1
|
Yakir I, Cohen E, Schlesinger S, Hayouka Z. Random antimicrobial peptide mixtures as non-antibiotic antimicrobial agents for cultured meat industry. FOOD CHEMISTRY. MOLECULAR SCIENCES 2025; 10:100240. [PMID: 39927159 PMCID: PMC11804736 DOI: 10.1016/j.fochms.2025.100240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 01/01/2025] [Accepted: 01/13/2025] [Indexed: 02/11/2025]
Abstract
Antibiotics, commonly used in cell culture studies to prevent microbial contamination, cannot be employed in Cultured meat (CM) due to potential residues in the final food products. Hence, there is an urgent need to develop novel and safe non-antibiotic antimicrobial agents. Here, we investigated the potential of random antimicrobial peptide mixtures (RPMs) as non-antibiotic antimicrobial agents. RPMs are synthetic peptide cocktails that have previously shown strong and broad antimicrobial activity; however, their use in cell culture media and their effect on mammalian cells have not yet been explored. Here we show that RPMs had no significant impact on mesenchymal stem cells (MSCs) at concentrations that effectively inhibit bacterial growth. RPMs displayed strong bactericidal activity against Gram-positive bacteria, achieving a 6-log reduction of L. monocytogenes in cell culture medium without any cytotoxicity. Additionally, RPMs showed a low occurrence of resistance development with no significant resistance developed in compared with a combination of penicillin and streptomycin. Moreover, LK20 mixture was rapidly digested and a rapid digestion in a simulated digestion model. Our results indicate that RPMs have great potential to serve as safe and effective non antibiotic antimicrobial agents in cultured meat industry.
Collapse
Affiliation(s)
- Idan Yakir
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agricultural, Food & Environment, The Hebrew University of Jerusalem, Rehovot, 76100, Israel
- Singapore-HUJ Alliance for research and enterprise (SHARE), The Cellular Agriculture (CellAg) Programme, Campus for Research Excellence and Technological Enterprise (CREATE), 138602, Singapore
| | - Einav Cohen
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agricultural, Food & Environment, The Hebrew University of Jerusalem, Rehovot, 76100, Israel
| | - Sharon Schlesinger
- Department of Animal Sciences, The Robert H. Smith Faculty of Agricultural, Food & Environment, The Hebrew University of Jerusalem, Rehovot, 76100, Israel
| | - Zvi Hayouka
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agricultural, Food & Environment, The Hebrew University of Jerusalem, Rehovot, 76100, Israel
- Singapore-HUJ Alliance for research and enterprise (SHARE), The Cellular Agriculture (CellAg) Programme, Campus for Research Excellence and Technological Enterprise (CREATE), 138602, Singapore
| |
Collapse
|
2
|
Brill A, Menagen B, Malach E, Zelinger E, Avnir D, Burdman S, Hayouka Z. Entrapment of antimicrobial compounds in a metal matrix for crop protection. Microb Biotechnol 2024; 17:e70005. [PMID: 39268832 PMCID: PMC11393771 DOI: 10.1111/1751-7915.70005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 08/08/2024] [Indexed: 09/15/2024] Open
Abstract
Agricultural yields are often limited by damage caused by pathogenic microorganisms, including plant-pathogenic bacteria. The chemical control options to cope with bacterial diseases in agriculture are limited, predominantly relying on copper-based products. These compounds, however, possess limited efficacy. Therefore, there is an urgent need to develop novel technologies to manage bacterial plant diseases and reduce food loss. In this study, a new antimicrobial agent was developed using a doping method that entraps small bioactive organic molecules inside copper as the metal matrix. The food preservative agent lauroyl arginate ethyl ester (ethyl lauroyl arginate; LAE) was chosen as the doped organic compound. The new composites were termed LAE@[Cu]. Bactericidal assays against Acidovorax citrulli, a severe plant pathogen, revealed that LAE and copper in the composites possess a synergistic interaction as compared with each component individually. LAE@[Cu] composites were further characterised in terms of chemical properties and in planta assays demonstrated their potential for further development as crop protection agents.
Collapse
Affiliation(s)
- Aya Brill
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and EnvironmentThe Hebrew University of JerusalemRehovotIsrael
- Department of Plant Pathology and Microbiology, Institute of Environmental Sciences, The Robert H. Smith Faculty of Agriculture, Food and EnvironmentThe Hebrew University of JerusalemRehovotIsrael
| | - Barak Menagen
- Institute of ChemistryThe Hebrew University of JerusalemJerusalemIsrael
| | - Einav Malach
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and EnvironmentThe Hebrew University of JerusalemRehovotIsrael
| | - Einat Zelinger
- Interdepartmental Core Facility, Robert H. Smith Faculty of Agriculture, Food and EnvironmentThe Hebrew University of JerusalemRehovotIsrael
| | - David Avnir
- Institute of ChemistryThe Hebrew University of JerusalemJerusalemIsrael
| | - Saul Burdman
- Department of Plant Pathology and Microbiology, Institute of Environmental Sciences, The Robert H. Smith Faculty of Agriculture, Food and EnvironmentThe Hebrew University of JerusalemRehovotIsrael
| | - Zvi Hayouka
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and EnvironmentThe Hebrew University of JerusalemRehovotIsrael
| |
Collapse
|
3
|
Antunes B, Zanchi C, Johnston PR, Maron B, Witzany C, Regoes RR, Hayouka Z, Rolff J. The evolution of antimicrobial peptide resistance in Pseudomonas aeruginosa is severely constrained by random peptide mixtures. PLoS Biol 2024; 22:e3002692. [PMID: 38954678 PMCID: PMC11218975 DOI: 10.1371/journal.pbio.3002692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/28/2024] [Indexed: 07/04/2024] Open
Abstract
The prevalence of antibiotic-resistant pathogens has become a major threat to public health, requiring swift initiatives for discovering new strategies to control bacterial infections. Hence, antibiotic stewardship and rapid diagnostics, but also the development, and prudent use, of novel effective antimicrobial agents are paramount. Ideally, these agents should be less likely to select for resistance in pathogens than currently available conventional antimicrobials. The usage of antimicrobial peptides (AMPs), key components of the innate immune response, and combination therapies, have been proposed as strategies to diminish the emergence of resistance. Herein, we investigated whether newly developed random antimicrobial peptide mixtures (RPMs) can significantly reduce the risk of resistance evolution in vitro to that of single sequence AMPs, using the ESKAPE pathogen Pseudomonas aeruginosa (P. aeruginosa) as a model gram-negative bacterium. Infections of this pathogen are difficult to treat due the inherent resistance to many drug classes, enhanced by the capacity to form biofilms. P. aeruginosa was experimentally evolved in the presence of AMPs or RPMs, subsequentially assessing the extent of resistance evolution and cross-resistance/collateral sensitivity between treatments. Furthermore, the fitness costs of resistance on bacterial growth were studied and whole-genome sequencing used to investigate which mutations could be candidates for causing resistant phenotypes. Lastly, changes in the pharmacodynamics of the evolved bacterial strains were examined. Our findings suggest that using RPMs bears a much lower risk of resistance evolution compared to AMPs and mostly prevents cross-resistance development to other treatments, while maintaining (or even improving) drug sensitivity. This strengthens the case for using random cocktails of AMPs in favour of single AMPs, against which resistance evolved in vitro, providing an alternative to classic antibiotics worth pursuing.
Collapse
Affiliation(s)
- Bernardo Antunes
- Freie Universität Berlin, Evolutionary Biology, Berlin, Germany
- Institute of Biochemistry, Food Science and Nutrition, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Caroline Zanchi
- Freie Universität Berlin, Evolutionary Biology, Berlin, Germany
| | - Paul R. Johnston
- Freie Universität Berlin, Evolutionary Biology, Berlin, Germany
- Berlin Centre for Genomics in Biodiversity Research, Berlin, Germany
- University of St. Andrews, School of Medicine, North Haugh, St Andrews, Fife, United Kingdom
| | - Bar Maron
- Institute of Biochemistry, Food Science and Nutrition, The Hebrew University of Jerusalem, Rehovot, Israel
| | | | - Roland R. Regoes
- Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland
| | - Zvi Hayouka
- Institute of Biochemistry, Food Science and Nutrition, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Jens Rolff
- Freie Universität Berlin, Evolutionary Biology, Berlin, Germany
- Berlin Centre for Genomics in Biodiversity Research, Berlin, Germany
| |
Collapse
|
4
|
Lau JZ, Kuo SH, Belo Y, Malach E, Maron B, Caraway HE, Oh MW, Zhang Y, Ismail N, Lau GW, Hayouka Z. Antibacterial efficacy of an ultra-short palmitoylated random peptide mixture in mouse models of infection by carbapenem-resistant Klebsiella pneumoniae. Antimicrob Agents Chemother 2023; 67:e0057423. [PMID: 37819119 PMCID: PMC10648864 DOI: 10.1128/aac.00574-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 08/18/2023] [Indexed: 10/13/2023] Open
Abstract
Indiscriminate use of antibiotics has imposed a selective pressure for the rapid rise in bacterial resistance, creating an urgent need for novel therapeutics for managing bacterial infectious diseases while counteracting bacterial resistance. Carbapenem-resistant Klebsiella pneumoniae strains have become a major challenge in modern medicine due to their ability to cause an array of severe infections. Recently, we have shown that the 20-mer random peptide mixtures are effective therapeutics against three ESKAPEE pathogens. Here, we evaluated the toxicity, biodistribution, bioavailability, and efficacy of the ultra-short palmitoylated 5-mer phenylalanine:lysine (FK5P) random peptide mixtures against multiple clinical isolates of carbapenem-resistant K. pneumoniae and K. oxytoca. We demonstrate the FK5P rapidly and effectively killed various strains of K. pneumoniae, inhibited the formation of biofilms, and disrupted mature biofilms. FK5P displayed strong toxicity profiles both in vitro and in mice, with prolonged favorable biodistribution and a long half-life. Significantly, FK5P reduced the bacterial burden in mouse models of acute pneumonia and bacteremia and increased the survival rate in a mouse model of bacteremia. Our results demonstrate that FK5P is a safe and promising therapy against Klebsiella species as well as other ESKAPEE pathogens.
Collapse
Affiliation(s)
- Jonathan Z. Lau
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Shanny Hsuan Kuo
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Yael Belo
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Einav Malach
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Bar Maron
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Hannah E. Caraway
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Myung Whan Oh
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Yi Zhang
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Nahed Ismail
- Department of Pathology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Gee W. Lau
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Zvi Hayouka
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
5
|
Stern Bauer T, Yakobi R, Hurevich M, Yitzchaik S, Hayouka Z. Impedimetric Bacterial Detection Using Random Antimicrobial Peptide Mixtures. SENSORS (BASEL, SWITZERLAND) 2023; 23:561. [PMID: 36679359 PMCID: PMC9866871 DOI: 10.3390/s23020561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/19/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
The biosensing of bacterial pathogens is of a high priority. Electrochemical biosensors are an important future tool for rapid bacteria detection. A monolayer of bacterial-binding peptides can serve as a recognition layer in such detection devices. Here, we explore the potential of random peptide mixtures (RPMs) composed of phenylalanine and lysine in random sequences and of controlled length, to form a monolayer that can be utilized for sensing. RPMs were found to assemble in a thin and diluted layer that attracts various bacteria. Faradaic electrochemical impedance spectroscopy was used with modified gold electrodes to measure the charge-transfer resistance (RCT) caused due to the binding of bacteria to RPMs. Pseudomonas aeruginosa was found to cause the most prominent increase in RCT compared to other model bacteria. We show that the combination of highly accessible antimicrobial RPMs and electrochemical analysis can be used to generate a new promising line of bacterial biosensors.
Collapse
Affiliation(s)
- Tal Stern Bauer
- Institute of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
- Institute of Chemistry and the Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Ravit Yakobi
- Institute of Chemistry and the Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Mattan Hurevich
- Institute of Chemistry and the Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Shlomo Yitzchaik
- Institute of Chemistry and the Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Zvi Hayouka
- Institute of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| |
Collapse
|
6
|
Maron B, Rolff J, Friedman J, Hayouka Z. Antimicrobial Peptide Combination Can Hinder Resistance Evolution. Microbiol Spectr 2022; 10:e0097322. [PMID: 35862981 PMCID: PMC9430149 DOI: 10.1128/spectrum.00973-22] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 06/24/2022] [Indexed: 12/29/2022] Open
Abstract
Antibiotic-resistant microbial pathogens are becoming a major threat to human health. Therefore, there is an urgent need to develop new alternatives to conventional antibiotics. One such promising alternative is antimicrobial peptides (AMPs), which are produced by virtually all organisms and typically inhibit bacteria via membrane disruption. However, previous studies demonstrated that bacteria can rapidly develop AMP resistance. Here, we study whether combination therapy, known to be able to inhibit the evolution of resistance to conventional antibiotics, can also hinder the evolution of AMP resistance. To do so, we evolved the opportunistic pathogen Staphylococcus aureus in the presence of individual AMPs, AMP pairs, and a combinatorial antimicrobial peptide library. Treatment with some AMP pairs indeed hindered the evolution of resistance compared with individual AMPs. In particular, resistance to pairs was delayed when resistance to the individual AMPs came at a cost of impaired bacterial growth and did not confer cross-resistance to other tested AMPs. The lowest level of resistance evolved during treatment with the combinatorial antimicrobial peptide library termed random antimicrobial peptide mixture, which contains more than a million different peptides. A better understanding of how AMP combinations affect the evolution of resistance is a crucial step in order to design "resistant proof" AMP cocktails that will offer a sustainable treatment option for antibiotic-resistant pathogens. IMPORTANCE The main insights gleaned from this study are the following. (i) AMP combination treatment can delay the evolution of resistance in S. aureus. Treatment with some AMP pairs resulted in significantly lower resistance then treatment with either of the individual AMPs. Treatment with a random AMP library resulted in no detectable resistance. (ii) The rate at which resistance to combination arises correlates with the cost of resistance to individual AMPs and their cross-resistance. In particular, combinations to which the least resistance arose involved AMPs with high fitness cost of resistance and low cross-resistance. (iii) No broad-range AMP resistance evolved. Strains that evolved resistance to some AMPs typically remained sensitive to other AMPs, alleviating concerns regarding the evolution of resistance to immune system AMPs in response to AMP treatment.
Collapse
Affiliation(s)
- Bar Maron
- Institute of Biochemistry, Food Science and Nutrition, The Hebrew University of Jerusalem, Rehovot, Israel
- Department of Plant Pathology and Microbiology, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Jens Rolff
- Institute of Biology, Evolutionary Biology, Freie University, Berlin, Germany
| | - Jonathan Friedman
- Department of Plant Pathology and Microbiology, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Zvi Hayouka
- Institute of Biochemistry, Food Science and Nutrition, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
7
|
Caraway HE, Lau JZ, Maron B, Oh MW, Belo Y, Brill A, Malach E, Ismail N, Hayouka Z, Lau GW. Antimicrobial Random Peptide Mixtures Eradicate Acinetobacter baumannii Biofilms and Inhibit Mouse Models of Infection. Antibiotics (Basel) 2022; 11:antibiotics11030413. [PMID: 35326876 PMCID: PMC8944503 DOI: 10.3390/antibiotics11030413] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/07/2022] [Accepted: 03/16/2022] [Indexed: 12/11/2022] Open
Abstract
Antibiotic resistance is one of the greatest crises in human medicine. Increased incidents of antibiotic resistance are linked to clinical overuse and overreliance on antibiotics. Among the ESKAPE pathogens, Acinetobacter baumannii, especially carbapenem-resistant isolates, has emerged as a significant threat in the context of blood, urinary tract, lung, and wound infections. Therefore, new approaches that limit the emergence of antibiotic resistant A. baumannii are urgently needed. Recently, we have shown that random peptide mixtures (RPMs) are an attractive alternative class of drugs to antibiotics with strong safety and pharmacokinetic profiles. RPMs are antimicrobial peptide mixtures produced by incorporating two amino acids at each coupling step, rendering them extremely diverse but still defined in their overall composition, chain length, and stereochemistry. The extreme diversity of RPMs may prevent bacteria from evolving resistance rapidly. Here, we demonstrated that RPMs rapidly and efficiently kill different strains of A. baumannii, inhibit biofilm formation, and disrupt mature biofilms. Importantly, RPMs attenuated bacterial burden in mouse models of acute pneumonia and soft tissue infection and significantly reduced mouse mortality during sepsis. Collectively, our results demonstrate RPMs have the potential to be used as powerful therapeutics against antibiotic-resistant A. baumannii.
Collapse
Affiliation(s)
- Hannah E. Caraway
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL 61802, USA; (H.E.C.); (J.Z.L.); (M.W.O.)
| | - Jonathan Z. Lau
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL 61802, USA; (H.E.C.); (J.Z.L.); (M.W.O.)
| | - Bar Maron
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel; (B.M.); (Y.B.); (A.B.); (E.M.)
| | - Myung Whan Oh
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL 61802, USA; (H.E.C.); (J.Z.L.); (M.W.O.)
| | - Yael Belo
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel; (B.M.); (Y.B.); (A.B.); (E.M.)
| | - Aya Brill
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel; (B.M.); (Y.B.); (A.B.); (E.M.)
| | - Einav Malach
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel; (B.M.); (Y.B.); (A.B.); (E.M.)
| | - Nahed Ismail
- Department of Pathology, College of Medicine, University of Illinois at Chicago, 840 South Wood Street, Chicago, IL 60612, USA;
| | - Zvi Hayouka
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel; (B.M.); (Y.B.); (A.B.); (E.M.)
- Correspondence: (Z.H.); (G.W.L.)
| | - Gee W. Lau
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL 61802, USA; (H.E.C.); (J.Z.L.); (M.W.O.)
- Correspondence: (Z.H.); (G.W.L.)
| |
Collapse
|
8
|
Bennett RC, Oh MW, Kuo SH, Belo Y, Maron B, Malach E, Lin J, Hayouka Z, Lau GW. Random Peptide Mixtures as Safe and Effective Antimicrobials against Pseudomonas aeruginosa and MRSA in Mouse Models of Bacteremia and Pneumonia. ACS Infect Dis 2021; 7:672-680. [PMID: 33650856 DOI: 10.1021/acsinfecdis.0c00871] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Antibiotic resistance is a daunting challenge in modern medicine, and novel approaches that minimize the emergence of resistant pathogens are desperately needed. Antimicrobial peptides are newer therapeutics that attempt to do this; however, they fall short because of low to moderate antimicrobial activity, low protease stability, susceptibility to resistance development, and high cost of production. The recently developed random peptide mixtures (RPMs) are promising alternatives. RPMs are synthesized by incorporating a defined proportion of two amino acids at each coupling step rather than just one, making them highly variable but still defined in their overall composition, chain length, and stereochemistry. Because RPMs have extreme diversity, it is unlikely that bacteria would be capable of rapidly evolving resistance. However, their efficacy against pathogens in animal models of human infectious diseases remained uncharacterized. Here, we demonstrated that RPMs have strong safety and pharmacokinetic profiles. RPMs rapidly killed both Pseudomonas aeruginosa and Staphylococcus aureus efficiently and disrupted preformed biofilms by both pathogens. Importantly, RPMs were efficacious against both pathogens in mouse models of bacteremia and acute pneumonia. Our results demonstrate that RPMs are potent broad-spectrum therapeutics against antibiotic-resistant pathogens.
Collapse
Affiliation(s)
- Richard C. Bennett
- Department of Pathobiology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61802, United States
| | - Myung Whan Oh
- Department of Pathobiology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61802, United States
| | - Shanny Hsuan Kuo
- Department of Pathobiology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61802, United States
| | - Yael Belo
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Bar Maron
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Einav Malach
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Jingjun Lin
- Department of Pathobiology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61802, United States
| | - Zvi Hayouka
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Gee W. Lau
- Department of Pathobiology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61802, United States
| |
Collapse
|
9
|
Gutiérrez-Chávez C, Benaud N, Ferrari BC. The ecological roles of microbial lipopeptides: Where are we going? Comput Struct Biotechnol J 2021; 19:1400-1413. [PMID: 33777336 PMCID: PMC7960500 DOI: 10.1016/j.csbj.2021.02.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 02/18/2021] [Accepted: 02/20/2021] [Indexed: 12/30/2022] Open
Abstract
Lipopeptides (LPs) are secondary metabolites produced by a diversity of bacteria and fungi. Their unique chemical structure comprises both a peptide and a lipid moiety. LPs are of major biotechnological interest owing to their emulsification, antitumor, immunomodulatory, and antimicrobial activities. To date, these versatile compounds have been applied across multiple industries, from pharmaceuticals through to food processing, cosmetics, agriculture, heavy metal, and hydrocarbon bioremediation. The variety of LP structures and the diversity of the environments from which LP-producing microorganisms have been isolated suggest important functions in their natural environment. However, our understanding of the ecological role of LPs is limited. In this review, the mode of action and the role of LPs in motility, antimicrobial activity, heavy metals removal and biofilm formation are addressed. We include discussion on the need to characterise LPs from a diversity of microorganisms, with a focus on taxa inhabiting 'extreme' environments. We introduce the use of computational target fishing and molecular dynamics simulations as powerful tools to investigate the process of interaction between LPs and cell membranes. Together, these advances will provide new understanding of the mechanism of action of novel LPs, providing greater insights into the roles of LPs in the natural environment.
Collapse
Affiliation(s)
| | - Nicole Benaud
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney 2052, Australia
| | - Belinda C Ferrari
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney 2052, Australia
| |
Collapse
|