm and in the ligand-to-metal charge transfer bands at around 320 nm which are pronounced for CuL1 with the higher symmetry at the Cu(II) center, but very weak for CuL2. The T-dependent susceptibility measurements also show very similar results (µeff = 1.98 µB for CuL1 and 2.00 µB for CuL2 and very small Curie-Weiss constants of about -1. The EPR spectra of both complexes show axial symmetry, very similar averaged g values of 2.123 and 2.125, respectively, and no hyper-fine splitting.
Collapse
|
5
|
Manfroni G, Spingler B, Prescimone A, Constable EC, Housecroft CE. Multitopic 3,2':6',3''-terpyridine ligands as 4-connecting nodes in two-dimensional 4,4-networks. CrystEngComm 2022; 24:7073-7082. [PMID: 36325576 PMCID: PMC9575388 DOI: 10.1039/d2ce01130a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 09/22/2022] [Indexed: 11/22/2022]
Abstract
The tetratopic 1,4-bis(2-phenylethoxy)-2,5-bis(3,2':6',3''-terpyridin-4'-yl)benzene (1) and 1,4-bis(3-phenylpropoxy)-2,5-bis(3,2':6',3''-terpyridin-4'-yl)benzene (2) ligands have been prepared and fully characterised. Combination of ligand 1 or 2 and [M(hfacac)2]·xH2O (M = Cu, x = 1; M = Zn, x = 2) under conditions of crystal growth by layering led to the formation of [Cu2(hfacac)4(1)] n ·3.6n(1,2-Cl2C6H4)·2nCHCl3, [Zn2(hfacac)4(1)] n ·nMeC6H5·1.8nCHCl3, [Cu2(hfacac)4(2)] n ·nMeC6H5·2nH2O, [Cu2(hfacac)4(2)] n ·2.8nC6H5Cl and [Cu2(hfacac)4(2)] n ·2n(1,2-Cl2C6H4)·0.4nCHCl3·0.5nH2O. For each compound, single-crystal X-ray analysis revealed the assembly of a planar (4,4)-net in which the tetratopic ligands 1 or 2 define the nodes. The metal centres link two different bis(3,2':6',3''-tpy) ligands via the outer pyridine rings; whereas copper(ii) has N-donors in a trans-arrangement, zinc(ii) has them in cis. This difference between the copper(ii) and zinc(ii) coordination polymers modifies the architecture of the assembly without changing the underlying (4,4)-network.
Collapse
Affiliation(s)
- Giacomo Manfroni
- Department of Chemistry, University of Basel Mattenstrasse 24a, BPR 1096 4058-Basel Switzerland
| | - Bernhard Spingler
- Department of Chemistry, University of Zurich Winterthurerstr. 190 8057-Zurich Switzerland
| | - Alessandro Prescimone
- Department of Chemistry, University of Basel Mattenstrasse 24a, BPR 1096 4058-Basel Switzerland
| | - Edwin C Constable
- Department of Chemistry, University of Basel Mattenstrasse 24a, BPR 1096 4058-Basel Switzerland
| | - Catherine E Housecroft
- Department of Chemistry, University of Basel Mattenstrasse 24a, BPR 1096 4058-Basel Switzerland
| |
Collapse
|
6
|
Maroń AM, Palion-Gazda J, Szłapa-Kula A, Schab-Balcerzak E, Siwy M, Sulowska K, Maćkowski S, Machura B. Controlling of Photophysical Behavior of Rhenium(I) Complexes with 2,6-Di(thiazol-2-yl)pyridine-Based Ligands by Pendant π-Conjugated Aryl Groups. Int J Mol Sci 2022; 23:11019. [PMID: 36232327 PMCID: PMC9569785 DOI: 10.3390/ijms231911019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 11/19/2022] Open
Abstract
The structure-property correlations and control of electronic excited states in transition metal complexes (TMCs) are of high significance for TMC-based functional material development. Within these studies, a series of Re(I) carbonyl complexes with aryl-substituted 2,6-di(thiazol-2-yl)pyridines (Arn-dtpy) was synthesized, and their ground- and excited-state properties were investigated. A number of condensed aromatic rings, which function as the linking mode of the aryl substituent, play a fundamental role in controlling photophysics of the resulting [ReCl(CO)3(Arn-dtpy-κ2N)]. Photoexcitation of [ReCl(CO)3(Arn-dtpy-κ2N)] with 1-naphthyl-, 2-naphthyl-, 9-phenanthrenyl leads to the population of 3MLCT. The lowest triplet state of Re(I) chromophores bearing 9-anthryl, 2-anthryl, 1-pyrenyl groups is ligand localized. The rhenium(I) complex with appended 1-pyrenyl group features long-lived room temperature emission attributed to the equilibrium between 3MLCT and 3IL/3ILCT. The excited-state dynamics in complexes [ReCl(CO)3(9-anthryl-dtpy-κ2N)] and [ReCl(CO)3(2-anthryl-dtpy-κ2N)] is strongly dependent on the electronic coupling between anthracene and {ReCl(CO)3(dtpy-κ2N)}. Less steric hindrance between the chromophores in [ReCl(CO)3(2-anthryl-dtpy-κ2N)] is responsible for the faster formation of 3IL/3ILCT and larger contribution of 3ILCTanthracene→dtpy in relation to the isomeric complex [ReCl(CO)3(9-anthryl-dtpy-κ2N)]. In agreement with stronger electronic communication between the aryl and Re(I) coordination centre, [ReCl(CO)3(2-anthryl-dtpy-κ2N)] displays room-temperature emission contributed to by 3MLCT and 3ILanthracene/3ILCTanthracene→dtpy phosphorescence. The latter presents rarely observed phenomena in luminescent metal complexes.
Collapse
Affiliation(s)
- Anna M. Maroń
- Institute of Chemistry, University of Silesia, Szkolna 9, 40-006 Katowice, Poland
| | - Joanna Palion-Gazda
- Institute of Chemistry, University of Silesia, Szkolna 9, 40-006 Katowice, Poland
| | - Agata Szłapa-Kula
- Institute of Chemistry, University of Silesia, Szkolna 9, 40-006 Katowice, Poland
| | - Ewa Schab-Balcerzak
- Institute of Chemistry, University of Silesia, Szkolna 9, 40-006 Katowice, Poland
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Sklodowska 34, 41-819 Zabrze, Poland
| | - Mariola Siwy
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Sklodowska 34, 41-819 Zabrze, Poland
| | - Karolina Sulowska
- Nanophotonics Group, Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100 Torun, Poland
| | - Sebastian Maćkowski
- Nanophotonics Group, Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100 Torun, Poland
| | - Barbara Machura
- Institute of Chemistry, University of Silesia, Szkolna 9, 40-006 Katowice, Poland
| |
Collapse
|
7
|
Capomolla SS, Manfroni G, Prescimone A, Constable EC, Housecroft CE. Versatility within (4,4) networks assembled from 1,4-bis(n-alkyloxy)-2,5-bis(3,2′:6′,3′'-terpyridin-4′-yl)benzene and [Cu(hfacac)2] (Hhfacac = 1,1,1,5,5,5-hexafluoropentane-2,4-dione). Polyhedron 2022. [DOI: 10.1016/j.poly.2022.116005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
8
|
Hassen S, Arfaoui Y, Robeyns K, Steenhaut T, Filinchuk Y, Klein A, Chebbi H. Architecture of a dinuclear Co(II) complex based on 3-amino-1,2,4-triazole-5-carboxylic acid: molecular structure, thermal behavior, optical properties, and DFT calculations. J COORD CHEM 2022. [DOI: 10.1080/00958972.2022.2090246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Sabri Hassen
- Faculty of Sciences of Tunis, Laboratory of Characterizations, Applications and Modeling of Materials, University of Tunis El Manar, Tunis, Tunisia
| | - Youssef Arfaoui
- Faculty of Sciences of Tunis, Laboratory of Characterizations, Applications and Modeling of Materials, University of Tunis El Manar, Tunis, Tunisia
| | - Koen Robeyns
- Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, Louvain-la-Neuve 1348, Belgium
| | - Timothy Steenhaut
- Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, Louvain-la-Neuve 1348, Belgium
| | - Yaroslav Filinchuk
- Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, Louvain-la-Neuve 1348, Belgium
| | - Axel Klein
- Faculty of Mathematics and Natural Sciences, Department of Chemistry, Institute for Inorganic Chemistry, University of Cologne, Cologne 50939, Germany
| | - Hammouda Chebbi
- Preparatory Institute for Engineering Studies of Tunis, University of Tunis, Montfleury, Tunis 1089, Tunisia
- Faculty of Sciences of Tunis, Laboratory of Materials, Crystal Chemistry and Applied Thermodynamics, University of Tunis El Manar, Tunis, Tunisia
| |
Collapse
|
9
|
Remarkably flexible 2,2′:6′,2″-terpyridines and their group 8–10 transition metal complexes – Chemistry and applications. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214426] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
10
|
Manfroni G, Prescimone A, Constable EC, Housecroft CE. Stars and stripes: hexatopic tris(3,2':6',3''-terpyridine) ligands that unexpectedly form one-dimensional coordination polymers. CrystEngComm 2022; 24:491-503. [PMID: 35177954 PMCID: PMC8764615 DOI: 10.1039/d1ce01531a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 12/06/2021] [Indexed: 01/12/2023]
Abstract
The hexatopic ligands 1,3,5-tris(4,2':6',4''-terpyridin-4'-yl)benzene (1), 1,3,5-tris(3,2':6',3''-terpyridin-4'-yl)benzene (2), 1,3,5-tris{4-(4,2':6',4''-terpyridin-4'-yl)phenyl}benzene (3), 1,3,5-tris{4-(3,2':6',3''-terpyridin-4'-yl)phenyl}benzene (4) and 1,3,5-trimethyl-2,4,6-tris{4-(3,2':6',3''-terpyridin-4'-yl)phenyl}benzene (5) have been prepared and characterized. The single crystal structure of 1·1.75DMF was determined; 1 exhibits a propeller-shaped geometry with each of the three 4,2':6',4''-tpy domains being crystallographically independent. Packing of molecules of 1 is dominated by face-to-face π-stacking interactions which is consistent with the low solubility of 1 in common organic solvents. Reaction of 5 with [Cu(hfacac)2]·H2O (Hhfacac = 1,1,1,5,5,5-hexafluoropentane-2,4-dione) under conditions of crystal growth by layering resulted in the formation of [Cu3(hfacac)6(5)] n ·2.8nC7H8·0.4nCHCl3. Single-crystal X-ray diffraction reveals an unusual 1D-coordination polymer consisting of a series of alternating single and double loops. Each of the three crystallographically independent Cu atoms is octahedrally sited with cis-arrangements two N-donors from two different ligands 1 and, therefore, cis-arrangements of coordinated [hfacac]- ligands; this observation is unusual among compounds in the Cambridge Structural Database containing {Cu(hfacac)2N2} coordination units in which the two N-donors are in a non-chelating ligand.
Collapse
Affiliation(s)
- Giacomo Manfroni
- Department of Chemistry, University of Basel Mattenstrasse 24a, BPR 1096 4058-Basel Switzerland
| | - Alessandro Prescimone
- Department of Chemistry, University of Basel Mattenstrasse 24a, BPR 1096 4058-Basel Switzerland
| | - Edwin C Constable
- Department of Chemistry, University of Basel Mattenstrasse 24a, BPR 1096 4058-Basel Switzerland
| | - Catherine E Housecroft
- Department of Chemistry, University of Basel Mattenstrasse 24a, BPR 1096 4058-Basel Switzerland
| |
Collapse
|
11
|
Synthesis of coordination polymers based on a 2,2′-dimethoxy-1,1′-biphenyl scaffold and Hg(II), Co(II), or Zn(II). J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
12
|
Pramanik S, Pathak S, Frontera A, Mukhopadhyay S. Syntheses, crystal structures and supramolecular assemblies of two Cu( ii) complexes based on a new heterocyclic ligand: insights into C–H⋯Cl and π⋯π interactions. CrystEngComm 2022. [DOI: 10.1039/d1ce01402a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A new heterocyclic ligand, N3L [4-(1-methylimidazole)-2,6-di(pyrazinyl)pyridine] and two Cu(ii) complexes have been synthesized and characterized by several spectroscopic and DFT methods.
Collapse
Affiliation(s)
- Samit Pramanik
- Department of Chemistry, Jadavpur University, Kolkata 700032, India
| | - Sudipta Pathak
- Department of Chemistry, Haldia Government College, Purba Medinipur, 721657, Debhog, West Bengal, India
| | - Antonio Frontera
- Departament de Química, Universitat de les Illes Balears, Crta. de Valldemossa km 7.5, 07122 Palma de Mallorca, Baleares, Spain
| | | |
Collapse
|
13
|
Panebianco R, Viale M, Bertola N, Bellia F, Vecchio G. Terpyridine functionalized cyclodextrin nanoparticles: Metal coordination for tuning anticancer activity. Dalton Trans 2022; 51:5000-5003. [DOI: 10.1039/d2dt00613h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Multi-metal and multi-cavity systems based on the coordination properties of tpy functionalizing cyclodextrin polymers were synthesized and characterized. Nanoparticles decorated with terpyridine derivatives via metal coordination showed high antiproliferative activity...
Collapse
|
14
|
Fioravanti L, Bellucci L, Armelao L, Bottaro G, Marchetti F, Pineider F, Poneti G, Samaritani S, Labella L. Stoichiometrically Controlled Assembly of Lanthanide Molecular Complexes of the Heteroditopic Divergent Ligand 4'-(4-Pyridyl)-2,2':6',2″-terpyridine N-Oxide in Hypodentate or Bridging Coordination Modes. Structural, Magnetic, and Photoluminescence Studies. Inorg Chem 2021; 61:265-278. [PMID: 34904436 DOI: 10.1021/acs.inorgchem.1c02809] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mononuclear rare-earth tris-β-diketonato complexes RE(tta)3dme [RE = Y (1), La (2), Dy (3), or Eu (4); Htta = 2-thenoylacetone; dme = 1,2-dimethoxyethane] react cleanly at room temperature in a 1:1 molar ratio with the heteroditopic divergent ligand 4'-(4-pyridyl)-2,2':6',2″-terpyridine N-oxide (pyterpyNO) to yield RE2(tta)6(pyterpyNO)n, where n = 2 for RE = Y (5), Dy (6), or Eu (7) and n = 3 for RE = La (8). The crystal structure of 5 revealed a dinuclear compound with two pyterpyNO's bridging through the oxygen atom in a hypodentate mode leaving the terpyridine moieties uncoordinated. Using a metal:pyterpyNO molar ratio of 2 for RE = Y (9), Dy (10), or Eu (11), it was possible to isolate the molecular complexes RE4(tta)12(pyterpyNO)2, while using a 5:3 molar ratio, the product La5(tta)12(pyterpyNO)3 (12) can be obtained. 89Y nuclear magnetic resonance spectroscopy revealed two different yttrium centers at room temperature for 9. An X-ray diffraction study of 10 showed a symmetrical tetranuclear structure resulting from the coordination of two Dy(tta)3 fragments to the two hypodentate terpyridines of the dinuclear unit and presenting two different coordination sites for metals with coordination numbers of 8 and 9. Magnetic studies of 6 and 10 revealed the presence of an antiferromagnetic interaction between the two Dy(III) atoms bound by the NO bridges. These compounds displayed a slow relaxing magnetization through Orbach (6) and Raman (10) processes in the absence of an applied magnetic field; the rate increased upon application of a 1 kOe field. 7 and 11 showed a bright red emission typical of Eu3+. The two complexes have similar emission properties mainly determined by the employed β-diketonato ligands.
Collapse
Affiliation(s)
- Lorenzo Fioravanti
- Dipartimento di Chimica e Chimica Industriale and CIRCC, Università di Pisa, via Giuseppe Moruzzi 13, I-56124 Pisa, Italy
| | - Luca Bellucci
- Dipartimento di Scienze Chimiche, Università di Padova, via Marzolo 1, I-35131 Padova, Italy.,CNR ICMATE and INSTM, Dipartimento di Scienze Chimiche, Università di Padova, via Marzolo 1, I-35131 Padova, Italy
| | - Lidia Armelao
- Dipartimento di Scienze Chimiche e Tecnologie dei Materiali (DSCTM), Consiglio Nazionale delle Ricerche, Piazzale A. Moro 7, 00185 Roma, Italy.,Dipartimento di Scienze Chimiche and INSTM, Università di Padova, 1-35131 Padova, Italy
| | - Gregorio Bottaro
- CNR ICMATE and INSTM, Dipartimento di Scienze Chimiche, Università di Padova, via Marzolo 1, I-35131 Padova, Italy
| | - Fabio Marchetti
- Dipartimento di Chimica e Chimica Industriale and CIRCC, Università di Pisa, via Giuseppe Moruzzi 13, I-56124 Pisa, Italy
| | - Francesco Pineider
- Dipartimento di Chimica e Chimica Industriale and CIRCC, Università di Pisa, via Giuseppe Moruzzi 13, I-56124 Pisa, Italy
| | - Giordano Poneti
- Instituto de Química, Universidade Federal do Rio de Janeiro, Avenida Athos da Silveira Ramos, 149, Centro de Tecnologia-Cidade Universitária, 21941-909 Rio de Janeiro, Brazil
| | - Simona Samaritani
- Dipartimento di Chimica e Chimica Industriale and CIRCC, Università di Pisa, via Giuseppe Moruzzi 13, I-56124 Pisa, Italy
| | - Luca Labella
- Dipartimento di Chimica e Chimica Industriale and CIRCC, Università di Pisa, via Giuseppe Moruzzi 13, I-56124 Pisa, Italy.,CNR ICMATE and INSTM, Dipartimento di Scienze Chimiche, Università di Padova, via Marzolo 1, I-35131 Padova, Italy
| |
Collapse
|
15
|
Su BK, Liu YH, Peng SM, Liu ST. An Anthyridine-Based Pentanitrogen Donor Switches from Mono- to Tetradentate with Pd(II) Ions. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Bo-Kai Su
- Department of Chemistry, National Taiwan University, Taipei, Taiwan 10617
| | - Yi-Hung Liu
- Department of Chemistry, National Taiwan University, Taipei, Taiwan 10617
| | - Shie-Ming Peng
- Department of Chemistry, National Taiwan University, Taipei, Taiwan 10617
| | - Shiuh-Tzung Liu
- Department of Chemistry, National Taiwan University, Taipei, Taiwan 10617
| |
Collapse
|
16
|
Rocco D, Novak S, Prescimone A, Constable EC, Housecroft CE. Coordination networks assembled from Co(NCS)2 and 4′-[4-(naphthalen-1-yl)phenyl]-3,2′:6′,3″-terpyridine: Role of lattice solvents. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
17
|
Adapting (4,4) Networks through Substituent Effects and Conformationally Flexible 3,2':6',3"-Terpyridines. Molecules 2021; 26:molecules26216337. [PMID: 34770746 PMCID: PMC8587907 DOI: 10.3390/molecules26216337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 11/16/2022] Open
Abstract
Coordination networks formed between Co(NCS)2 and 4'-substituted-[1,1'-biphenyl]-4-yl-3,2':6',3"-terpyridines in which the 4'-group is Me (1), H (2), F (3), Cl (4) or Br (5) are reported. [Co(1)2(NCS)2]n·4.5nCHCl3, [Co(2)2(NCS)2]n·4.3nCHCl3, [Co(3)2(NCS)2]n·4nCHCl3, [Co(4)2(NCS)2]n, and [Co(5)2(NCS)2]n·nCHCl3 are 2D-networks directed by 4-connecting cobalt nodes. Changes in the conformation of the 3,2':6',3"-tpy unit coupled with the different peripheral substituents lead to three structure types. In [Co(1)2(NCS)2]n·4.5nCHCl3, [Co(2)2(NCS)2]n·4.3nCHCl3, [Co(3)2(NCS)2]n·4nCHCl3, cone-like arrangements of [1,1'-biphenyl]-4-yl units pack through pyridine…arene π-stacking, whereas Cl…π interactions are dominant in the packing in [Co(4)2(NCS)2]n. The introduction of the Br substituent in ligand 5 switches off both face-to-face π-stacking and halogen…π-interactions, and the packing interactions are more subtly controlled. Assemblies with organic linkers 1-3 are structurally similar and the lattice accommodates CHCl3 molecules in distinct cavities; thermogravimetric analysis confirmed that half the solvent in [Co(3)2(NCS)2]n·4nCHCl3 can be reversibly removed.
Collapse
|
18
|
Designing narcissistic self-sorting terpyridine moieties with high coordination selectivity for complex metallo-supramolecules. Commun Chem 2021; 4:136. [PMID: 36697787 PMCID: PMC9814872 DOI: 10.1038/s42004-021-00577-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 09/07/2021] [Indexed: 01/28/2023] Open
Abstract
Coordination-driven self-assembly is a powerful approach for the construction of metallosupramolecules, but designing coordination moieties that can drive the self-assembly with high selectivity and specificity remains a challenge. Here we report two ortho-modified terpyridine ligands that form head-to-tail coordination complexes with Zn(II). Both complexes show narcissistic self-sorting behaviour. In addition, starting from these ligands, we obtain two sterically congested multitopic ligands and use them to construct more complex metallo-supramolecules hexagons. Because of the non-coaxial structural restrictions in the rotation of terpyridine moieties, these hexagonal macrocycles can hierarchically self-assemble into giant cyclic nanostructures via edge-to-edge stacking, rather than face-to-face stacking. Our design of dissymmetrical coordination moieties from congested coordination pairs show remarkable self-assembly selectivity and specificity.
Collapse
|
19
|
Taniya OS, Kopchuk DS, Khasanov AF, S.Kovalev I, Santra S, Zyryanov GV, Majee A, Charushin VN, Chupakhin ON. Synthetic approaches and supramolecular properties of 2,2′:n′,m″-terpyridine domains (n = 3,4,5,6; m = 2,3,4) based on the 2,2′-bipyridine core as ligands with k2N-bidentate coordination mode. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213980] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
20
|
Isomeric 4,2′:6′,4″- and 3,2′:6′,3″-Terpyridines with Isomeric 4′-Trifluoromethylphenyl Substituents: Effects on the Assembly of Coordination Polymers with [Cu(hfacac)2] (Hhfacac = Hexafluoropentane-2,4-dione). INORGANICS 2021. [DOI: 10.3390/inorganics9070054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The isomers 4′-(4-(trifluoromethyl)phenyl)-4,2′:6′,4″-terpyridine (1), 4′-(3-(trifluoromethyl)phenyl)-4,2′:6′,4″-terpyridine (2), 4′-(4-(trifluoromethyl)phenyl)-3,2′:6′,3″-terpyridine (3), and 4′-(3-(trifluoromethyl)phenyl)-3,2′:6′,3″-terpyridine (4) have been prepared and characterized. The single crystal structures of 1 and 2 were determined. The 1D-polymers [Cu2(hfacac)4(1)2]n·2nC6H4Cl2 (Hhfacac = 1,1,1,5,5,5-hexafluoropentane-2,4-dione), [Cu(hfacac)2(2)]n·2nC6H5Me, [Cu2(hfacac)4(3)2]n·nC6H4Cl2, [Cu2(hfacac)4(3)2]n·nC6H5Cl, and [Cu(hfacac)2(4)]n·nC6H5Cl have been formed by reactions of 1, 2, 3 and 4 with [Cu(hfacac)2]·H2O under conditions of crystal growth by layering and four of these coordination polymers have been formed on a preparative scale. [Cu2(hfacac)4(1)2]n·2nC6H4Cl2 and [Cu(hfacac)2(2)]n·2nC6H5Me are zig-zag chains and the different substitution position of the CF3 group in 1 and 2 does not affect this motif. Packing of the polymer chains is governed mainly by C–F...F–C contacts, and there are no inter-polymer π-stacking interactions. The conformation of the 3,2′:6′,3″-tpy unit in [Cu2(hfacac)4(3)2]n·nC6H4Cl2 and [Cu(hfacac)2(4)]n·nC6H5Cl differs, leading to different structural motifs in the 1D-polymer backbones. In [Cu(hfacac)2(4)]n·nC6H5Cl, the peripheral 3-CF3C6H4 unit is accommodated in a pocket between two {Cu(hfacac)2} units and engages in four C–Hphenyl...F–Chfacac contacts which lock the phenylpyridine unit in a near planar conformation. In [Cu2(hfacac)4(3)2]n·nC6H4Cl2 and [Cu(hfacac)2(4)]n·nC6H5Cl, π-stacking interactions between 4′-trifluoromethylphenyl-3,2′:6′,3″-tpy domains are key packing interactions, and this contrasts with the packing of polymers incorporating 1 and 2. We use powder X-ray diffraction to demonstrate that the assemblies of the coordination polymers are reproducible, and that a switch from a 4,2′:6′,4″- to 3,2′:6′,3″-tpy metal-binding unit is accompanied by a change from dominant C–F...F–C and C–F...H–C contacts to π-stacking of arene domains between ligands 3 or 4.
Collapse
|
21
|
Dickenson JC, Haley ME, Hyde JT, Reid ZM, Tarring TJ, Iovan DA, Harrison DP. Fine-Tuning Metal and Ligand-Centered Redox Potentials of Homoleptic Bis-Terpyridine Complexes with 4'-Aryl Substituents. Inorg Chem 2021; 60:9956-9969. [PMID: 34160216 DOI: 10.1021/acs.inorgchem.1c01233] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Homoleptic transition-metal complexes of 2,2':6',2″-terpyridine (terpy) and substituted derivatives of the form [M(R-terpy)2]2+ display a wide range of redox potentials that correlate well to the Hammett parameter of the terpy substituents. Less is known about the impact of incorporating a phenyl spacer between the functional group responsible for controlling the electron density of terpy and how that translates to metal complexes of the form [M(4'-aryl-terpy)2]2+, where M = Mn, Fe, Co, Ni, and Zn. Herein, we report our studies on these complexes revealed a good correlation of redox potentials of both metal- and ligand-centered events with the Hammett parameters of the aryl substituents, regardless of aryl-substitution pattern (i.e., the presence of multiple functional groups, combinations of withdrawing and donating functional groups). The phenyl spacer results in 60-80% attenuation of electron density as compared to the 4'-substituted terpy analogue, depending on the metal and redox couple analyzed. Density functional theory calculations performed on a simple model system revealed a strong correlation between the Hammett parameters and lowest unoccupied molecular orbital energies of the corresponding substituted pyridine models, thus serving as an inexpensive predictive tool when coupled with electrochemical data. Overall, these data suggest that such ligand modifications may be used in combination with previous approaches to further fine-tune the redox potentials of homoleptic transition-metal complexes, which may have applications in photochemical and electrochemical catalytic processes.
Collapse
Affiliation(s)
- John C Dickenson
- Virginia Military Institute, Department of Chemistry, Lexington, Virginia 24450, United States
| | - MacKenzie E Haley
- Virginia Military Institute, Department of Chemistry, Lexington, Virginia 24450, United States
| | - Jacob T Hyde
- Virginia Military Institute, Department of Chemistry, Lexington, Virginia 24450, United States
| | - Zachary M Reid
- Virginia Military Institute, Department of Chemistry, Lexington, Virginia 24450, United States
| | - Travis J Tarring
- Virginia Military Institute, Department of Chemistry, Lexington, Virginia 24450, United States
| | - Diana A Iovan
- Virginia Tech, Department of Chemistry, Blacksburg, Virginia 24060, United States
| | - Daniel P Harrison
- Virginia Military Institute, Department of Chemistry, Lexington, Virginia 24450, United States
| |
Collapse
|
22
|
Wang Y, Liu T, Chen L, Chao D. Water-Assisted Highly Efficient Photocatalytic Reduction of CO 2 to CO with Noble Metal-Free Bis(terpyridine)iron(II) Complexes and an Organic Photosensitizer. Inorg Chem 2021; 60:5590-5597. [PMID: 33615787 DOI: 10.1021/acs.inorgchem.0c03503] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Photocatalytic CO2 reduction reaction is believed to be a promising approach for CO2 utilization. In this work, a noble metal-free photocatalytic system, composed of bis(terpyridine)iron(II) complexes and an organic thermally activated delayed fluorescence compound, has been developed for selective reduction of CO2 to CO with a maximum turnover number up to 6320, 99.4% selectivity, and turnover frequency of 127 min-1 under visible-light irradiation in dimethylformamide/H2O solution. More than 0.3 mmol CO was generated using 0.05 μmol catalyst after 2 h of light irradiation. The apparent quantum yield was found to be 9.5% at 440 nm (180 mW cm-2). Control experiments and UV-vis-NIR spectroscopy studies further demonstrated that water strongly promoted the photocatalytic cycle and terpyridine ligands rather than Fe(II) were initially reduced during the photocatalytic process.
Collapse
Affiliation(s)
- Yanan Wang
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Ting Liu
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Longxin Chen
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Duobin Chao
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| |
Collapse
|
23
|
Elahi SM, Raizada M, Sahu PK, Konar S. Terpyridine-Based 3D Metal-Organic-Frameworks: A Structure-Property Correlation. Chemistry 2021; 27:5858-5870. [PMID: 33258175 DOI: 10.1002/chem.202004651] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Indexed: 12/13/2022]
Abstract
Design, synthesis, and applications of metal-organic frameworks (MOFs) are among the most salient fields of research in modern inorganic and materials chemistry. As the structure and physical properties of MOFs are mostly dependent on the organic linkers or ligands, the choice of ligand system is of utmost importance in the design of MOFs. One such crucial organic linker/ligand is terpyridine (tpy), which can adopt various coordination modes to generate an enormous number of metal-organic frameworks. These frameworks generally carry physicochemical characteristics induced by the π-electron-rich (basically N-electron-rich moiety) terpyridines. In this minireview, the construction of 3D MOFs associated with symmetrical terpyridines is discussed. These ligands can be easily derivatized at the lateral phenyl (4'-phenyl) position and incorporate additional organic functionalities. These functionalities lead to some different binding modes and form higher dimensional (3D) frameworks. Therefore, these 3D MOFs can carry multiple features along with the characteristics of terpyridines. Some properties of these MOFs, like photophysical, chemical selectivity, photocatalytic degradation, proton conductivity, and magnetism, etc. have also been discussed and correlated with their frameworks.
Collapse
Affiliation(s)
- Syed Meheboob Elahi
- Department of Chemistry, IISER Bhopal, Bhopal By-Pass Road, Bhopal, 462066, Madhya Pradesh, India
| | - Mukul Raizada
- Department of Chemistry, IISER Bhopal, Bhopal By-Pass Road, Bhopal, 462066, Madhya Pradesh, India
| | - Pradip Kumar Sahu
- Department of Chemistry, IISER Bhopal, Bhopal By-Pass Road, Bhopal, 462066, Madhya Pradesh, India
| | - Sanjit Konar
- Department of Chemistry, IISER Bhopal, Bhopal By-Pass Road, Bhopal, 462066, Madhya Pradesh, India
| |
Collapse
|
24
|
Jouaiti A. Terpyridinebenzaldehyde isomers: One-pot facile synthesis. SYNTHETIC COMMUN 2021. [DOI: 10.1080/00397911.2021.1887259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Abdelaziz Jouaiti
- Synthèse et Fonctions des Architectures Moléculaires, University of Strasbourg, CNRS, Strasbourg, France
| |
Collapse
|
25
|
Manipulating the Conformation of 3,2′:6′,3″-Terpyridine in [Cu2(μ-OAc)4(3,2′:6′,3″-tpy)]n 1D-Polymers. CHEMISTRY 2021. [DOI: 10.3390/chemistry3010015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
We report the preparation and characterization of 4′-([1,1′-biphenyl]-4-yl)-3,2′:6′,3″-terpyridine (1), 4′-(4′-fluoro-[1,1′-biphenyl]-4-yl)-3,2′:6′,3″-terpyridine (2), 4′-(4′-chloro-[1,1′-biphenyl]-4-yl)-3,2′:6′,3″-terpyridine (3), 4′-(4′-bromo-[1,1′-biphenyl]-4-yl)-3,2′:6′,3″-terpyridine (4), and 4′-(4′-methyl-[1,1′-biphenyl]-4-yl)-3,2′:6′,3″-terpyridine (5), and their reactions with copper(II) acetate. Single-crystal structures of the [Cu2(μ-OAc)4L]n 1D-coordination polymers with L = 1–5 have been determined, and powder X-ray diffraction confirms that the single crystal structures are representative of the bulk samples. [Cu2(μ-OAc)4(1)]n and [Cu2(μ-OAc)4(2)]n are isostructural, and zigzag polymer chains are present which engage in π-stacking interactions between [1,1′-biphenyl]pyridine units. 1D-chains nest into one another to give 2D-sheets; replacing the peripheral H in 1 by an F substituent in 2 has no effect on the solid-state structure, indicating that bifurcated contacts (H...H for 1 or H...F for 2) are only secondary packing interactions. Upon going from [Cu2(μ-OAc)4(1)]n and [Cu2(μ-OAc)4(2)]n to [Cu2(μ-OAc)4(3)]n, [Cu2(μ-OAc)4(4)]n, and [Cu2(μ-OAc)4(5)]n·nMeOH, the increased steric demands of the Cl, Br, or Me substituent induces a switch in the conformation of the 3,2′:6′,3″-tpy metal-binding domain, and a concomitant change in dominant packing interactions to py–py and py–biphenyl face-to-face π-stacking. The study underlines how the 3,2′:6′,3″-tpy domain can adapt to different steric demands of substituents through its conformational flexibility.
Collapse
|
26
|
Luo D, Zuo T, Zheng J, Long ZH, Wang XZ, Huang YL, Zhou XP, Li D. Enabling photocatalytic activity of [Ru(2,2′:6′,2′′-terpyridine) 2] 2+ integrated into a metal–organic framework. MATERIALS CHEMISTRY FRONTIERS 2021; 5:2777-2782. [DOI: 10.1039/d1qm00024a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A multicomponent metal–organic framework is constructed to incorporate the bis-terpyridyl ruthenium motif, which was considered poorly photoactive, through a stepwise reticular synthesis to arouse its photosensitiveness for producing singlet oxygen.
Collapse
Affiliation(s)
- Dong Luo
- College of Chemistry and Materials Science
- Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications
- Jinan University
- Guangzhou
- Guangdong 510632
| | - Tao Zuo
- College of Chemistry and Materials Science
- Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications
- Jinan University
- Guangzhou
- Guangdong 510632
| | - Ji Zheng
- College of Chemistry and Materials Science
- Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications
- Jinan University
- Guangzhou
- Guangdong 510632
| | - Zi-Hao Long
- College of Chemistry and Materials Science
- Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications
- Jinan University
- Guangzhou
- Guangdong 510632
| | - Xue-Zhi Wang
- College of Chemistry and Materials Science
- Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications
- Jinan University
- Guangzhou
- Guangdong 510632
| | - Yong-Liang Huang
- Department of Chemistry
- Shantou University Medical College
- Shantou
- Guangdong 515041
- P. R. China
| | - Xiao-Ping Zhou
- College of Chemistry and Materials Science
- Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications
- Jinan University
- Guangzhou
- Guangdong 510632
| | - Dan Li
- College of Chemistry and Materials Science
- Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications
- Jinan University
- Guangzhou
- Guangdong 510632
| |
Collapse
|