1
|
Hirai S, Sakuma T, Tokura Y, Imai H, Seishima R, Shigeta K, Okabayashi K, Oaki Y. Free Volume Space of Polymers as a New Functional Nanospace: Synthesis of Guest Polymers. Macromol Rapid Commun 2025; 46:e2400980. [PMID: 39887904 PMCID: PMC12004908 DOI: 10.1002/marc.202400980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/10/2025] [Indexed: 02/01/2025]
Abstract
Nanospace has been used as a specific field for syntheses and assemblies of molecules, polymers, and materials. Free volume space among polymer chains is related to their properties, such as permeation of gas and small molecules. However, the void has not been used as a functional nanospace in previous works. The present work shows synthesis of guest conductive polymers in free volume space of conventional synthetic resins and rubbers as a new nanospace. Vapor of heteroaromatic monomer and oxidative agent is diffused into the soft dynamic nanospace among the polymer chains under ambient pressure at low temperature. The oxidative polymerization provides the conductive polymers, such as polypyrrole (PPy), in the free volume space of poly(methyl methacrylate) (PMMA), polypropylene (PP), silicone rubber (SR), and polyurethane rubber (PU). The ratio of the free volume decreases with the infiltration of the conductive polymers. The composites exhibit the improved mechanical and gas barrier properties. The rubbers containing PPy are used as mechanical-stress sensors with both the conductivity and flexibility. The free volume space of resins and rubbers can be used as a new dynamic nanospace for synthesis of functional polymer composites.
Collapse
Affiliation(s)
- Sayaka Hirai
- Department of Applied ChemistryFaculty of Science and TechnologyKeio University3‐14‐1 Hiyoshi, Kohoku‐kuYokohama223–8522Japan
| | - Tomoki Sakuma
- Department of Applied ChemistryFaculty of Science and TechnologyKeio University3‐14‐1 Hiyoshi, Kohoku‐kuYokohama223–8522Japan
| | - Yuki Tokura
- Department of Applied ChemistryFaculty of Science and TechnologyKeio University3‐14‐1 Hiyoshi, Kohoku‐kuYokohama223–8522Japan
| | - Hiroaki Imai
- Department of Applied ChemistryFaculty of Science and TechnologyKeio University3‐14‐1 Hiyoshi, Kohoku‐kuYokohama223–8522Japan
| | - Ryo Seishima
- Department of SurgerySchool of MedicineKeio University35 ShinanomachiShinjuku‐kuTokyo160–8582Japan
| | - Kohei Shigeta
- Department of SurgerySchool of MedicineKeio University35 ShinanomachiShinjuku‐kuTokyo160–8582Japan
| | - Koji Okabayashi
- Department of SurgerySchool of MedicineKeio University35 ShinanomachiShinjuku‐kuTokyo160–8582Japan
| | - Yuya Oaki
- Department of Applied ChemistryFaculty of Science and TechnologyKeio University3‐14‐1 Hiyoshi, Kohoku‐kuYokohama223–8522Japan
| |
Collapse
|
2
|
Villani E, Inagi S. Experimental Methods for Measuring Potential and Current Density Distributions at Bipolar Electrodes. Anal Chem 2025; 97:5837-5846. [PMID: 40084680 PMCID: PMC11948184 DOI: 10.1021/acs.analchem.4c05641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 02/27/2025] [Accepted: 03/03/2025] [Indexed: 03/16/2025]
Abstract
Bipolar electrodes (BPEs) are wireless electrodes where electrochemical reactions occur without the need of ohmic contact but rather through an induced electric field established within the electrolytic solution. Although the contactless nature of these electrodes is one of the most captivating features in view of their numerous applications, at the same time, it also represents a limitation because potential and current density distributions cannot be exactly measured. Nevertheless, several experimental methods to indirectly detect these parameters on BPEs have been reported over the years, and they will be extensively described in this tutorial article.
Collapse
Affiliation(s)
- Elena Villani
- Department of Chemical Science
and Engineering, School of Materials and Chemical Technology, Institute of Science Tokyo, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| | - Shinsuke Inagi
- Department of Chemical Science
and Engineering, School of Materials and Chemical Technology, Institute of Science Tokyo, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| |
Collapse
|
3
|
Li H, Li H, Du M, Zhou E, Leow WR, Liu M. A perspective on field-effect in energy and environmental catalysis. Chem Sci 2025; 16:1506-1527. [PMID: 39759941 PMCID: PMC11694487 DOI: 10.1039/d4sc07740g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 12/17/2024] [Indexed: 01/07/2025] Open
Abstract
The development of catalytic technologies for sustainable energy conversion is a critical step toward addressing fossil fuel depletion and associated environmental challenges. High-efficiency catalysts are fundamental to advancing these technologies. Recently, field-effect facilitated catalytic processes have emerged as a promising approach in energy and environmental applications, including water splitting, CO2 reduction, nitrogen reduction, organic electrosynthesis, and biomass recycling. Field-effect catalysis offers multiple advantages, such as enhancing localized reactant concentration, facilitating mass transfer, improving reactant adsorption, modifying electronic excitation and work functions, and enabling efficient charge transfer and separation. This review begins by defining and classifying field effects in catalysis, followed by an in-depth discussion on their roles and potential to guide further exploration of field-effect catalysis. To elucidate the theory-structure-activity relationship, we explore corresponding reaction mechanisms, modification strategies, and catalytic properties, highlighting their relevance to sustainable energy and environmental catalysis applications. Lastly, we offer perspectives on potential challenges that field-effect catalysis may face, aiming to provide a comprehensive understanding and future direction for this emerging area.
Collapse
Affiliation(s)
- HuangJingWei Li
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physics, Central South University Changsha 410083 P. R. China
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR) Singapore 627833 Singapore
| | - Hongmei Li
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physics, Central South University Changsha 410083 P. R. China
| | - Mengzhen Du
- College of Biological, Chemical Sciences and Engineering, Jiaxing University Jiaxing Zhejiang 314001 P. R. China
- College of Chemical and Materials Engineering, Xuchang University Xuchang Henan 461000 P. R. China
| | - Erjun Zhou
- College of Biological, Chemical Sciences and Engineering, Jiaxing University Jiaxing Zhejiang 314001 P. R. China
| | - Wan Ru Leow
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR) Singapore 627833 Singapore
| | - Min Liu
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physics, Central South University Changsha 410083 P. R. China
| |
Collapse
|
4
|
Brady Á, Forster RJ. Electric Field Distribution in Bipolar Electrochemical Cells: Effects on the Wirefree Electrodeposition of Conducting Polymer Films. Anal Chem 2025; 97:410-418. [PMID: 39699874 PMCID: PMC11740180 DOI: 10.1021/acs.analchem.4c04454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 12/05/2024] [Accepted: 12/09/2024] [Indexed: 12/20/2024]
Abstract
Wirefree, or bipolar electrochemistry, is advancing key fields, including (nano)materials, human health, and energy. Central to these applications is an understanding of the potential distribution induced in the bipolar electrode, BPE. Here, the impact of the electric field distribution is reported for the wirefree deposition of the conducting polymer, poly(3,4-ethylenedioxythiophene), PEDOT, in the absence of deliberately added electrolytes. PEDOT films with a gradient thickness are deposited, and the films formed at 10 V cm-1 for 20 min have an average film thickness of 350 nm. Significantly, the quantity of the polymer deposited increases proportionally to the deposition time up to approximately 20 min, suggesting that the presence of a thin PEDOT film does not change the interfacial potential distribution or driving force for heterogeneous electron transfer. For electric field strengths ≥5 V cm-1, PEDOT is deposited on regions of the BPE where the voltage is predicted to be insufficient to drive electropolymerization. This result demonstrates that local intensification of the field, e.g., at edges, and migration of the cationic radicals can significantly affect the electrodeposition profile. These results provide an enhanced understanding of the potential profiles for applications from multianalyte detection devices to wirefree electroceuticals.
Collapse
Affiliation(s)
- Áine Brady
- National
Centre for Sensor Research, School of Chemical Sciences, Dublin City University, Dublin 9 D09 V209, Ireland
- FutureNeuro,
SFI Research Centre for Chronic and Rare Neurological Diseases, Dublin City University, Dublin 9 D09 V209, Ireland
| | - Robert J. Forster
- National
Centre for Sensor Research, School of Chemical Sciences, Dublin City University, Dublin 9 D09 V209, Ireland
- FutureNeuro,
SFI Research Centre for Chronic and Rare Neurological Diseases, Dublin City University, Dublin 9 D09 V209, Ireland
| |
Collapse
|
5
|
Niamlaem M, Grecchi S, Malacarne F, Salinas G, Arnaboldi S. Enantioselective Discrimination via Wireless Chemiresistive Devices. Chempluschem 2024; 89:e202400310. [PMID: 39114955 DOI: 10.1002/cplu.202400310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/05/2024] [Indexed: 10/04/2024]
Abstract
Developing chemiresistive devices for the wireless detection of complex analytes has gained considerable interest. In particular, the enantioselective recognition of chiral molecules is still a challenge. Here, we design a hybrid chemiresistive device for the wireless enantioselective discrimination of chiral analytes by combining the enantiorecognition capabilities of an inherently chiral oligomer, that is, oligo-(3,3'-dibenzothiophene) (BT2T4) and the insulating/conducting transition of polypyrrole (Ppy). The device is obtained by modifying each extremity of an interdigitated electrode (IDE) with Ppy on the interdigitated area and oligo-BT2T4 on the connection pads. Due to the asymmetric electroactivity triggered by bipolar electrochemistry, the wireless enantioselective discrimination of both enantiomers of tryptophan and DOPA was achieved. A difference in the onset resistance values was obtained for both enantiomers due to a favorable or unfavorable diastereomeric interaction between the inherently chiral oligomer and the antipode of the chiral molecule. Interestingly, such a device showed a wide quantification range, from μM to mM levels. This work opens up new alternatives to designing advanced wireless devices in enantiorecognition.
Collapse
Affiliation(s)
- Malinee Niamlaem
- Department of Chemistry, Università degli Studi di Milano, Via Golgi 19, 20133, Milano, Italy
| | - Sara Grecchi
- Department of Chemistry, Università degli Studi di Milano, Via Golgi 19, 20133, Milano, Italy
| | - Filippo Malacarne
- Department of Chemistry, Università degli Studi di Milano, Via Golgi 19, 20133, Milano, Italy
| | - Gerardo Salinas
- University of Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, F-33607, Pessac, France
| | - Serena Arnaboldi
- Department of Chemistry, Università degli Studi di Milano, Via Golgi 19, 20133, Milano, Italy
| |
Collapse
|
6
|
Brady Á, Wagner M, Forster RJ. Regio selective deposition of conducting polymers using wireless electropolymerisation. Chem Commun (Camb) 2024; 60:13000-13003. [PMID: 39302154 DOI: 10.1039/d4cc03996c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
The ability to induce different potentials in different regions of a (bipolar) electrode could transform applications such as on-demand drug delivery, the electrostimulation of biological cells, the development of advanced electroceuticals, and multi-analyte detection devices where different analytes could be wirelessly detected in different regions of a single sensing surface dramatically simplifying the device design. Here, we demonstrate the use of multiple feeder electrodes to control the electric field distribution in solution thus changing the potential induced in different regions of the bipolar electrode depending on the feeder voltage, polarity and feeder electrode position. The principle is demonstrated for the deposition of films of the conducting polymer, Poly(3,4-EthyleneDiOxyThiophene) (PEDOT), without the need for a physical template to control the regions in which polymer deposits.
Collapse
Affiliation(s)
- Áine Brady
- School of Chemical Sciences, Dublin City University, Dublin 9, Ireland.
| | - Michal Wagner
- School of Chemical Sciences, Dublin City University, Dublin 9, Ireland.
| | - Robert J Forster
- School of Chemical Sciences, Dublin City University, Dublin 9, Ireland.
- FutureNeuro, SFI Research Centre for Chronic and Rare Neurological Diseases, Dublin City University, Dublin 9, Ireland
| |
Collapse
|
7
|
Imato K, Hino T, Kaneda N, Imae I, Shida N, Inagi S, Ooyama Y. Wireless Electrochemical Gel Actuators. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305067. [PMID: 37858925 DOI: 10.1002/smll.202305067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/29/2023] [Indexed: 10/21/2023]
Abstract
Soft actuators generate motion in response to external stimuli and are indispensable for soft robots, particularly future miniature robots with complex structure and motion. Similarly to conventional hard robots, electricity is suitable for the stimulation. However, previous electrochemical soft actuators require a tethered connection to a power supply, limiting their size, structure, and motion. Here, wireless electrochemical soft actuators composed of hydrogels and driven by bipolar electrochemistry are reported. Viologen, which dimerizes by one-electron reduction and dissociates by one-electron oxidation, is incorporated in the side chains of the gel networks and works as a reversible cross-link. Wireless and reversible electrochemical actuation of the hydrogels, i.e., muscle-like shrinking and swelling, is demonstrated at microscopic and even macroscopic scales.
Collapse
Affiliation(s)
- Keiichi Imato
- Applied Chemistry Program Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashihiroshima, 739-8527, Japan
| | - Taichi Hino
- Applied Chemistry Program Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashihiroshima, 739-8527, Japan
| | - Naoki Kaneda
- Applied Chemistry Program Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashihiroshima, 739-8527, Japan
| | - Ichiro Imae
- Applied Chemistry Program Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashihiroshima, 739-8527, Japan
| | - Naoki Shida
- Department of Chemistry and Life Science Graduate School of Engineering Science, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, 240-8501, Japan
| | - Shinsuke Inagi
- Department of Chemical Science and Engineering School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8502, Japan
| | - Yousuke Ooyama
- Applied Chemistry Program Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashihiroshima, 739-8527, Japan
| |
Collapse
|
8
|
Chen J, Mo Y. Wireless Electrochemical Reactor for Accelerated Exploratory Study of Electroorganic Synthesis. ACS CENTRAL SCIENCE 2023; 9:1820-1826. [PMID: 37780362 PMCID: PMC10540286 DOI: 10.1021/acscentsci.3c00856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Indexed: 10/03/2023]
Abstract
Electrosynthesis is an emerging tool to construct value-added fine chemicals under mild and sustainable conditions. However, the complex apparatus required impedes the facile development of new electrochemistry in the laboratory. Herein, we proposed and demonstrated the concept of wireless electrochemistry (Wi-eChem) based on wireless power transfer technology. The core of this concept is the dual-function wireless electrochemical magnetic stirrer that provides an electrolysis driving force and mixing simultaneously in a miniaturized form factor. This Wi-eChem system allowed electrochemists to execute electrochemical reactions in a manner similar to traditional organic chemistry without handling wire connections. The controllability, reusability, and versatility were validated with a series of modern electrosynthesis reactions, including electrodecarboxylative etherification, electroreductive olefin-ketone coupling, and electrochemical nickel-catalyzed oxygen atom transfer reaction. Its remarkably simplified operation enabled its facile integration into a fully automated robotic synthesis platform to achieve autonomous parallel electrosynthesis screening.
Collapse
Affiliation(s)
- Jie Chen
- College
of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, Zhejiang, China
| | - Yiming Mo
- College
of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, Zhejiang, China
- ZJU-Hangzhou
Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, Zhejiang, China
| |
Collapse
|
9
|
Gao R, Beladi-Mousavi SM, Salinas G, Garrigue P, Zhang L, Kuhn A. Spatial Precision Tailoring the Catalytic Activity of Graphene Monolayers for Designing Janus Swimmers. NANO LETTERS 2023; 23:8180-8185. [PMID: 37642420 DOI: 10.1021/acs.nanolett.3c02314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Graphene monolayers have interesting applications in many fields due to their intrinsic physicochemical properties, especially when they can be postmodified with high precision. Herein, we describe the highly site-selective functionalization of freestanding graphene monolayers with platinum (Pt) clusters by bipolar electrochemistry. The deposition of such metal spots leads to catalytically active hybrid two-dimensional (2D) nanomaterials. Their catalytic functionality is illustrated by the spatially controlled decomposition of hydrogen peroxide, inducing motion at the water/air interface due to oxygen bubble evolution. A series of such 2D Janus structures with Pt deposition at predefined positions (corners and edges) is studied with respect to the generation of autonomous motion. The type and speed of motion can be fine-tuned by controlling the deposition time and location of the Pt clusters. These proof-of-principle experiments indicate that this type of hybrid 2D object opens up interesting perspectives in terms of applications, such as environmental detection or remediation.
Collapse
Affiliation(s)
- Ruchao Gao
- Engineering Research Center for Nanomaterials, Henan University, 475000 Kaifeng, China
- University of Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, 33607 Pessac, France
| | | | - Gerardo Salinas
- University of Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, 33607 Pessac, France
| | - Patrick Garrigue
- University of Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, 33607 Pessac, France
| | - Lin Zhang
- Engineering Research Center for Nanomaterials, Henan University, 475000 Kaifeng, China
| | - Alexander Kuhn
- Engineering Research Center for Nanomaterials, Henan University, 475000 Kaifeng, China
- University of Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, 33607 Pessac, France
| |
Collapse
|
10
|
Chen Z, Zhou Y, Villani E, Shida N, Tomita I, Inagi S. AC-Bipolar Electropolymerization of 3,4-Ethylenedioxythiophene in Ionic Liquids. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:4450-4455. [PMID: 36919992 PMCID: PMC10061915 DOI: 10.1021/acs.langmuir.3c00120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/01/2023] [Indexed: 06/18/2023]
Abstract
Recently, alternating current (AC)-bipolar electropolymerization of 3,4-ethylenedioxythiophene (EDOT) has been reported to produce poly(3,4-ethylenedioxythiophene) (PEDOT) fibers from the terminals of bipolar electrodes in acetonitrile solution (MeCN) containing low concentrations of supporting salts in a template-free manner. Here, we extend such methodology in ionic liquid (IL) media. Three kinds of ILs, diethylmethyl(2-methoxyethyl)ammonium tetrafluoroborate ([DEME][BF4]), 1-ethyl-3-methylimidazolium tetrafluoroborate ([EMIM][BF4]), and diethylmethyl(2-methoxyethyl)ammonium bis(trifluoromethylsulfonyl)imide ([DEME][TFSI]), with different electric field transmission efficiencies and diffusion coefficients were employed as solvents for the AC-bipolar electropolymerization of EDOT. A variety of PEDOT morphologies were obtained in these three ILs, showing a relationship with the physicochemical properties of the ILs. We successfully confirmed the growth of PEDOT fibers in ILs and systematically discussed the factors that influenced their growth.
Collapse
Affiliation(s)
- Zhenghao Chen
- Department
of Chemical Science and Engineering, School of Materials and Chemical
Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8502, Japan
| | - Yaqian Zhou
- College
of Chemistry and Materials Science, Northwest
University, Xi’an 710069, P. R. China
| | - Elena Villani
- Department
of Chemical Science and Engineering, School of Materials and Chemical
Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8502, Japan
| | - Naoki Shida
- Department
of Chemistry and Life Science, Yokohama
National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
| | - Ikuyoshi Tomita
- Department
of Chemical Science and Engineering, School of Materials and Chemical
Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8502, Japan
| | - Shinsuke Inagi
- Department
of Chemical Science and Engineering, School of Materials and Chemical
Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8502, Japan
| |
Collapse
|
11
|
Yang Y, Zeng H, Wang D, Wu Y, Chen J, Huang Y, Wang P, Feng W. Fractal Growth of Quasi Two-Dimensional Copper Dendrites by Template-free Electrodeposition. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:3045-3051. [PMID: 36790122 DOI: 10.1021/acs.langmuir.2c03069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Fractal dendrites are extensively observed in industry, especially in the electrochemical deposition process. The fractal dendrite electrodeposition behavior of quasi-two-dimensional Cu (Q2D-Cu) metal based on the wire is examined via direct electrodeposition using a thin layer reactor. Here, to explain the fractal growth mechanism, the directional migration and random walking of ions are introduced in the traditional diffusion-limited aggregation model, and fractal patterns consistent with the experimental results are successfully simulated. In addition, the Cu fractal dendrite structure is finely adjusted by varying electrodeposition conditions, demonstrating its great potential for further optimization. The CuO/Q2D-Cu fractal dendrite photothermal device fabricated through in situ assembly of CuO nanowires on Cu fractal dendrite has good photothermal conversion ability. Therefore, metal fractal dendrites, which are considered harmful in the electroplating industry, have application prospects in the photothermal field.
Collapse
Affiliation(s)
- Yuxin Yang
- School of Mechanical Engineering, Chengdu University, Chengdu610000, PR China
| | - Haoyue Zeng
- School of Mechanical Engineering, Chengdu University, Chengdu610000, PR China
| | - Daiyi Wang
- School of Mechanical Engineering, Chengdu University, Chengdu610000, PR China
| | - Yujian Wu
- School of Mechanical Engineering, Chengdu University, Chengdu610000, PR China
| | - Jiaqi Chen
- School of Mechanical Engineering, Chengdu University, Chengdu610000, PR China
| | - Yanyan Huang
- School of Mechanical Engineering, Chengdu University, Chengdu610000, PR China
| | - Pan Wang
- School of Mechanical Engineering, Chengdu University, Chengdu610000, PR China
| | - Wei Feng
- School of Mechanical Engineering, Chengdu University, Chengdu610000, PR China
| |
Collapse
|
12
|
Bai S, You Y, Chen X, Liu C, Wang L. Monitoring Bipolar Electrochemistry and Hydrogen Evolution Reaction of a Single Gold Microparticle under Sub-Micropipette Confinement. Anal Chem 2023; 95:2054-2061. [PMID: 36625753 DOI: 10.1021/acs.analchem.2c04744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Herein, an approach to track the process of autorepeating bipolar reactions and hydrogen evolution reaction (HER) on a micro gold bipolar electrode (BPE) is established. Once blocking the channel of the sub-micropipette tip, the formed gold microparticle is polarized into the wireless BPE, which induces the dissolution of the gold at the anode and the HER at the cathode. The current response shows a periodic behavior with three regions: the bubble generation region (I), the bubble rupture/generation region (II), and the channel opening region (III). After a stable low baseline current of region I, a series of positive spike signals caused by single H2 nanobubbles rupture/generation are recorded standing for the beginning of region II. Meanwhile, the dissolution of the gold blocking at the orifice will create a new channel, increasing the baseline current for region III, where the synthesis of gold occurs again, resulting in another periodic response. Finite element simulations are applied to unveil the mechanism thermodynamically. In addition, the integral charge of the H2 nanobubbles in region II corresponds to the consumption of the anode gold. It simultaneously monitors autorepeating bipolar reactions of a single gold microparticle and HER of a single H2 nanobubble electrochemically, which reveals an insightful physicochemical mechanism in nanoscale confinement and makes the glass nanopore an ideal candidate to further reveal the heterogeneity of catalytic capability at the single particle level.
Collapse
Affiliation(s)
- Silan Bai
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou510641, China
| | - Yongtao You
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou510641, China
| | - Xiangping Chen
- Jewelry Institute, Guangzhou Panyu Polytechnic, Guangzhou511483, China
| | - Cheng Liu
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou510641, China
- School of Chemistry, South China Normal University, Guangzhou510006, China
| | - Lishi Wang
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou510641, China
| |
Collapse
|
13
|
Ketkaew M, Assavapanumat S, Klinyod S, Kuhn A, Wattanakit C. Bifunctional Pt/Au Janus electrocatalysts for simultaneous oxidation/reduction of furfural with bipolar electrochemistry. Chem Commun (Camb) 2022; 58:4312-4315. [PMID: 35266932 DOI: 10.1039/d1cc06759a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The sustainable conversion of biomass-derived compounds into high added-value products is a very important contemporary scientific challenge. In this context, we report here the simultaneous electro-oxidation/-reduction of a biomass-derived compound in a one-pot approach using bipolar electrochemistry. Bifunctional Pt/Au Janus electrocatalysts are employed for a selective conversion of furfural into both, furfuryl alcohol and furoic acid, which can't be achieved when using non-Janus particles. The results emphasize the benefits of bipolar electrochemistry in the frame of electrosynthesis processes.
Collapse
Affiliation(s)
- Marisa Ketkaew
- Department of Chemical and Biomolecular Engineering, School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong, 21210, Thailand. .,Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, Site ENSCBP, 33607, Pessac, France.
| | - Sunpet Assavapanumat
- Department of Chemical and Biomolecular Engineering, School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong, 21210, Thailand.
| | - Sorasak Klinyod
- Department of Chemical and Biomolecular Engineering, School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong, 21210, Thailand.
| | - Alexander Kuhn
- Department of Chemical and Biomolecular Engineering, School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong, 21210, Thailand. .,Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, Site ENSCBP, 33607, Pessac, France.
| | - Chularat Wattanakit
- Department of Chemical and Biomolecular Engineering, School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong, 21210, Thailand.
| |
Collapse
|
14
|
Salinas G, Arnaboldi S, Bouffier L, Kuhn A. Recent Advances in Bipolar Electrochemistry with Conducting Polymers. ChemElectroChem 2022. [DOI: 10.1002/celc.202101234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Gerardo Salinas
- Univ. Bordeaux ISM UMR 5255 CNRS, Bordeaux INP 33607 Pessac France
| | - Serena Arnaboldi
- Dip. Di Chimica Univ. degli Studi di Milano Via Golgi 19 20133 Milano Italy
| | - Laurent Bouffier
- Univ. Bordeaux ISM UMR 5255 CNRS, Bordeaux INP 33607 Pessac France
| | - Alexander Kuhn
- Univ. Bordeaux ISM UMR 5255 CNRS, Bordeaux INP 33607 Pessac France
| |
Collapse
|
15
|
Arnaboldi S, Salinas G, Bonetti G, Cirilli R, Benincori T, Kuhn A. Bipolar Electrochemical Measurement of Enantiomeric Excess with Inherently Chiral Polymer Actuators. ACS MEASUREMENT SCIENCE AU 2021; 1:110-116. [PMID: 34939074 PMCID: PMC8679086 DOI: 10.1021/acsmeasuresciau.1c00011] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Indexed: 05/11/2023]
Abstract
Straightforward enantioselective analytical methods are very important for drug safety, considering that in certain cases one of the two enantiomers of a chiral molecule might be harmful for humans. In this work, we propose a simple system for the direct and easy read-out of the enantiomeric excess of 3,4-dihydroxyphenylalanine (DOPA) as a model analyte. A conducting oligomer, i.e. oligo-(3,3'-dibenzothiophene), bearing inherently chiral features, is electrogenerated on a polypyrrole film. The resulting freestanding hybrid material is used as a wireless enantioselective actuator in a bipolar electrochemical cell. Combining in a single setup two individual actuators with opposite chiral features allows a direct visual read-out of enantiomeric excess, as the bending amplitude of each of the two actuators is directly correlated with the concentration of the corresponding stereoisomer of the analyte. Optimization of the experimental parameters results in efficient bending, giving access to the percentage values of the enantiomeric excess in mixtures containing different ratios of the antipodes, thus opening the way to potential applications for chiral in situ analysis.
Collapse
Affiliation(s)
- Serena Arnaboldi
- Université
de Bordeaux, CNRS UMR 5255, Bordeaux INP,
ENSCBP, 16 avenue Pey
Berland, 33607 Pessac, France
- Dipartimento
di Chimica, Universita degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy
| | - Gerardo Salinas
- Université
de Bordeaux, CNRS UMR 5255, Bordeaux INP,
ENSCBP, 16 avenue Pey
Berland, 33607 Pessac, France
| | - Giorgia Bonetti
- Dipartimento
di Scienza e Alta Tecnologia, Universita
degli Studi dell’Insubria, Via Valleggio 11, 22100 Como, Italy
| | - Roberto Cirilli
- Centro
Nazionale per il Controllo e la Valutazione dei Farmaci, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Roma, Italy
| | - Tiziana Benincori
- Dipartimento
di Scienza e Alta Tecnologia, Universita
degli Studi dell’Insubria, Via Valleggio 11, 22100 Como, Italy
| | - Alexander Kuhn
- Université
de Bordeaux, CNRS UMR 5255, Bordeaux INP,
ENSCBP, 16 avenue Pey
Berland, 33607 Pessac, France
| |
Collapse
|
16
|
Patterson N, Ignaszak A. Thin carbon–polypyrrole composite materials for supercapacitor electrodes by novel bipolar electrochemical setup. ELECTROCHEMICAL SCIENCE ADVANCES 2021. [DOI: 10.1002/elsa.202100153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Nigel Patterson
- Department of Chemistry University of New Brunswick (UNB) Fredericton New Brunswick Canada
| | - Anna Ignaszak
- Department of Chemistry University of New Brunswick (UNB) Fredericton New Brunswick Canada
| |
Collapse
|
17
|
Salinas G, Arnaboldi S, Bonetti G, Cirilli R, Benincori T, Kuhn A. Hybrid light-emitting devices for the straightforward readout of chiral information. Chirality 2021; 33:875-882. [PMID: 34617330 DOI: 10.1002/chir.23370] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/17/2021] [Accepted: 09/20/2021] [Indexed: 11/11/2022]
Abstract
Bipolar electrochemistry has gained increasing attention in recent years as an attractive transduction concept in analytical chemistry in general and, more specifically, in the frame of chiral recognition. Herein, we use this concept of wireless electrochemistry, based on the combination of the enantioselective oxidation of a chiral probe with the emission of light from a light-emitting diode (LED), as an alternative for an easy and straightforward readout of the presence of chiral molecules in solution. A hybrid polymer-microelectronic device was designed, using an inherently chiral oligomer, that is, oligo-(3,3'-dibenzothiophene) and a polypyrrole strip as the anode and cathode of a miniaturized LED. The wireless induced redox reactions trigger light emission when the probe with the right chirality is present in solution, whereas no light emission is observed for the opposite enantiomer. The average light intensity shows a linear correlation with the analyte concentration, and the concept opens the possibility to quantify the enantiomeric excess in mixtures of the molecular antipodes.
Collapse
Affiliation(s)
- Gerardo Salinas
- Univ. Bordeaux, ISM CNRS UMR 5255, Bordeaux INP, Pessac, France
| | - Serena Arnaboldi
- Univ. Bordeaux, ISM CNRS UMR 5255, Bordeaux INP, Pessac, France.,Dip. Di Chimica, Univ. degli Studi di Milano, Milan, Italy
| | - Giorgia Bonetti
- Dip. di Scienza e Alta Tecnologia, Univ. degli Studi dell'Insubria, Como, Italy
| | - Roberto Cirilli
- Istituto Superiore di Sanità, Centro Nazionale per il Controllo e la Valutazione dei Farmaci, Rome, Italy
| | - Tiziana Benincori
- Dip. di Scienza e Alta Tecnologia, Univ. degli Studi dell'Insubria, Como, Italy
| | - Alexander Kuhn
- Univ. Bordeaux, ISM CNRS UMR 5255, Bordeaux INP, Pessac, France
| |
Collapse
|
18
|
Villani E, Shida N, Inagi S. Electrogenerated chemiluminescence of luminol on wireless conducting polymer films. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138718] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
19
|
Villani E, Inagi S. Mapping the Distribution of Potential Gradient in Bipolar Electrochemical Systems through Luminol Electrochemiluminescence Imaging. Anal Chem 2021; 93:8152-8160. [PMID: 34081445 DOI: 10.1021/acs.analchem.0c05397] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Bipolar electrochemistry has been regarded as a powerful and sustainable electrochemical process for the synthesis of novel functional materials. The appealing features of this electrochemical technology, such as the wireless nature of the bipolar electrode (BPE) and the possibility to drive simultaneously electrochemical reactions on multiple BPEs placed in the same electrochemical cell, together with the possibility to change the shape and positioning of the driving electrodes, give significant freedom to design reaction systems. Nevertheless, the cell geometry dramatically affects the distribution and intensity of the potential gradient generated on the BPE surface and its monitoring is hampered due to the wireless nature of the BPE. In the present study, we propose the use of electrochemiluminescence (ECL) as an electrochemical imaging technique to map the distribution of potential gradient in bipolar electrochemical cells with different geometries. The proposed approach exploits the strong ECL emission of luminol/hydrogen peroxide (H2O2) system generated at the anodic pole of the BPE, when the total applied voltage (Etot) is strong enough to trigger the electrochemical reaction. Since luminol ECL emission is rather intense and relatively stable, the evolution of the potential distribution as a function of Etot can be monitored using a digital camera, allowing the elucidation of the potential distribution profile in every bipolar configuration. The suggested approach represents a valuable and reliable method to map the potential gradient in bipolar electrochemical systems and can be readily employed in every type of bipolar configuration.
Collapse
Affiliation(s)
- Elena Villani
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8502, Japan
| | - Shinsuke Inagi
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8502, Japan.,PRESTO, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|