1
|
Abraham DS, Vinoba M, Bhagiyalakshmi M. NiCr-LDH/V 4C 3 MXene nanocomposites as an efficient electrocatalyst for urea oxidation. NANOSCALE 2025; 17:4111-4122. [PMID: 39782877 DOI: 10.1039/d4nr04064c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
The quest for highly efficient electrocatalysts for direct urea fuel cells (DUFCs) is vital in addressing the energy deficits and environmental crisis. Ni-based LDHs are widely known for their substantial capability in urea oxidation reactions (UOR). This study involved the synthesis of NiCr-LDH/V4C3 MXene nanocomposites (NCVs) and the evaluation of their electrochemical efficiency towards UOR. The hybridization of V4C3 with NiCr-LDH improved the redox kinetics of the nanocomposite. NCV-21 achieved a notable efficiency of 10 mA cm-2 at a lower onset potential of 1.36 V versus the reversible hydrogen electrode in a 1.0 M KOH solution containing 0.33 M urea. Furthermore, it demonstrated an enhanced current density of 112.64 mA cm-2 and long-term durability. The robust interaction and electronic coupling between NiCr-LDH and V4C3 MXene, marked by superior current density and significant charge transfer, confers the nanocomposite with remarkable catalytic activity and stability towards substantial urea oxidation performance. Based on the results obtained, the NiCr-LDH/V4C3 MXene nanocomposite is an efficient anodic catalyst for urea oxidation. This study will open a new avenue for the development of various LDH/MXene nanocomposites for energy conservation applications.
Collapse
Affiliation(s)
| | - Mari Vinoba
- Kuwait Institute for Scientific Research, Safat-13109, Kuwait
| | | |
Collapse
|
2
|
Zhang S, Zhao M, Zhang X, Wang C, Zhang C, Xing H, Yang C, Ma R, Guo C. Charge-redistributed Co 3O 4/Fe 0.3Co 0.7P heterointerfaces for efficient electrocatalytic urea oxidation. Chem Commun (Camb) 2024; 60:14184-14187. [PMID: 39470744 DOI: 10.1039/d4cc04468a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
Charge-redistributed Co3O4/Fe0.3Co0.7P heterointerfaces are designed for effective electrocatalytic urea oxidation in alkaline medium, delivering excellent performance with only 1.41 V vs. RHE at 100 mA cm-2, low Tafel slope of 74 mV dec-1 and 36-h robust stability. The fine regulation of charge redistribution through heterointerfaces provides an effective strategy to design highly efficient electrocatalysts.
Collapse
Affiliation(s)
- Shan Zhang
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215011, China.
| | - Ming Zhao
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215011, China.
| | - Xiaoyan Zhang
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, P. R. China
| | - Chao Wang
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21218-2625, USA
| | - Chunmei Zhang
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215011, China.
| | - Huanhuan Xing
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215011, China.
| | - Chunzi Yang
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215011, China.
| | - Ruguang Ma
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215011, China.
| | - Chunxian Guo
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215011, China.
| |
Collapse
|
3
|
N Dhandapani H, Das C, Ghosh NN, Biswas G, Ramesh Babu B, Kundu S. Ceria-Graphene Oxide Nanocomposite for Electro-oxidation of Urea: An Experimental and Theoretical Investigation. Inorg Chem 2024; 63:16081-16094. [PMID: 39141009 DOI: 10.1021/acs.inorgchem.4c02747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
This study explores the potential of ceria-graphene oxide (CeO2-GO) nanocomposites as efficient electrocatalysts for urea electro-oxidation (UOR). This work combines experimental and theoretical investigations and characterization techniques confirm the successful formation of the CeO2 embedded on graphene oxide sheets. UOR activity was found to be dependent on both OH- and urea concentrations. The optimal UOR performance was achieved in a 0.1 M urea and 1.0 M KOH solution, as evidenced by the low Tafel slope of 60 mV/dec and high turnover frequency (TOF) of 1.690 s-1. DFT calculations revealed that the CeO2-GO nanocomposite exhibited strong urea adsorption due to its favorable bond lengths (Ce-O: 2.58 Å, O-H: 1.77 Å) and high adsorption energy (-1.05 eV). These findings revealed that the CeO2-GO nanocomposites are promising as efficient and durable electrocatalysts for urea conversion to valuable products like nitrogen and hydrogen gas, with potential applications in clean energy generation and ammonia synthesis.
Collapse
Affiliation(s)
- Hariharan N Dhandapani
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India
| | - Chanchal Das
- Department of Chemistry, Cooch Behar Panchanan Barma University, Cooch Behar, West Bengal 736101, India
| | | | - Goutam Biswas
- Department of Chemistry, Cooch Behar Panchanan Barma University, Cooch Behar, West Bengal 736101, India
| | - B Ramesh Babu
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India
| | - Subrata Kundu
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India
| |
Collapse
|
4
|
Yu J, Li Z, Wang C, Xu X, Liu T, Chen D, Shao Z, Ni M. Engineering advanced noble-metal-free electrocatalysts for energy-saving hydrogen production from alkaline water via urea electrolysis. J Colloid Interface Sci 2024; 661:629-661. [PMID: 38310771 DOI: 10.1016/j.jcis.2024.01.183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/22/2024] [Accepted: 01/26/2024] [Indexed: 02/06/2024]
Abstract
When the anodic oxygen evolution reaction (OER) of water splitting is replaced by the urea oxidation reaction (UOR), the electrolyzer can fulfill hydrogen generation in an energy-economic manner for urea electrolysis as well as sewage purification. However, owing to the sluggish kinetics from a six-electron process for UOR, it is in great demand to design and fabricate high-performance and affordable electrocatalysts. Over the past years, numerous non-precious materials (especially nickel-involved samples) have offered huge potential as catalysts for urea electrolysis under alkaline conditions, even in comparison with frequently used noble-metal ones. In this review, recent efforts and progress in these high-efficiency noble-metal-free electrocatalysts are comprehensively summarized. The fundamentals and principles of UOR are first described, followed by highlighting UOR mechanism progress, and then some discussion about density functional theory (DFT) calculations and operando investigations is given to disclose the real reaction mechanism. Afterward, aiming to improve or optimize UOR electrocatalytic properties, various noble-metal-free catalytic materials are introduced in detail and classified into different classes, highlighting the underlying activity-structure relationships. Furthermore, new design trends are also discussed, including targetedly designing nanostructured materials, manipulating anodic products, combining theory and in situ experiments, and constructing bifunctional catalysts. Ultimately, we point out the outlook and explore the possible future opportunities by analyzing the remaining challenges in this booming field.
Collapse
Affiliation(s)
- Jie Yu
- School of Energy and Power, Jiangsu University of Science and Technology, Zhenjiang 212100, PR China; Department of Building and Real Estate, Research Institute for Sustainable Urbanization (RISUD), Research Institute for Smart Energy (RISE), The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, PR China
| | - Zheng Li
- Department of Building and Real Estate, Research Institute for Sustainable Urbanization (RISUD), Research Institute for Smart Energy (RISE), The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, PR China
| | - Chen Wang
- Department of Building and Real Estate, Research Institute for Sustainable Urbanization (RISUD), Research Institute for Smart Energy (RISE), The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, PR China
| | - Xiaomin Xu
- WA School of Mines: Minerals, Energy and Chemical Engineering (WASM-MECE), Curtin University, Perth, Western Australia, 6102, Australia
| | - Tong Liu
- Department of Building and Real Estate, Research Institute for Sustainable Urbanization (RISUD), Research Institute for Smart Energy (RISE), The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, PR China
| | - Daifen Chen
- School of Energy and Power, Jiangsu University of Science and Technology, Zhenjiang 212100, PR China
| | - Zongping Shao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, PR China; WA School of Mines: Minerals, Energy and Chemical Engineering (WASM-MECE), Curtin University, Perth, Western Australia, 6102, Australia.
| | - Meng Ni
- Department of Building and Real Estate, Research Institute for Sustainable Urbanization (RISUD), Research Institute for Smart Energy (RISE), The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, PR China.
| |
Collapse
|
5
|
Wang H, Xiong K, Gao L, Xue M, Pan Z, Huo XL, Zhou Q. Water activating fresh NiMo foam for enhanced urea electrolysis. Chem Commun (Camb) 2023; 59:14583-14586. [PMID: 37990871 DOI: 10.1039/d3cc04826h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Recently, production of hydrogen (H2) through the urea oxidation reaction (UOR) and hydrogen evolution reaction (HER) has acquired great attention because it is more environmentally friendly and energy-saving. Herein, an approach of water activation was developed for in situ growth of NiMo LDH nanosheet arrays on NiMo foam without using any binder or pressurizing or heating steps. The obtained NiMo foam electrodes showed exceptional catalytic activity and durability for both the UOR and HER. This work offers a new standpoint on designing electrodes with high activation for efficient and sustainable hydrogen production coupled with urea organic oxidation.
Collapse
Affiliation(s)
- Haoxuan Wang
- Institute of Environmental Health & Green Chemistry, School of Public Health, Nantong University, Jiangsu 226019, China.
| | - Kang Xiong
- Institute of Environmental Health & Green Chemistry, School of Public Health, Nantong University, Jiangsu 226019, China.
| | - Lihua Gao
- Institute of Environmental Health & Green Chemistry, School of Public Health, Nantong University, Jiangsu 226019, China.
| | - Min Xue
- Institute of Environmental Health & Green Chemistry, School of Public Health, Nantong University, Jiangsu 226019, China.
| | - Zhongqin Pan
- Institute of Environmental Health & Green Chemistry, School of Public Health, Nantong University, Jiangsu 226019, China.
| | - Xiao-Lei Huo
- Institute of Environmental Health & Green Chemistry, School of Public Health, Nantong University, Jiangsu 226019, China.
| | - Qingwen Zhou
- Institute of Environmental Health & Green Chemistry, School of Public Health, Nantong University, Jiangsu 226019, China.
| |
Collapse
|
6
|
Yan X, Xiang L, Zhang WD, Xu H, Yao Y, Liu J, Gu ZG. Metal organic framework-assisted in-situ synthesis of β-NiMnOOH nanosheets with abundant NiOOH active sites for efficient electro-oxidation of urea. J Colloid Interface Sci 2023; 629:370-378. [PMID: 36162394 DOI: 10.1016/j.jcis.2022.08.155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 11/18/2022]
Abstract
NiOOH has been considered as the active center for urea oxidation reaction (UOR), but it remains challenging to synthesize high-performance NiOOH-based catalysts. Herein, we realize the synthesis of a high-performance NiOOH-based catalyst through in-situ transformation from the NiMn-based metal-organic framework to NiMnOOH. X-ray photoelectron spectroscopy characterization shows that the Ni3+/Ni2+ ratio in the NiMnOOH is 3.9 times as big as that in the Ni(OH)2, and in-situ Raman characterization further consolidates the presence of the NiOOH species in the NiMnOOH and as well unveils the faciliated Ni2+/Ni3+ redox reaction. The abundant NiOOH species, the markedly facilitated Ni2+/Ni3+ redox reaction and the Ni-Mn synergy contribute to the high intrinsic activity of the NiMnOOH towards UOR. The NiMnOOH exhibits an impressively low onset potential of 1.305 V vs reversible hydrogen electrode (RHE) and requires only a small potential of 1.34 V vs RHE to deliver a current density of 100 mA cm-2 in 1.0 M KOH + 0.33 M urea. In addition, the NiMnOOH catalyst possesses good long-term working stability.
Collapse
Affiliation(s)
- Xiaodong Yan
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China.
| | - Li Xiang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Wen-Da Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Hanwen Xu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Yang Yao
- Department of Health Sciences and Technology, ETH Zürich, Zürich 8092, Switzerland
| | - Jiangyong Liu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Zhi-Guo Gu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
7
|
Al-Naggar AH, Shinde NM, Kim JS, Mane RS. Water splitting performance of metal and non-metal-doped transition metal oxide electrocatalysts. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Systematic development of bimetallic MOF and its phosphide derivative as an efficient multifunctional electrocatalyst for urea-assisted water splitting in alkaline medium. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
9
|
Bandal HA, Kim H. In situ construction of Fe 3O 4@FeOOH for efficient electrocatalytic urea oxidation. J Colloid Interface Sci 2022; 627:1030-1038. [PMID: 35907328 DOI: 10.1016/j.jcis.2022.07.104] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/15/2022] [Accepted: 07/18/2022] [Indexed: 11/24/2022]
Abstract
Substituting water oxidation half of water splitting with anodic oxidation of urea can reduce the cost of H2 production and provide an avenue for treating urea-rich wastewater. However, developing an efficient and stable electrocatalyst is necessary to overcome the indolent kinetics of the urea oxidation reaction (UOR). Accordingly, we have used the Schikorr reaction to deposit Fe3O4 particles on the nickel foam (Fe3O4/NF). Results from the various analysis indicated that under the operational conditions, Fe3O4 underwent surface reconstruction to produce a heterolayered structure wherein a catalytically active FeOOH layer encased a conducting Fe3O4. Fe3O4/NF outperformed RuO2 as a UOR catalyst and delivered a current density of 10 50 and 100 mA cm-2 at low applied potentials of 1.38 1.42 and 1.46 V, respectively, with a Tafel slope of 28 mV dec-1. At the applied potential of 1.4 V, Fe3O4/NF demonstrated a turnover frequency (TOF) of 2.8 × 10-3 s-1, highlighting its superior intrinsic activity. In addition, a symmetrical urea electrolyzer constructed using Fe3O4/NF produced the current density of 10 mA cm-2 at a cell voltage of 1.54 V.
Collapse
Affiliation(s)
- Harshad A Bandal
- Department of Energy Science and Technology, Environmental Waste Recycle Institute, Myongji University, Yongin, Gyeonggi-do 17058, Republic of Korea
| | - Hern Kim
- Department of Energy Science and Technology, Environmental Waste Recycle Institute, Myongji University, Yongin, Gyeonggi-do 17058, Republic of Korea.
| |
Collapse
|
10
|
Gou W, Chen Y, Zhong Y, Xue Q, Li J, Ma Y. Phytate-coordinated nickel foam with enriched NiOOH intermediates for 5-hydroxymethylfurfural electrooxidation. Chem Commun (Camb) 2022; 58:7626-7629. [PMID: 35712852 DOI: 10.1039/d2cc02182j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Manipulating the surface reconstruction of Ni-based catalysts to form NiOOH intermediates is crucial for electrooxidation. Herein, we report a phytate coordination-induced enrichment of NiOOH on phytate-coordinated Ni foam, which exhibited high catalytic performance for 5-hydroxymethylfurfural electro-oxidation. The HMF oxidation rate of 0.76 mmol h-1 outperformed the majority of Ni-based catalysts.
Collapse
Affiliation(s)
- Wangyan Gou
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China.
| | - Yimin Chen
- Institute for Frontier Materials, Deakin University, Geelong, 3216, Australia
| | - Yifei Zhong
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Qingyu Xue
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China.
| | - Jiayuan Li
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China.
| | - Yuanyuan Ma
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China.
| |
Collapse
|
11
|
Hollow carbon spheres loaded with NiSe 2 nanoplates as multifunctional SeS 2 hosts for Li-SeS 2 batteries. J Colloid Interface Sci 2022; 608:2760-2767. [PMID: 34785051 DOI: 10.1016/j.jcis.2021.11.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/31/2021] [Accepted: 11/01/2021] [Indexed: 12/17/2022]
Abstract
Selenium sulfide as a new alternative cathode material can effectively address the inferior electronic conductivity of sulfur, which is the main cause for poor electrochemical reactivity of conventional lithium-sulfur batteries (Li-S batteries). Therefore, in this work, hollow carbon spheres loaded with NiSe2 nanoplates were prepared as SeS2 hosts for Li-SeS2 batteries. The unique micro-mesoporous hollow carbon spheres not only provide channels for the diffusion of SeS2, but also afford spaces for alleviating the volume expansion of the active substance. Besides, the external polar NiSe2 nanoplates increase active sites for capturing polysulfides or polyselenides during the charge/discharge process. Meanwhile, the excellent electronic conductivity of NiSe2 can accelerate the catalytic reaction on the surface, thus reducing the loss of soluble intermediate products and finally suppressing the "shuttle effect". These extraordinary features of the as-proposed cathode offer many superiorities in electrochemical performances in terms of a high initial discharge capacity of 1139 mA h g-1 at a current rate of 0.1C and an excellent cycling life of up to 1000 cycles at 1C.
Collapse
|
12
|
Fang C, Zhang D, Wang X, Li R. In Situ Growth of S-Incorporated CoNiFe(oxy)hydroxides Nanoarrays as Efficient Multifunctional Electrocatalysts. Inorg Chem Front 2022. [DOI: 10.1039/d2qi00583b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ni-, Co-based (oxy)hydroxides have received considerable attention as promising electrocatalysts for oxygen evolution reaction (OER), urea oxidation reaction (UOR), and even overall urea/water splitting. Constructing catalysts with special morphological and...
Collapse
|
13
|
Hao P, Xu R, Wang Q, Zhao Z, Wen H, Xie J, Lei F, Cui G, Tang B. Cobalt, iron co-incorporated Ni(OH) 2 multiphase for superior multifunctional electrocatalytic oxidation. Chem Commun (Camb) 2021; 57:13752-13755. [PMID: 34854438 DOI: 10.1039/d1cc05752a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The cobalt, iron co-incorporated Ni(OH)2 multiphase displays superior catalytic activity and stability for multifunctional electrocatalytic oxidation, ascribed to the multiphase synergy, enhanced charge transfer and well-exposed active sites.
Collapse
Affiliation(s)
- Pin Hao
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, P. R. China.
| | - Ruirui Xu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, P. R. China.
| | - Qian Wang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, P. R. China.
| | - Zhenhuan Zhao
- Department of Applied Chemistry, School of Advanced Materials and Nanotechnology, Xidian University, Xi'an, Shaanxi, 710126, P. R. China
| | - Houguang Wen
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, P. R. China.
| | - Junfeng Xie
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, P. R. China.
| | - Fengcai Lei
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, P. R. China.
| | - Guanwei Cui
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, P. R. China.
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, P. R. China.
| |
Collapse
|
14
|
Lv B, Feng X, Xi X, Feng X, Yuan Z, Yang Y, Zhang F. Noble-metal-free Cd 0.3Zn 0.7S-Ni(OH) 2 for high efficiency visible light photocatalytic hydrogen production. J Colloid Interface Sci 2021; 601:177-185. [PMID: 34082227 DOI: 10.1016/j.jcis.2021.05.130] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/21/2021] [Accepted: 05/21/2021] [Indexed: 02/07/2023]
Abstract
Heterogeneously structured materials with supported precious metals, such as Pd, Pt, and Ru, as co-catalysts are important catalysts for efficient photocatalytic water splitting. However, the high costs and low reserves of precious metals have been an obstacle to their application in hydrogen production. In this work, the noble-metal-free Cd0.3Zn0.7S solid solution was designed and synthesized with an optimized molar ratio of Cd/Zn for the best visible light photocatalytic performance. In addition, a heterojunction hybrid material formed between the Cd0.3Zn0.7S and Ni(OH)2 nanosheet was engineered to improve the utilization of light and to inhibit the recombination of holes and electrons. Ni(OH)2 nanosheets assisted the transfer of the photoexcited electrons to participate in the reduction reactions which is critical for efficient and rapid catalytic hydrogen production. The photoelectrochemical property of the hybrid material was investigated with UV-vis absorption, photoluminance (PL) and electrochemical impedance spectroscopy measurements. The mechanism of the high-efficiency and low-cost photocatalytic hydrogen production was established by analyzing the hydrogen evolution kinetics. With the success of replacing precious metal with nickel-based surface heterostructure, this work is expected to provide a new type of photocatalyst for the application of photocatalytic hydrogen production.
Collapse
Affiliation(s)
- Bo Lv
- Powder Metallurgy Research Institute, Central South University, Changsha 410083, China
| | - Xuefan Feng
- Powder Metallurgy Research Institute, Central South University, Changsha 410083, China
| | - Xiaoping Xi
- Changsha Research Institute of Mining and Metallurgy Co. Ltd, Changsha 410083, China
| | - Xinyan Feng
- Powder Metallurgy Research Institute, Central South University, Changsha 410083, China
| | - Zhenyu Yuan
- Powder Metallurgy Research Institute, Central South University, Changsha 410083, China
| | - Yu Yang
- Powder Metallurgy Research Institute, Central South University, Changsha 410083, China
| | - Fuqin Zhang
- Powder Metallurgy Research Institute, Central South University, Changsha 410083, China.
| |
Collapse
|