1
|
Kawaguchi M, Yonetani Y, Mizuguchi T, Spratt SJ, Asanuma M, Shimizu H, Sasaki M, Ozeki Y. Visualization of Modified Bisarylbutadiyne-Tagged Small Molecules in Live-Cell Nuclei by Stimulated Raman Scattering Microscopy. Anal Chem 2024; 96:6643-6651. [PMID: 38626411 DOI: 10.1021/acs.analchem.3c05946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2024]
Abstract
Visualizing the distribution of small-molecule drugs in living cells is an important strategy for developing specific, effective, and minimally toxic drugs. As an alternative to fluorescence imaging using bulky fluorophores or cell fixation, stimulated Raman scattering (SRS) imaging combined with bisarylbutadiyne (BADY) tagging enables the observation of small molecules closer to their native intracellular state. However, there is evidence that the physicochemical properties of BADY-tagged analogues of small-molecule drugs differ significantly from those of their parent drugs, potentially affecting their intracellular distribution. Herein, we developed a modified BADY to reduce deviations in physicochemical properties (in particular, lipophilicity and membrane permeability) between tagged and parent drugs, while maintaining high Raman activity in live-cell SRS imaging. We highlight the practical application of this approach by revealing the nuclear distribution of a modified BADY-tagged analogue of JQ1, a bromodomain and extra-terminal motif inhibitor with applications in targeted cancer therapy, in living HeLa cells. The modified BADY, methoxypyridazyl pyrimidyl butadiyne (MPDY), revealed intranuclear JQ1, while BADY-tagged JQ1 did not show a clear nuclear signal. We anticipate that the present approach combining MPDY tagging with live-cell SRS imaging provides important insight into the behavior of intracellular drugs and represents a promising avenue for improving drug development.
Collapse
Affiliation(s)
| | - Yuki Yonetani
- Future Technology R&D Center, Canon Inc., Tokyo 146-8501, Japan
| | - Takaha Mizuguchi
- Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Tokyo 153-8904, Japan
| | - Spencer J Spratt
- Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Tokyo 153-8904, Japan
| | - Masato Asanuma
- Department of Electrical Engineering and Information Systems, The University of Tokyo, Tokyo 113-8656, Japan
| | - Hiroki Shimizu
- Organic & Biomolecular Chemistry Department, Daiichi Sankyo RD Novare Co., Ltd., Tokyo 134-8630, Japan
| | - Masato Sasaki
- Organic & Biomolecular Chemistry Department, Daiichi Sankyo RD Novare Co., Ltd., Tokyo 134-8630, Japan
| | - Yasuyuki Ozeki
- Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Tokyo 153-8904, Japan
- Department of Electrical Engineering and Information Systems, The University of Tokyo, Tokyo 113-8656, Japan
| |
Collapse
|
2
|
Chadha R, Guerrero JA, Wei L, Sanchez LM. Seeing is Believing: Developing Multimodal Metabolic Insights at the Molecular Level. ACS CENTRAL SCIENCE 2024; 10:758-774. [PMID: 38680555 PMCID: PMC11046475 DOI: 10.1021/acscentsci.3c01438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/16/2024] [Accepted: 02/20/2024] [Indexed: 05/01/2024]
Abstract
This outlook explores how two different molecular imaging approaches might be combined to gain insight into dynamic, subcellular metabolic processes. Specifically, we discuss how matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) and stimulated Raman scattering (SRS) microscopy, which have significantly pushed the boundaries of imaging metabolic and metabolomic analyses in their own right, could be combined to create comprehensive molecular images. We first briefly summarize the recent advances for each technique. We then explore how one might overcome the inherent limitations of each individual method, by envisioning orthogonal and interchangeable workflows. Additionally, we delve into the potential benefits of adopting a complementary approach that combines both MSI and SRS spectro-microscopy for informing on specific chemical structures through functional-group-specific targets. Ultimately, by integrating the strengths of both imaging modalities, researchers can achieve a more comprehensive understanding of biological and chemical systems, enabling precise metabolic investigations. This synergistic approach holds substantial promise to expand our toolkit for studying metabolites in complex environments.
Collapse
Affiliation(s)
- Rahuljeet
S Chadha
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125 United States
| | - Jason A. Guerrero
- Department
of Chemistry and Biochemistry, University
of California, Santa Cruz, Santa
Cruz, California 95064 United States
| | - Lu Wei
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125 United States
| | - Laura M. Sanchez
- Department
of Chemistry and Biochemistry, University
of California, Santa Cruz, Santa
Cruz, California 95064 United States
| |
Collapse
|
3
|
Vardaki MZ, Gregoriou VG, Chochos CL. Biomedical applications, perspectives and tag design concepts in the cell - silent Raman window. RSC Chem Biol 2024; 5:273-292. [PMID: 38576725 PMCID: PMC10989507 DOI: 10.1039/d3cb00217a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 02/12/2024] [Indexed: 04/06/2024] Open
Abstract
Spectroscopic studies increasingly employ Raman tags exhibiting a signal in the cell - silent region of the Raman spectrum (1800-2800 cm-1), where bands arising from biological molecules are inherently absent. Raman tags bearing functional groups which contain a triple bond, such as alkyne and nitrile or a carbon-deuterium bond, have a distinct vibrational frequency in this region. Due to the lack of spectral background and cell-associated bands in the specific area, the implementation of those tags can help overcome the inherently poor signal-to-noise ratio and presence of overlapping Raman bands in measurements of biological samples. The cell - silent Raman tags allow for bioorthogonal imaging of biomolecules with improved chemical contrast and they have found application in analyte detection and monitoring, biomarker profiling and live cell imaging. This review focuses on the potential of the cell - silent Raman region, reporting on the tags employed for biomedical applications using variants of Raman spectroscopy.
Collapse
Affiliation(s)
- Martha Z Vardaki
- Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue Athens 11635 Greece
| | - Vasilis G Gregoriou
- Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue Athens 11635 Greece
- Advent Technologies SA, Stadiou Street, Platani Rio Patras 26504 Greece
| | - Christos L Chochos
- Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue Athens 11635 Greece
- Advent Technologies SA, Stadiou Street, Platani Rio Patras 26504 Greece
| |
Collapse
|
4
|
Yamakoshi H, Shibata D, Bando K, Kajimoto S, Kohyama A, Egoshi S, Dodo K, Iwabuchi Y, Sodeoka M, Fujita K, Nakabayashi T. Ratiometric analysis of reversible thia-Michael reactions using nitrile-tagged molecules by Raman microscopy. Chem Commun (Camb) 2023; 59:14563-14566. [PMID: 37986604 DOI: 10.1039/d3cc05015g] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Ratiometric Raman analysis of reversible thia-Michael reactions was achieved using α-cyanoacrylic acid (αCNA) derivatives. Among αCNAs, the smallest derivative, ThioRas (molecular weight: 167 g mol-1), and its glutathione adduct were simultaneously detected in various subcellular locations using Raman microscopy.
Collapse
Affiliation(s)
- Hiroyuki Yamakoshi
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, 980-8578, Japan.
| | - Daiki Shibata
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, 980-8578, Japan.
| | - Kazuki Bando
- Department of Applied Physics, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- National Institute of Advanced Industrial Science and Technology (AIST), 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Shinji Kajimoto
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, 980-8578, Japan.
- JST PREST, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Aki Kohyama
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, 980-8578, Japan.
| | - Syusuke Egoshi
- Synthetic Organic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Catalysis and Integrated Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Kosuke Dodo
- Synthetic Organic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Catalysis and Integrated Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yoshiharu Iwabuchi
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, 980-8578, Japan.
| | - Mikiko Sodeoka
- Synthetic Organic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Catalysis and Integrated Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Katsumasa Fujita
- Department of Applied Physics, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- National Institute of Advanced Industrial Science and Technology (AIST), 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Institute for Open and Transdisciplinary Research Initiatives, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Takakazu Nakabayashi
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, 980-8578, Japan.
| |
Collapse
|
5
|
Braddick HJ, Tipping WJ, Wilson LT, Jaconelli HS, Grant EK, Faulds K, Graham D, Tomkinson NCO. Determination of Intracellular Esterase Activity Using Ratiometric Raman Sensing and Spectral Phasor Analysis. Anal Chem 2023; 95:5369-5376. [PMID: 36926851 PMCID: PMC10061367 DOI: 10.1021/acs.analchem.2c05708] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Carboxylesterases (CEs) are a class of enzymes that catalyze the hydrolysis of esters in a variety of endogenous and exogenous molecules. CEs play an important role in drug metabolism, in the onset and progression of disease, and can be harnessed for prodrug activation strategies. As such, the regulation of CEs is an important clinical and pharmaceutical consideration. Here, we report the first ratiometric sensor for CE activity using Raman spectroscopy based on a bisarylbutadiyne scaffold. The sensor was shown to be highly sensitive and specific for CE detection and had low cellular cytotoxicity. In hepatocyte cells, the ratiometric detection of esterase activity was possible, and the result was validated by multimodal imaging with standard viability stains used for fluorescence microscopy within the same cell population. In addition, we show that the detection of localized ultraviolet damage in a mixed cell population was possible using stimulated Raman scattering microscopy coupled with spectral phasor analysis. This sensor demonstrates the practical advantages of low molecular weight sensors that are detected using ratiometric Raman imaging and will have applications in drug discovery and biomedical research.
Collapse
Affiliation(s)
- Henry J Braddick
- Department of Pure and Applied Chemistry, Thomas Graham Building, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, U.K
| | - William J Tipping
- Centre for Molecular Nanometrology, Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, 99 George Street, Glasgow G1 1RD, U.K
| | - Liam T Wilson
- Department of Pure and Applied Chemistry, Thomas Graham Building, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, U.K
| | - Harry S Jaconelli
- Centre for Molecular Nanometrology, Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, 99 George Street, Glasgow G1 1RD, U.K
| | - Emma K Grant
- GlaxoSmithKline Medicines Research Centre, Gunnels Wood Road, Stevenage SG1 2NY, U.K
| | - Karen Faulds
- Centre for Molecular Nanometrology, Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, 99 George Street, Glasgow G1 1RD, U.K
| | - Duncan Graham
- Centre for Molecular Nanometrology, Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, 99 George Street, Glasgow G1 1RD, U.K
| | - Nicholas C O Tomkinson
- Department of Pure and Applied Chemistry, Thomas Graham Building, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, U.K
| |
Collapse
|
6
|
Li Y, Townsend KM, Dorn RS, Prescher JA, Potma EO. Enhancing Alkyne-Based Raman Tags with a Sulfur Linker. J Phys Chem B 2023; 127:1976-1982. [PMID: 36821830 DOI: 10.1021/acs.jpcb.2c09093] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Alkyne-based Raman tags have proven their utility for biological imaging. Although the alkynyl stretching mode is a relatively strong Raman scatterer, the detection sensitivity of alkyne-tagged compounds is ultimately limited by the magnitude of the probe's Raman response. In order to improve the performance of alkyne-based Raman probes, we have designed several tags that benefit from π-π conjugation as well as from additional n-π conjugation with a sulfur linker. We show that the sulfur linker provides additional enhancement and line width narrowing, offering a simple yet effective strategy for improving alkyne-based Raman tags. We validate the utility of various sulfur-linked alkyne tags for cellular imaging through stimulated Raman scattering microscopy.
Collapse
Affiliation(s)
- Yong Li
- Department of Chemistry, University of California, Irvine, California 92697, United States
| | - Katherine M Townsend
- Department of Chemistry, University of California, Irvine, California 92697, United States
| | - Robert S Dorn
- Department of Chemistry, University of California, Irvine, California 92697, United States
| | - Jennifer A Prescher
- Department of Chemistry, University of California, Irvine, California 92697, United States
| | - Eric O Potma
- Department of Chemistry, University of California, Irvine, California 92697, United States
| |
Collapse
|
7
|
Li Q, Chen H, You S, Lin Z, Chen Z, Huang F, Qiu B. Colorimetric and fluorescent Dual-Modality sensing platform based on UiO-66 for fluorion detection. Microchem J 2023. [DOI: 10.1016/j.microc.2022.108318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
8
|
Dodo K, Fujita K, Sodeoka M. Raman Spectroscopy for Chemical Biology Research. J Am Chem Soc 2022; 144:19651-19667. [PMID: 36216344 PMCID: PMC9635364 DOI: 10.1021/jacs.2c05359] [Citation(s) in RCA: 104] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Indexed: 11/29/2022]
Abstract
In chemical biology research, various fluorescent probes have been developed and used to visualize target proteins or molecules in living cells and tissues, yet there are limitations to this technology, such as the limited number of colors that can be detected simultaneously. Recently, Raman spectroscopy has been applied in chemical biology to overcome such limitations. Raman spectroscopy detects the molecular vibrations reflecting the structures and chemical conditions of molecules in a sample and was originally used to directly visualize the chemical responses of endogenous molecules. However, our initial research to develop "Raman tags" opens a new avenue for the application of Raman spectroscopy in chemical biology. In this Perspective, we first introduce the label-free Raman imaging of biomolecules, illustrating the biological applications of Raman spectroscopy. Next, we highlight the application of Raman imaging of small molecules using Raman tags for chemical biology research. Finally, we discuss the development and potential of Raman probes, which represent the next-generation probes in chemical biology.
Collapse
Affiliation(s)
- Kosuke Dodo
- Synthetic
Organic Chemistry Laboratory, RIKEN Cluster
for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Catalysis
and Integrated Research Group, RIKEN Center
for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Katsumasa Fujita
- Department
of Applied Physics, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Institute
for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka 565-0871, Japan
- AIST-Osaka
University Advanced Photonics and Biosensing Open Innovation Laboratory, National Institute of Advanced Industrial Science
and Technology (AIST), Suita, Osaka 565-0871, Japan
| | - Mikiko Sodeoka
- Synthetic
Organic Chemistry Laboratory, RIKEN Cluster
for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Catalysis
and Integrated Research Group, RIKEN Center
for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
9
|
Benson S, de Moliner F, Tipping W, Vendrell M. Miniaturized Chemical Tags for Optical Imaging. Angew Chem Int Ed Engl 2022; 61:e202204788. [PMID: 35704518 PMCID: PMC9542129 DOI: 10.1002/anie.202204788] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Indexed: 11/06/2022]
Abstract
Recent advances in optical bioimaging have prompted the need for minimal chemical reporters that can retain the molecular recognition properties and activity profiles of biomolecules. As a result, several methodologies to reduce the size of fluorescent and Raman labels to a few atoms (e.g., single aryl fluorophores, Raman-active triple bonds and isotopes) and embed them into building blocks (e.g., amino acids, nucleobases, sugars) to construct native-like supramolecular structures have been described. The integration of small optical reporters into biomolecules has also led to smart molecular entities that were previously inaccessible in an expedite manner. In this article, we review recent chemical approaches to synthesize miniaturized optical tags as well as some of their multiple applications in biological imaging.
Collapse
Affiliation(s)
- Sam Benson
- Centre for Inflammation ResearchThe University of EdinburghEdinburghEH16 4TJUK
| | - Fabio de Moliner
- Centre for Inflammation ResearchThe University of EdinburghEdinburghEH16 4TJUK
| | - William Tipping
- Centre for Molecular NanometrologyThe University of StrathclydeGlasgowG1 1RDUK
| | - Marc Vendrell
- Centre for Inflammation ResearchThe University of EdinburghEdinburghEH16 4TJUK
| |
Collapse
|
10
|
Abstract
As an emerging optical imaging modality, stimulated Raman scattering (SRS) microscopy provides invaluable opportunities for chemical biology studies using its rich chemical information. Through rapid progress over the past decade, the development of Raman probes harnessing the chemical biology toolbox has proven to play a key role in advancing SRS microscopy and expanding biological applications. In this perspective, we first discuss the development of biorthogonal SRS imaging using small tagging of triple bonds or isotopes and highlight their unique advantages for metabolic pathway analysis and microbiology investigations. Potential opportunities for chemical biology studies integrating small tagging with SRS imaging are also proposed. We next summarize the current designs of highly sensitive and super-multiplexed SRS probes, as well as provide future directions and considerations for next-generation functional probe design. These rationally designed SRS probes are envisioned to bridge the gap between SRS microscopy and chemical biology research and should benefit their mutual development.
Collapse
Affiliation(s)
- Jiajun Du
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Haomin Wang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Lu Wei
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| |
Collapse
|
11
|
Benson S, de Moliner F, Tipping W, Vendrell M. Miniaturized Chemical Tags for Optical Imaging. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Sam Benson
- The University of Edinburgh Centre for Inflammation Research UNITED KINGDOM
| | - Fabio de Moliner
- The University of Edinburgh Centre for Inflammation Research UNITED KINGDOM
| | - William Tipping
- University of Strathclyde Centre for Molecular Nanometrology UNITED KINGDOM
| | - Marc Vendrell
- University of Edinburgh Centre for Inflammation Research 47 Little France Crescent EH16 4TJ Edinburgh UNITED KINGDOM
| |
Collapse
|
12
|
Brzozowski K, Matuszyk E, Pieczara A, Firlej J, Nowakowska AM, Baranska M. Stimulated Raman scattering microscopy in chemistry and life science - Development, innovation, perspectives. Biotechnol Adv 2022; 60:108003. [PMID: 35690271 DOI: 10.1016/j.biotechadv.2022.108003] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 06/02/2022] [Accepted: 06/03/2022] [Indexed: 11/30/2022]
Abstract
In this review, we present a summary of the basics of the Stimulated Raman Scattering (SRS) phenomenon, methods of detecting the signal, and collection of the SRS images. We demonstrate the advantages of SRS imaging, and recent developments, but also the limitations, especially in image capture speeds and spatial resolution. We also compare the use of SRS microscopy in biological system studies with other techniques such as fluorescence microscopy, second-harmonic generation (SHG)-based microscopy, coherent anti-Stokes Raman scattering (CARS), and spontaneous Raman, and we show the compatibility of SRS-based systems with other discussed methods. The review is also focused on indicating innovations in SRS microscopy, on the background of which we present the layout and performance of our homemade setup built from commercially available elements enabling for imaging of the molecular structure of single cells over the spectral range of 800-3600 cm-1. Methods of image analysis are discussed, including machine learning methods for obtaining images of the distribution of selected molecules and for the detection of pathological lesions in tissues or malignant cells in the context of clinical diagnosis of a wide range of diseases with the use of SRS microscopy. Finally, perspectives for the development of SRS microscopy are proposed.
Collapse
Affiliation(s)
- K Brzozowski
- Faculty of Chemistry, Jagiellonian University, 2 Gronostajowa Str., 30-387 Krakow, Poland
| | - E Matuszyk
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego Str., 30-348 Krakow, Poland
| | - A Pieczara
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego Str., 30-348 Krakow, Poland
| | - J Firlej
- Faculty of Chemistry, Jagiellonian University, 2 Gronostajowa Str., 30-387 Krakow, Poland
| | - A M Nowakowska
- Faculty of Chemistry, Jagiellonian University, 2 Gronostajowa Str., 30-387 Krakow, Poland
| | - M Baranska
- Faculty of Chemistry, Jagiellonian University, 2 Gronostajowa Str., 30-387 Krakow, Poland; Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego Str., 30-348 Krakow, Poland.
| |
Collapse
|
13
|
Novel acylhydrazone based chemosensor: “On-off” fluorescent and chromogenic detection of F− and Fe3+ with high selectivity and sensitivity. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
O’Connor H, Tipping WJ, Vallejo J, Nichol GS, Faulds K, Graham D, Brechin EK, Lusby PJ. Utilizing Raman Spectroscopy as a Tool for Solid- and Solution-Phase Analysis of Metalloorganic Cage Host-Guest Complexes. Inorg Chem 2022; 62:1827-1832. [PMID: 35512336 PMCID: PMC9906719 DOI: 10.1021/acs.inorgchem.2c00873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The host-guest chemistry of coordination cages continues to promote significant interest, not least because confinement effects can be exploited for a range of applications, such as drug delivery, sensing, and catalysis. Often a fundamental analysis of noncovalent encapsulation is required to provide the necessary insight into the design of better functional systems. In this paper, we demonstrate the use of various techniques to probe the host-guest chemistry of a novel Pd2L4 cage, which we show is preorganized to selectively bind dicyanoarene guests with high affinity through hydrogen-bonding and other weak interactions. In addition, we exemplify the use of Raman spectroscopy as a tool for analyzing coordination cages, exploiting alkyne and nitrile reporter functional groups that are contained within the host and guest, respectively.
Collapse
Affiliation(s)
- Helen
M. O’Connor
- EaStCHEM
School of Chemistry, The University of Edinburgh, David Brewster Road, Edinburgh EH9 3FJ, U.K.
| | - William J. Tipping
- Pure
and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, 99 George Street, Glasgow G1 1RD, U.K.
| | - Julia Vallejo
- EaStCHEM
School of Chemistry, The University of Edinburgh, David Brewster Road, Edinburgh EH9 3FJ, U.K.
| | - Gary S. Nichol
- EaStCHEM
School of Chemistry, The University of Edinburgh, David Brewster Road, Edinburgh EH9 3FJ, U.K.
| | - Karen Faulds
- Pure
and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, 99 George Street, Glasgow G1 1RD, U.K.
| | - Duncan Graham
- Pure
and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, 99 George Street, Glasgow G1 1RD, U.K.,
| | - Euan K. Brechin
- EaStCHEM
School of Chemistry, The University of Edinburgh, David Brewster Road, Edinburgh EH9 3FJ, U.K.,
| | - Paul J. Lusby
- EaStCHEM
School of Chemistry, The University of Edinburgh, David Brewster Road, Edinburgh EH9 3FJ, U.K.,
| |
Collapse
|
15
|
Bi X, Miao K, Wei L. Alkyne-Tagged Raman Probes for Local Environmental Sensing by Hydrogen-Deuterium Exchange. J Am Chem Soc 2022; 144:8504-8514. [PMID: 35508077 DOI: 10.1021/jacs.2c01991] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Alkyne-tagged Raman probes have shown high promise for noninvasive and sensitive visualization of small biomolecules to understand their functional roles in live cells. However, the potential for alkynes to sense cellular environments that goes beyond imaging remains to be further explored. Here, we report a general strategy for Raman imaging-based local environment sensing by hydrogen-deuterium exchange (HDX) of terminal alkynes (termed alkyne-HDX). We first demonstrate, in multiple Raman probes, that deuterations of the alkynyl hydrogens lead to remarkable shifts of alkyne Raman peaks for about 130 cm-1, providing resolvable signals suited for imaging-based analysis with high specificity. Both our analytical derivation and experimental characterizations subsequently establish that HDX kinetics are linearly proportional to both alkyne pKas and environmental pDs. After validating the quantitative nature of this strategy, we apply alkyne-HDX to sensing local chemical and cellular environments. We establish that alkyne-HDX exhibits high sensitivity to various DNA structures and demonstrates the capacity to detect DNA structural changes in situ from UV-induced damage. We further show that this strategy is also applicable to resolve subtle pD variations in live cells. Altogether, our work lays the foundation for utilizing alkyne-HDX strategy to quantitatively sense the local environments for a broad spectrum of applications in complex biological systems.
Collapse
Affiliation(s)
- Xiaotian Bi
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Kun Miao
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Lu Wei
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
16
|
Thakuri A, Acharya R, Banerjee M, Chatterjee A. A polydiacetylene (PDA) impregnated poly(vinylidene fluoride) (PVDF) membrane for sensitive detection of fluoride ions. Analyst 2022; 147:3604-3611. [DOI: 10.1039/d2an00848c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We have developed a polydiacetylene (PDA) grafted poly(vinylidene fluoride) (PVDF) membrane for sensitive solid-phase detection of fluoride. The method was successfully used for water and toothpaste analysis and validated by ion chromatography.
Collapse
Affiliation(s)
- Ankit Thakuri
- Department of Chemistry, BITS-Pilani, K.K. Birla Goa Campus, NH 17B, Bypass Road, Zuarinagar, Sancoale, Goa-403726, India
| | - Raghunath Acharya
- Radiochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai-400085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai-400085, India
| | - Mainak Banerjee
- Department of Chemistry, BITS-Pilani, K.K. Birla Goa Campus, NH 17B, Bypass Road, Zuarinagar, Sancoale, Goa-403726, India
| | - Amrita Chatterjee
- Department of Chemistry, BITS-Pilani, K.K. Birla Goa Campus, NH 17B, Bypass Road, Zuarinagar, Sancoale, Goa-403726, India
| |
Collapse
|
17
|
An efficient Turn-ON fluorescent probe for fluoride ions – Meticulous investigations and development of arduino microcomputer integrated smartphone device. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.117042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
18
|
Lai JY, Zhang WD, Yu YX. Building sp carbon-bridged g-C3N4-based electron donor-π-acceptor unit for efficient photocatalytic water splitting. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111518] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|