1
|
Arima H, Hiraide S, Nagano H, Abylgazina L, Senkovska I, Auernhammer GK, Fery A, Kaskel S, Watanabe S. Atomic Force Microscopy Strategies for Capturing Guest-Induced Structural Transitions in Single Flexible Metal-Organic Framework Particles. J Am Chem Soc 2025; 147:14491-14503. [PMID: 40207861 DOI: 10.1021/jacs.5c01377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
Flexible metal-organic frameworks (MOFs) exhibit stepped adsorption isotherms due to structural transitions between narrow-pore (np) and large-pore (lp) states. This characteristic stepwise uptake at a certain pressure results in adsorptive high working capacities, making these materials highly effective for energy-efficient gas storage and separation processes. The transition pressure, which is key to enhancing separation efficiency, can be tuned by varying the particle size of flexible MOFs. However, a comprehensive understanding of size-dependent effects has been limited due to particle size distribution in samples. Conventional adsorption measurements provide only averaged isotherms for powder samples, and analyzing the size effect at the single-particle level requires experimental techniques that can capture transition behavior of individual particles separately. This study utilized atomic force microscopy coupled with thermodynamic analysis to investigate guest-induced structural transitions. Force application to a MOF particle triggered a structural change from the lp to np state, generating force profiles that were analyzed to uncover the underlying transition mechanisms and calculate transition pressures using free energy analysis. The evaluation revealed distinct transition mechanisms for two flexible MOFs: ELM-12 exhibited a step-by-step mechanism, while DUT-8(Ni) displayed an all-at-once transition. Force profile analysis enabled precise determination of the free energy changes and transition pressures for individual particles. This approach provided detailed insights into the transition mechanisms and their impact on overall adsorption isotherms, offering a novel perspective on how single-particle behavior influences bulk material performance.
Collapse
Affiliation(s)
- Homare Arima
- Department of Chemical Engineering, Kyoto University, Nishikyo, Kyoto 615-8510, Japan
| | - Shotaro Hiraide
- Department of Chemical Engineering, Kyoto University, Nishikyo, Kyoto 615-8510, Japan
- Institute for Aqua Regeneration, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553, Japan
| | - Hiroyuki Nagano
- Department of Chemical Engineering, Kyoto University, Nishikyo, Kyoto 615-8510, Japan
| | - Leila Abylgazina
- Inorganic Chemistry I, Technische Universität Dresden, Bergstrasse 66, Dresden 01069, Germany
| | - Irena Senkovska
- Inorganic Chemistry I, Technische Universität Dresden, Bergstrasse 66, Dresden 01069, Germany
| | - Günter K Auernhammer
- Division of Physical Chemistry and Polymer Physics, Leibniz Institut für Polymerforschung Dresden, Hohe Str. 6, Dresden 01069, Germany
| | - Andreas Fery
- Division of Physical Chemistry and Polymer Physics, Leibniz Institut für Polymerforschung Dresden, Hohe Str. 6, Dresden 01069, Germany
- Physical Chemistry of Polymeric Materials, Technische Universität Dresden, Bergstrasse 66, Dresden 01062, Germany
| | - Stefan Kaskel
- Inorganic Chemistry I, Technische Universität Dresden, Bergstrasse 66, Dresden 01069, Germany
| | - Satoshi Watanabe
- Department of Chemical Engineering, Kyoto University, Nishikyo, Kyoto 615-8510, Japan
| |
Collapse
|
2
|
Mezenov YA, Bachinin SV, Kenzhebayeva YA, Efimova AS, Alekseevskiy PV, Poloneeva D, Lubimova A, Povarov SA, Shirobokov V, Dunaevskiy MS, Falchevskaya AS, Potapov AS, Novikov A, Selyutin AA, Boulet P, Kulakova AN, Milichko VA. Transformation of 3D Metal-Organic Frameworks into Nanosheets with Enhanced Memristive Behavior for Electronic Data Processing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2405989. [PMID: 40025848 PMCID: PMC12021068 DOI: 10.1002/advs.202405989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 11/16/2024] [Indexed: 03/04/2025]
Abstract
The transition from three-dimensional (3D) to two-dimensional (2D) semiconducting and insulating materials for micro- and opto-electronics is driven by an energy efficiency and device miniaturization. Herein, the simplicity of growth and stacking of 2D metal-organic framework (MOF) with such planar devices opens up new perspectives in controlling their efficiency and operating parameters. Here, the study reports on 3D to 2D MOF' structural transformation to achieve ultrathin nanosheets with enhanced insulating properties. Based on neutral N-donor ligands, the study designs and solvothermally synthesizes 3D MOFs followed by their thermal and solvent treatment to implement the transformation. A set of single crystal and powder X-ray diffraction, electron microscopy, Raman spectroscopy, numerical modeling, and mechanical exfoliation confirm the nature of the transformation. Compared with initial 3D MOF, its nanosheets demonstrate sufficient changes in electronic properties, expressed as tuning their absorption, photoluminescence, and resistivity. The latter allows to demonstrate the prototype of ultrathin memristive element based on a 4 to 32 nm MOF nanosheet with enhanced functionality (150 to 1400 ON/OFF ratio, retention time exceeding 7300 s, and 100 cycles of switching), thereby, extending the list of scalable and insulating 2D MOFs for micro- and opto-electronics.
Collapse
Affiliation(s)
- Yuri A. Mezenov
- Qingdao Innovation and Development CenterHarbin Engineering UniversityQingdaoShandong266000China
| | - Semyon V. Bachinin
- School of Physics and EngineeringITMO UniversitySt. Petersburg197101Russia
| | | | | | | | - Daria Poloneeva
- Advanced Catalytic Materials (ACM)KAUST Catalysis Center (KCC)Division of Physical Sciences and EngineeringKing Abdullah University of Science and TechnologyThuwal23955Saudi Arabia
| | - Anastasia Lubimova
- School of Physics and EngineeringITMO UniversitySt. Petersburg197101Russia
| | | | | | | | - Aleksandra S. Falchevskaya
- ITMO University“Solution Chemistry of Advanced Materials and Technologies” (SCAMT) International InstituteSaint Petersburg191002Russia
| | - Andrei S. Potapov
- Nikolaev Institute of Inorganic Chemistry Siberian Branch of the Russian Academy of SciencesLaboratory of Metal‐Organic Coordination PolymersNovosibirsk630090Russia
| | - Alexander Novikov
- Saint Petersburg State UniversitySaint Petersburg199034Russia
- Рeoples’ Friendship University of RussiaMoscow117198Russia
| | | | - Pascal Boulet
- Institut Jean LamourUniversit de LorraineUMR CNRS 7198Nancy54011France
| | - Alena N. Kulakova
- School of Physics and EngineeringITMO UniversitySt. Petersburg197101Russia
| | - Valentin A. Milichko
- School of Physics and EngineeringITMO UniversitySt. Petersburg197101Russia
- Institut Jean LamourUniversit de LorraineUMR CNRS 7198Nancy54011France
| |
Collapse
|
3
|
Koupepidou K, Subanbekova A, Zaworotko MJ. Functional flexible adsorbents and their potential utility. Chem Commun (Camb) 2025; 61:3109-3126. [PMID: 39851002 PMCID: PMC11841667 DOI: 10.1039/d4cc05393a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 01/09/2025] [Indexed: 01/25/2025]
Abstract
Physisorbents are poised to address global challenges such as CO2 capture, mitigation of water scarcity and energy-efficient commodity gas storage and separation. Rigid physisorbents, i.e. those adsorbents that retain their structures upon gas or vapour exposure, are well studied in this context. Conversely, cooperatively flexible physisorbents undergo long-range structural transformations stimulated by guest exposure. Discovered serendipitously, flexible adsorbents have generally been regarded as scientific curiosities, which has contributed to misconceptions about their potential utility. Recently, increased scientific interest and insight into the properties of flexible adsorbents has afforded materials whose performance suggests that flexible adsorbents can compete with rigid adsorbents for both storage and separation applications. With respect to gas storage, adsorbents that undergo guest-induced phase transformations between low and high porosity phases in the right pressure range can offer improved working capacity and heat management, as exemplified by studies on adsorbed natural gas storage. For gas and vapour separations, the very nature of flexible adsorbents means that they can undergo induced fit mechanisms of guest binding, i.e. the adsorbent can adapt to a specific adsorbate. Such flexible adsorbents have set several new benchmarks for certain hydrocarbon separations in terms of selectivity and separation performance. This Feature Article reviews progress made by us and others towards the crystal engineering (design and control) of flexible adsorbents and addresses several of the myths that have emerged since their initial discovery, particularly with respect to those performance parameters of relevance to natural gas storage, water harvesting and hydrocarbon gas/vapour separation.
Collapse
Affiliation(s)
- Kyriaki Koupepidou
- Bernal Institute, Department of Chemical Sciences, University of Limerick, Limerick V94T9PX, Republic of Ireland.
| | - Aizhamal Subanbekova
- Bernal Institute, Department of Chemical Sciences, University of Limerick, Limerick V94T9PX, Republic of Ireland.
| | - Michael J Zaworotko
- Bernal Institute, Department of Chemical Sciences, University of Limerick, Limerick V94T9PX, Republic of Ireland.
| |
Collapse
|
4
|
Krause S, Evans JD, Bon V, Senkovska I, Coudert FX, Maurin G, Brunner E, Llewellyn PL, Kaskel S. Negative gas adsorption transitions and pressure amplification phenomena in porous frameworks. Chem Soc Rev 2025; 54:1251-1267. [PMID: 39866063 PMCID: PMC11770586 DOI: 10.1039/d4cs00555d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Indexed: 01/28/2025]
Abstract
Nanoporous solids offer a wide range of functionalities for industrial, environmental, and energy applications. However, only a limited number of porous materials are responsive, i.e. the nanopore dynamically alters its size and shape in response to external stimuli such as temperature, pressure, light or the presence of specific molecular stimuli adsorbed inside the voids deforming the framework. Adsorption-induced structural deformation of porous solids can result in unique counterintuitive phenomena. Negative gas adsorption (NGA) is such a phenomenon which describes the spontaneous release of gas from an "overloaded" nanoporous solid via adsorption-induced structural contraction leading to total pressure amplification (PA) in a closed system. Such pressure amplifying materials may open new avenues for pneumatic system engineering, robotics, damping, or micromechanical actuators. In this review we illustrate the discovery of NGA in DUT-49, a mesoporous metal-organic framework (MOF), and the subsequent examination of conditions for its observation leading to a rationalization of the phenomenon. We outline the development of decisive experimental and theoretical methods required to establish the mechanism of NGA and derive key criteria for observing NGA in other porous solids. We demonstrate the application of these design principles in a series of DUT-49-related model compounds of which several also exhibit NGA. Furthermore, we provide an outlook towards applying NGA as a pressure amplification material and discuss possibilities to discover novel NGA materials and other counterintuitive adsorption phenomena in porous solids in the future.
Collapse
Affiliation(s)
- Simon Krause
- Nanochemistry Department, Max-Planck-Institute for Solid State Research, 70569 Stuttgart, Germany.
| | - Jack D Evans
- School of Physics, Chemistry and Earth Sciences, The University of Adelaide, South Australia 5000, Australia
| | - Volodymyr Bon
- Faculty of Chemistry and Food Chemistry, TU Dresden, Bergstrasse 66, 01062 Dresden, Germany.
| | - Irena Senkovska
- Faculty of Chemistry and Food Chemistry, TU Dresden, Bergstrasse 66, 01062 Dresden, Germany.
| | - François-Xavier Coudert
- Chimie ParisTech, PSL Research University, CNRS, Institut de Recherche de Chimie Paris, 75005 Paris, France
| | - Gulliaume Maurin
- Institut Charles Gerhardt Montpellier UMR 5253 Univ. Montpellier CNRS UM ENSCM, Université de Montpellier, Place Eugène Bataillon, 34095 Montpellier cedex 05, France
- Institut Universitaire de France (IUF), France
| | - Eike Brunner
- Faculty of Chemistry and Food Chemistry, TU Dresden, Bergstrasse 66, 01062 Dresden, Germany.
| | | | - Stefan Kaskel
- Faculty of Chemistry and Food Chemistry, TU Dresden, Bergstrasse 66, 01062 Dresden, Germany.
| |
Collapse
|
5
|
Senkovska I, Bon V, Mosberger A, Wang Y, Kaskel S. Adsorption and Separation by Flexible MOFs. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2414724. [PMID: 39871766 DOI: 10.1002/adma.202414724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/28/2024] [Indexed: 01/29/2025]
Abstract
Flexible metal-organic frameworks (MOFs) offer unique opportunities due to their dynamic structural adaptability. This review explores the impact of flexibility on gas adsorption, highlighting key concepts for gas storage and separation. Specific examples demonstrate the principal effectiveness of flexible frameworks in enhancing gas uptake and working capacity. Additionally, mixed gas adsorption and separation of mixtures are reviewed, showcasing their potential in selective gas separation. The review also discusses the critical role of the single gas isotherms analysis and adsorption conditions in designing separation experiments. Advanced combined characterization techniques are crucial for understanding the behavior of flexible MOFs, including monitoring of phase transitions, framework-guest and guest-guest interactions. Key challenges in the practical application of flexible adsorbents are addressed, such as the kinetics of switching, volume change, and potential crystal damage during phase transitions. Furthermore, the effects of additives and shaping on flexibility and the "slipping off effect" are discussed. Finally, the benefits of phase transitions beyond improved working capacity and selectivity are outlined, with a particular focus on the advantages of intrinsic thermal management. This review highlights the potential and challenges of using flexible MOFs in gas storage and separation technologies, offering insights for future research and application.
Collapse
Affiliation(s)
- Irena Senkovska
- Chair of Inorganic Chemistry I, Technische Universität Dresden, Bergstrasse 66, 01069, Dresden, Germany
| | - Volodymyr Bon
- Chair of Inorganic Chemistry I, Technische Universität Dresden, Bergstrasse 66, 01069, Dresden, Germany
| | - Antonia Mosberger
- Chair of Inorganic Chemistry I, Technische Universität Dresden, Bergstrasse 66, 01069, Dresden, Germany
| | - Yutong Wang
- Chair of Inorganic Chemistry I, Technische Universität Dresden, Bergstrasse 66, 01069, Dresden, Germany
| | - Stefan Kaskel
- Chair of Inorganic Chemistry I, Technische Universität Dresden, Bergstrasse 66, 01069, Dresden, Germany
| |
Collapse
|
6
|
Watanabe S, Hiraide S, Arima H, Fukuta A, Mori M, Tanaka H, Miyahara MT. Size-dependent guest-memory switching of the flexible and robust adsorption characteristics of layered metal-organic frameworks. SCIENCE ADVANCES 2024; 10:eadr1387. [PMID: 39642228 PMCID: PMC11623303 DOI: 10.1126/sciadv.adr1387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 11/01/2024] [Indexed: 12/08/2024]
Abstract
Flexible-robust metal-organic frameworks (MOFs), which exhibit unique hybrid nature comprising both flexible and rigid framework characteristics, exhibit high potential for hydrocarbon separations. However, no clear guidelines have been established to regulate their hybrid characteristics owing to limited understanding of their adsorption mechanism. This study investigates the effects of the particle size of a flexible-robust MOF on its adsorption and structural transition behaviors. The robust nature originates from the structural transition of a metastable guest-free structure, while its flexible nature arises from another guest-free structure. The type of guest-free structure is predominantly determined by the particle size; particles below the critical size are trapped in the metastable guest-free structure. Notably, the critical size varies with the type of guest molecule to be removed; consequently, the difference in critical size results in guest-memory characteristics, enabling guest-free structure switching. These results underscore the importance of controlling the particle size to fine-tune hybrid adsorption characteristics of flexible-robust MOFs.
Collapse
Affiliation(s)
- Satoshi Watanabe
- Department of Chemical Engineering, Kyoto University, Katsura, Nishikyo, Kyoto 615-8510, Japan
| | - Shotaro Hiraide
- Department of Chemical Engineering, Kyoto University, Katsura, Nishikyo, Kyoto 615-8510, Japan
| | - Homare Arima
- Department of Chemical Engineering, Kyoto University, Katsura, Nishikyo, Kyoto 615-8510, Japan
| | - Akiko Fukuta
- Department of Chemical Engineering, Kyoto University, Katsura, Nishikyo, Kyoto 615-8510, Japan
| | - Miyuki Mori
- Department of Chemical Engineering, Kyoto University, Katsura, Nishikyo, Kyoto 615-8510, Japan
| | - Hideki Tanaka
- Institute for Aqua Regeneration (ARG), Shinshu University, 4-17-1 Wakasato, Nagano 380-8553, Japan
| | - Minoru T. Miyahara
- Department of Chemical Engineering, Kyoto University, Katsura, Nishikyo, Kyoto 615-8510, Japan
| |
Collapse
|
7
|
Asselin P, Harvey PD. Thoughts on the Rational Design of MOF-Guest Interactions for Future Intelligent Materials. SMALL METHODS 2024; 8:e2400584. [PMID: 39428953 DOI: 10.1002/smtd.202400584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 10/02/2024] [Indexed: 10/22/2024]
Abstract
The MOF-guest relationship is broken down in elementary phases, descriptors, and parameters. These descriptors and parameters allow precise descriptions of processes, whether they occur at the point when the guest enters the MOF, during the stay, or at the point of exiting. Description of these three phases is possible according to the location of the guest inside the MOF, the activity between MOF and guest, whether stimuli can be used, and whether a selective action can be exercised. The vocabulary provided herein can be useful to better formulate requirements when designing host-guest interactions in, and building new classes of, intelligent materials.
Collapse
Affiliation(s)
- Paul Asselin
- Département de Chimie, Université de Sherbrooke, 2500 Boul. de l'Université, Sherbrooke, QC, J1K 2R1, Canada
| | - Pierre D Harvey
- Département de Chimie, Université de Sherbrooke, 2500 Boul. de l'Université, Sherbrooke, QC, J1K 2R1, Canada
| |
Collapse
|
8
|
Abylgazina L, Senkovska I, Bon V, Bönisch N, Maliuta M, Kaskel S. Guest-selective shape-memory effect in a switchable metal-organic framework DUT-8(Zn). Chem Commun (Camb) 2024; 60:7745-7748. [PMID: 38973568 DOI: 10.1039/d4cc01657b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
Crystal size engineering allows tailoring of flexible metal-organic frameworks (MOFs) to achieve new properties. The gating type flexibility of the DUT-8(Zn) ([Zn2(2,6-ndc)2(dabco)]n, 2,6-ndc = 2,6-naphthalene dicarboxylate, dabco = 1,4-diazabicyclo-[2.2.2]-octane) compound is known to be extremely particle size sensitive. Here, the physisorption of ethanol vapor gives rise to so-called shape-memory effect, leading to rigidification and flexibility suppression. According to powder X-ray diffraction and nitrogen physisorption experiments, the open pore phase is retained selectively after desorption of alcohols, which could be attributed to the nano-structuring and surface deformation of the crystals as a result of exposure to alcohols.
Collapse
Affiliation(s)
- Leila Abylgazina
- Chair of Inorganic Chemistry I, Technische Universität Dresden, Bergstrasse 66, 01069 Dresden, Germany.
| | - Irena Senkovska
- Chair of Inorganic Chemistry I, Technische Universität Dresden, Bergstrasse 66, 01069 Dresden, Germany.
| | - Volodymyr Bon
- Chair of Inorganic Chemistry I, Technische Universität Dresden, Bergstrasse 66, 01069 Dresden, Germany.
| | - Nadine Bönisch
- Chair of Inorganic Chemistry I, Technische Universität Dresden, Bergstrasse 66, 01069 Dresden, Germany.
| | - Mariia Maliuta
- Chair of Inorganic Chemistry I, Technische Universität Dresden, Bergstrasse 66, 01069 Dresden, Germany.
| | - Stefan Kaskel
- Chair of Inorganic Chemistry I, Technische Universität Dresden, Bergstrasse 66, 01069 Dresden, Germany.
| |
Collapse
|
9
|
Abylgazina L, Senkovska I, Engemann R, Bönisch N, Gorelik TE, Bachetzky C, Kaiser U, Brunner E, Kaskel S. Chemoselectivity Inversion of Responsive Metal-Organic Frameworks by Particle Size Tuning in the Micrometer Regime. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307285. [PMID: 38225688 DOI: 10.1002/smll.202307285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/30/2023] [Indexed: 01/17/2024]
Abstract
Gated adsorption is one of the unique physical properties of flexible metal-organic frameworks with high application potential in selective adsorption and sensing of molecules. Despite recent studies that have provided some guidelines in understanding and designing structural flexibility for controlling gate opening by chemical modification of the secondary building units, currently, there is no established strategy to design a flexible MOF showing selective gated adsorption for a specific guest molecule. In a present contribution it is demonstrated for the first time, that the selectivity in the gate opening of a particular compound can be tuned, changed, and even reversed using particle size engineering DUT-8(Zn) ([Zn2(2,6-ndc)2(dabco)]n, 2,6-ndc = 2,6-naphthalenedicarboxylate, dabco = 1,4-diazabicyclo-[2.2.2]-octane, DUT = Dresden University of Technology) experiences phase transition from open (op) to closed (cp) pore phase upon removal of solvent from the pores. Microcrystals show selective reopening in the presence of dichloromethane (DCM) over alcohols. Crystal downsizing to micron size unexpectedly reverses the gate opening selectivity, causing DUT-8(Zn) to open its nanosized pores for alcohols but suppressing the responsivity toward DCM.
Collapse
Affiliation(s)
- Leila Abylgazina
- Technische Universität Dresden, Bergstr. 66, 01069, Dresden, Germany
| | - Irena Senkovska
- Technische Universität Dresden, Bergstr. 66, 01069, Dresden, Germany
| | - Richard Engemann
- Technische Universität Dresden, Bergstr. 66, 01069, Dresden, Germany
| | - Nadine Bönisch
- Technische Universität Dresden, Bergstr. 66, 01069, Dresden, Germany
| | - Tatiana E Gorelik
- Electron Microscopy Group of Materials Science (EMMS), Central Facility for Electron Microscopy, Universität Ulm, Oberberghof 3/1, 89081, Ulm, Germany
- Department Structure and Function of Proteins, Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124, Braunschweig, Germany
- Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Centre for Infection Research, Department of Pharmacy, Saarland University, Universitätscampus E8 1, 66123, Saarbrücken, Germany
| | | | - Ute Kaiser
- Electron Microscopy Group of Materials Science (EMMS), Central Facility for Electron Microscopy, Universität Ulm, Oberberghof 3/1, 89081, Ulm, Germany
| | - Eike Brunner
- Technische Universität Dresden, Bergstr. 66, 01069, Dresden, Germany
| | - Stefan Kaskel
- Technische Universität Dresden, Bergstr. 66, 01069, Dresden, Germany
| |
Collapse
|
10
|
Fernández-Seriñán P, Roztocki K, Safarifard V, Guillerm V, Rodríguez-Hermida S, Juanhuix J, Imaz I, Morsali A, Maspoch D. Modulation of the Dynamics of a Two-Dimensional Interweaving Metal-Organic Framework through Induced Hydrogen Bonding. Inorg Chem 2024; 63:5552-5558. [PMID: 38484385 DOI: 10.1021/acs.inorgchem.3c04522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
Inducing, understanding, and controlling the flexibility in metal-organic frameworks (MOFs) are of utmost interest due to the potential applications of dynamic materials in gas-related technologies. Herein, we report the synthesis of two isostructural two-dimensional (2D) interweaving zinc(II) MOFs, TMU-27 [Zn(bpipa)(bdc)] and TMU-27-NH2 [Zn(bpipa)(NH2-bdc)], based on N,N'-bis-4-pyridyl-isophthalamide (bpipa) and 1,4-benzenedicarboxylate (bdc) or 2-amino-1,4-benzenedicarboxylate (NH2-bdc), respectively. These frameworks differ only by the substitution at the meta-position of their respective bdc groups: an H atom in TMU-27 vs an NH2 group in TMU-27-NH2. This difference strongly influences their respective responses to external stimuli, since we observed that the structure of TMU-27 changed due to desolvation and adsorption, whereas TMU-27-NH2 remained rigid. Using single-crystal X-ray diffraction and CO2-sorption measurements, we discovered that upon CO2 sorption, TMU-27 undergoes a transition from a closed-pore phase to an open-pore phase. In contrast, we attributed the rigidification in TMU-27-NH2 to intermolecular hydrogen bonding between interweaving layers, namely, between the H atoms from the bdc-amino groups and the O atoms from the bpipa-amide groups within these layers. Additionally, by using scanning electron microscopy to monitor the CO2 adsorption and desorption in TMU-27, we were able to establish a correlation between the crystal size of this MOF and its transformation pressure.
Collapse
Affiliation(s)
- Pilar Fernández-Seriñán
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, Barcelona 08193, Spain
- Chemistry Department of Autonomous, University of Barcelona (UAB), Campus UAB, Bellaterra, Barcelona 08193, Spain
| | - Kornel Roztocki
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, Poznań 61-614, Poland
| | - Vahid Safarifard
- Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Vincent Guillerm
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, Barcelona 08193, Spain
| | - Sabina Rodríguez-Hermida
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, Barcelona 08193, Spain
| | - Judith Juanhuix
- ALBA Synchrotron, Cerdanyola del Vallès, Barcelona 08290, Spain
| | - Inhar Imaz
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, Barcelona 08193, Spain
- Chemistry Department of Autonomous, University of Barcelona (UAB), Campus UAB, Bellaterra, Barcelona 08193, Spain
| | - Ali Morsali
- Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, Tehran P.O. Box 14115-175, Iran
| | - Daniel Maspoch
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, Barcelona 08193, Spain
- Chemistry Department of Autonomous, University of Barcelona (UAB), Campus UAB, Bellaterra, Barcelona 08193, Spain
- ICREA, Pg. Lluís Companys 23, Barcelona 08010, Spain
| |
Collapse
|
11
|
Cao JW, Zhang T, Wang Y, Chen KJ. Microporous Coordination Polymers for Efficient Recovery of Chloromethane from Organic Silicon Industrial Exhaust Gas. ACS APPLIED MATERIALS & INTERFACES 2024; 16:10260-10266. [PMID: 38350231 DOI: 10.1021/acsami.3c19118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
Removal and recovery of methyl chloride (CH3Cl) from exhaust gas of organic silicon industry is highly important from the perspective of environment and economy. For the first time, a tailor-made microporous coordination polymer (Mn-BDC-TPA) was synthesized and applied to the efficient capture and recovery of CH3Cl from related gas mixtures. The high adsorption capacity of CH3Cl (163.4 cm3/g) and high adsorption selectivity of CH3Cl over other impurity gases (1965 for N2, 65 for CH4, and 16 for C2H6) were achieved at 298 K and 100 kPa due to the dual-cage pore system and larger polarizability of CH3Cl. Dynamic breakthrough experiments demonstrate the excellent CH3Cl recovery performance (capacity of >98 cm3/g and purity of >95%) in one adsorption-desorption cycle from the CH3Cl-involved binary, ternary, or quaternary gas mixture.
Collapse
Affiliation(s)
- Jian-Wei Cao
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Xi'an Key Laboratory of Functional Organic Porous Materials, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Tao Zhang
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Xi'an Key Laboratory of Functional Organic Porous Materials, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Yu Wang
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Xi'an Key Laboratory of Functional Organic Porous Materials, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Kai-Jie Chen
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Xi'an Key Laboratory of Functional Organic Porous Materials, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| |
Collapse
|
12
|
Agamendran N, Uddin M, Yesupatham MS, Shanmugam M, Augustin A, Kundu T, Kandasamy R, Sasaki K, Sekar K. Nanoarchitectonics Design Strategy of Metal-Organic Framework and Bio-Metal-Organic Framework Composites for Advanced Wastewater Treatment through Adsorption. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 38323568 DOI: 10.1021/acs.langmuir.3c02949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Freshwater depletion is an alarm for finding an eco-friendly solution to treat wastewater for drinking and domestic applications. Though several methods like chlorination, filtration, and coagulation-sedimentation are conventionally employed for water treatment, these methods need to be improved as they are not environmentally friendly, rely on chemicals, and are ineffective for all kinds of pollutants. These problems can be addressed by employing an alternative solution that is effective for efficient water treatment and favors commercial aspects. Metal organic frameworks (MOFs), an emerging porous material, possess high stability, pore size tunability, greater surface area, and active sites. These MOFs can be tailored; thus, they can be customized according to the target pollutant. Hence, MOFs can be employed as adsorbents that effectively target different pollutants. Bio-MOFs are a kind of MOFs that are incorporated with biomolecules, which also possess properties of MOFs and are used as a nontoxic adsorbent. In this review, we elaborate on the interaction between MOFs and target pollutants, the role of linkers in the adsorption of contaminants, tailoring strategy that can be employed on MOFs and Bio-MOFs to target specific pollutants, and we also highlight the effect of environmental matrices on adsorption of pollutants by MOFs.
Collapse
Affiliation(s)
- Nithish Agamendran
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Maseed Uddin
- Industrial and Environmental Sustainability Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Manova Santhosh Yesupatham
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Mariyappan Shanmugam
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Ashil Augustin
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Tanay Kundu
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Ramani Kandasamy
- Industrial and Environmental Sustainability Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Keiko Sasaki
- Department of Earth Resources Engineering, Kyushu University, Fukuoka 819-0395, Japan
| | - Karthikeyan Sekar
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| |
Collapse
|
13
|
Manning JRH, Donval G, Tolladay M, Underwood TL, Parker SC, Düren T. Identifying pathways to metal-organic framework collapse during solvent activation with molecular simulations. JOURNAL OF MATERIALS CHEMISTRY. A 2023; 11:25929-25937. [PMID: 38059071 PMCID: PMC10697055 DOI: 10.1039/d3ta04647h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 11/09/2023] [Indexed: 12/08/2023]
Abstract
Metal-organic framework (MOF) materials are a vast family of nanoporous solids with potential applications ranging from drug delivery to environmental remediation. Application of MOFs in these scenarios is hindered, however, by difficulties in MOF 'activation' after initial synthesis - removal of the synthesis solvent from the pores to make the pore space accessible - often leading to framework collapse if improperly performed. While experimental studies have correlated collapse to specific solvent properties and conditions, the mechanism of activation-collapse is currently unknown. Developing this understanding would enable researchers to create better activation protocols for MOFs, accelerating discovery and process intensification. To achieve this goal, we simulated solvent removal using grand-canonical Monte Carlo and free energy perturbation methods. By framing activation as a fluid desorption problem, we investigated activation processes in the isoreticular metal organic framework (IRMOF) family of MOFs for different solvents. We identified two pathways for solvent activation - the solvent either desorbs uniformly from each individual pore or forms coexisting phases during desorption. These mesophases in turn lead to large capillary stresses within the framework, corroborating experimental hypotheses for the cause of activation-collapse. Finally, we found that the activation energy of solvent removal increased with pore size and connectivity due to the increased stability of solvent mesophases, matching experimental findings. Using these simulations, it is possible to screen MOF activation procedures, enabling rapid identification of ideal solvents and conditions and thus enabling faster development of MOFs for practical applications.
Collapse
Affiliation(s)
- Joseph R H Manning
- Centre for Integrated Materials, Processes and Structures, Department of Chemical Engineering, University of Bath UK
- Department of Chemistry, University College London UK
- Department of Chemical Engineering, University of Manchester UK
| | - Gaël Donval
- Centre for Integrated Materials, Processes and Structures, Department of Chemical Engineering, University of Bath UK
| | - Mat Tolladay
- Centre for Integrated Materials, Processes and Structures, Department of Chemical Engineering, University of Bath UK
| | | | | | - Tina Düren
- Centre for Integrated Materials, Processes and Structures, Department of Chemical Engineering, University of Bath UK
| |
Collapse
|
14
|
Koupepidou K, Nikolayenko VI, Sensharma D, Bezrukov AA, Vandichel M, Nikkhah SJ, Castell DC, Oyekan KA, Kumar N, Subanbekova A, Vandenberghe WG, Tan K, Barbour LJ, Zaworotko MJ. One Atom Can Make All the Difference: Gas-Induced Phase Transformations in Bisimidazole-Linked Diamondoid Coordination Networks. J Am Chem Soc 2023; 145:10197-10207. [PMID: 37099724 PMCID: PMC10176468 DOI: 10.1021/jacs.3c01113] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
Coordination networks (CNs) that undergo gas-induced transformation from closed (nonporous) to open (porous) structures are of potential utility in gas storage applications, but their development is hindered by limited control over their switching mechanisms and pressures. In this work, we report two CNs, [Co(bimpy)(bdc)]n (X-dia-4-Co) and [Co(bimbz)(bdc)]n (X-dia-5-Co) (H2bdc = 1,4-benzendicarboxylic acid; bimpy = 2,5-bis(1H-imidazole-1-yl)pyridine; bimbz = 1,4-bis(1H-imidazole-1-yl)benzene), that both undergo transformation from closed to isostructural open phases involving at least a 27% increase in cell volume. Although X-dia-4-Co and X-dia-5-Co only differ from one another by one atom in their N-donor linkers (bimpy = pyridine, and bimbz = benzene), this results in different pore chemistry and switching mechanisms. Specifically, X-dia-4-Co exhibited a gradual phase transformation with a steady increase in the uptake when exposed to CO2, whereas X-dia-5-Co exhibited a sharp step (type F-IV isotherm) at P/P0 ≈ 0.008 or P ≈ 3 bar (195 or 298 K, respectively). Single-crystal X-ray diffraction, in situ powder XRD, in situ IR, and modeling (density functional theory calculations, and canonical Monte Carlo simulations) studies provide insights into the nature of the switching mechanisms and enable attribution of pronounced differences in sorption properties to the changed pore chemistry.
Collapse
Affiliation(s)
- Kyriaki Koupepidou
- Bernal Institute, Department of Chemical Sciences, University of Limerick, Limerick V94 T9PX, Republic of Ireland
| | - Varvara I Nikolayenko
- Bernal Institute, Department of Chemical Sciences, University of Limerick, Limerick V94 T9PX, Republic of Ireland
| | - Debobroto Sensharma
- Bernal Institute, Department of Chemical Sciences, University of Limerick, Limerick V94 T9PX, Republic of Ireland
| | - Andrey A Bezrukov
- Bernal Institute, Department of Chemical Sciences, University of Limerick, Limerick V94 T9PX, Republic of Ireland
| | - Matthias Vandichel
- Bernal Institute, Department of Chemical Sciences, University of Limerick, Limerick V94 T9PX, Republic of Ireland
- Advanced Materials and Bioengineering Research (AMBER) Centre, Dublin D02 R590, Republic of Ireland
| | - Sousa Javan Nikkhah
- Bernal Institute, Department of Chemical Sciences, University of Limerick, Limerick V94 T9PX, Republic of Ireland
| | - Dominic C Castell
- Bernal Institute, Department of Chemical Sciences, University of Limerick, Limerick V94 T9PX, Republic of Ireland
| | - Kolade A Oyekan
- Department of Materials Science and Engineering, University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Naveen Kumar
- Bernal Institute, Department of Chemical Sciences, University of Limerick, Limerick V94 T9PX, Republic of Ireland
| | - Aizhamal Subanbekova
- Bernal Institute, Department of Chemical Sciences, University of Limerick, Limerick V94 T9PX, Republic of Ireland
| | - William G Vandenberghe
- Department of Materials Science and Engineering, University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Kui Tan
- Department of Materials Science and Engineering, University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Leonard J Barbour
- Department of Chemistry and Polymer Science, University of Stellenbosch, Matieland 7602, South Africa
| | - Michael J Zaworotko
- Bernal Institute, Department of Chemical Sciences, University of Limerick, Limerick V94 T9PX, Republic of Ireland
- Advanced Materials and Bioengineering Research (AMBER) Centre, Dublin D02 R590, Republic of Ireland
| |
Collapse
|
15
|
Maliuta M, Senkovska I, Thümmler R, Ehrling S, Becker S, Romaka V, Bon V, Evans JD, Kaskel S. Particle size-dependent flexibility in DUT-8(Cu) pillared layer metal-organic framework. Dalton Trans 2023; 52:2816-2824. [PMID: 36752342 DOI: 10.1039/d3dt00085k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The nature of metal in the isomorphous flexible metal-organic frameworks is often reported to influence flexibility and responsivity. A prominent example of such behaviour is the DUT-8(M) family ([M2(2,6-ndc)2(dabco)]n, 2,6-ndc = 2,6-naphthalene dicarboxylate, dabco = 1,4-diazabicyclo-[2.2.2]-octane), where the isostructural compounds with Ni, Zn, Co, and Cu in the paddle wheel cluster are known. The macro-sized crystals of Ni, Co, and Zn based compounds transform to the closed pore (cp) phase under desolvation and show typical gate opening behaviour upon adsorption. The choice of metal, in this case, allows the adjustment of switching kinetics, selectivity in adsorption, and gate-opening pressures. The submicron-sized crystals of of Ni, Co, and Zn based compounds remain in the open pore (op) phase after desolvation. In this contribution, we demonstrate that the presence of Cu in the paddle wheel leads to fundamentally different flexible behaviour. The DUT-8(Cu) desolvation does not lead to the formation of the cp phase, independent of the particle size regime. However, according to in situ powder diffraction analysis, the desolvated, macro-sized crystals of DUT-8(Cu)_op show breathing upon adsorption of CO2 at 195 K. The submicron-sized particles show rigid, nonresponsive behaviour.
Collapse
Affiliation(s)
- Mariia Maliuta
- Chair of Inorganic Chemistry, Technische Universität Dresden, Bergstraße 66, D-01069 Dresden, Germany.
| | - Irena Senkovska
- Chair of Inorganic Chemistry, Technische Universität Dresden, Bergstraße 66, D-01069 Dresden, Germany.
| | - Ronja Thümmler
- Chair of Inorganic Chemistry, Technische Universität Dresden, Bergstraße 66, D-01069 Dresden, Germany.
| | - Sebastian Ehrling
- Chair of Inorganic Chemistry, Technische Universität Dresden, Bergstraße 66, D-01069 Dresden, Germany.
| | - Sophi Becker
- Chair of Inorganic Chemistry, Technische Universität Dresden, Bergstraße 66, D-01069 Dresden, Germany.
| | - Vitaliy Romaka
- Chair of Inorganic Chemistry, Technische Universität Dresden, Bergstraße 66, D-01069 Dresden, Germany.
| | - Volodymyr Bon
- Chair of Inorganic Chemistry, Technische Universität Dresden, Bergstraße 66, D-01069 Dresden, Germany.
| | - Jack D Evans
- Chair of Inorganic Chemistry, Technische Universität Dresden, Bergstraße 66, D-01069 Dresden, Germany.
| | - Stefan Kaskel
- Chair of Inorganic Chemistry, Technische Universität Dresden, Bergstraße 66, D-01069 Dresden, Germany.
| |
Collapse
|
16
|
Miura H, Bon V, Senkovska I, Ehrling S, Bönisch N, Mäder G, Grünzner S, Khadiev A, Novikov D, Maity K, Richter A, Kaskel S. Spatiotemporal Design of the Metal-Organic Framework DUT-8(M). ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2207741. [PMID: 36349824 DOI: 10.1002/adma.202207741] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/23/2022] [Indexed: 06/16/2023]
Abstract
Switchable metal-organic frameworks (MOFs) change their structure in time and selectively open their pores adsorbing guest molecules, leading to highly selective separation, pressure amplification, sensing, and actuation applications. The 3D engineering of MOFs has reached a high level of maturity, but spatiotemporal evolution opens a new perspective toward engineering materials in the 4th dimension (time) by t-axis design, in essence exploiting the deliberate tuning of activation barriers. This work demonstrates the first example in which an explicit temporal engineering of a switchable MOF (DUT-8, [M1 M2 (2,6-ndc)2 dabco]n , 2,6-ndc = 2,6-naphthalene dicarboxylate, dabco = 1,4diazabicyclo[2.2.2]octane, M1 = Ni, M2 = Co) is presented. The temporal response is deliberately tuned by variations in cobalt content. A spectrum of advanced analytical methods is presented for analyzing the switching kinetics stimulated by vapor adsorption using in situ time-resolved techniques ranging from ensemble adsorption and advanced synchrotron X-ray diffraction experiments to individual crystal analysis. A novel analysis technique based on microscopic observation of individual crystals in a microfluidic channel reveals the lowest limit for adsorption switching reported so far. Differences in the spatiotemporal response of crystal ensembles originate from an induction time that varies statistically and widens characteristically with increasing cobalt content reflecting increasing activation barriers.
Collapse
Affiliation(s)
- Hiroki Miura
- Inorganic Chemistry I, Technische Universität Dresden, Bergstrasse 66, 01062, Dresden, Germany
- Nippon Steel Corporation, 20-1 Shintomi, Futtsu, Chiba, 293-8511, Japan
| | - Volodymyr Bon
- Inorganic Chemistry I, Technische Universität Dresden, Bergstrasse 66, 01062, Dresden, Germany
| | - Irena Senkovska
- Inorganic Chemistry I, Technische Universität Dresden, Bergstrasse 66, 01062, Dresden, Germany
| | - Sebastian Ehrling
- 3P INSTRUMENTS GmbH & Co. KG, Branch office Leipzig, Bitterfelder Str. 1-5, 04129, Leipzig, Germany
| | - Nadine Bönisch
- Inorganic Chemistry I, Technische Universität Dresden, Bergstrasse 66, 01062, Dresden, Germany
| | - Gerrit Mäder
- Fraunhofer Institute of Materials and Beam Technology, Wintergerbstr. 28, 01277, Dresden, Germany
| | - Stefan Grünzner
- Professur Mikrosystemtechnik, Technische Universität Dresden, 01062, Dresden, Germany
| | - Azat Khadiev
- P23 group, Petra III Synchrotron, DESY, Notkestraße 85, 22607, Hamburg, Germany
| | - Dmitri Novikov
- P23 group, Petra III Synchrotron, DESY, Notkestraße 85, 22607, Hamburg, Germany
| | - Kartik Maity
- Inorganic Chemistry I, Technische Universität Dresden, Bergstrasse 66, 01062, Dresden, Germany
| | - Andreas Richter
- Professur Mikrosystemtechnik, Technische Universität Dresden, 01062, Dresden, Germany
| | - Stefan Kaskel
- Inorganic Chemistry I, Technische Universität Dresden, Bergstrasse 66, 01062, Dresden, Germany
- Fraunhofer Institute of Materials and Beam Technology, Wintergerbstr. 28, 01277, Dresden, Germany
| |
Collapse
|
17
|
De A, Maliuta M, Senkovska I, Kaskel S. The Dilemma of Reproducibility of Gating Isotherms for Flexible MOFs. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:14073-14083. [PMID: 36350052 DOI: 10.1021/acs.langmuir.2c01999] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Porous materials receive a high level of scientific and technological interest due to their applications in various fields such as adsorption, separation and storage, catalysis, ion exchange, nanotechnology, etc. Gas adsorption is a well-established tool for the characterization of the texture of porous solids. Physisorption isotherms are generally expected to be well reproducible for rigid adsorbents, but this is not always the case for nonrigid (flexible) materials. The presence of a metastability region and sensitivity of the activation barriers to the material's texture often influence the isotherms' run. Here, we address the complexity that arises in terms of reproducibility and sample handling for flexible metal-organic frameworks, with the example of DUT-8(Ni). It belongs to the group of "gate opening" metal-organic frameworks and is a typical representative of the pillared layer compounds. We propose characteristic parameters for the analysis and comparison of adsorption isotherms, showing the "gate opening" step, associated with the adsorption-induced solid-state phase transition. A set of 50 nitrogen physisorption isotherms measured at 77 K were analyzed and correlated with the synthetic and outgassing conditions. The study highlights the importance of accurate descriptions and record-keeping of experimental details and their role in the replication of scientific results.
Collapse
Affiliation(s)
- Ankita De
- Chair of Inorganic Chemistry I, Technische Universität Dresden, Bergstr. 66, 01069 Dresden, Germany
| | - Mariia Maliuta
- Chair of Inorganic Chemistry I, Technische Universität Dresden, Bergstr. 66, 01069 Dresden, Germany
| | - Irena Senkovska
- Chair of Inorganic Chemistry I, Technische Universität Dresden, Bergstr. 66, 01069 Dresden, Germany
| | - Stefan Kaskel
- Chair of Inorganic Chemistry I, Technische Universität Dresden, Bergstr. 66, 01069 Dresden, Germany
| |
Collapse
|
18
|
Bhattacharyya S, Maji TK. Multi-dimensional metal-organic frameworks based on mixed linkers: Interplay between structural flexibility and functionality. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
19
|
Rauche M, Ehrling S, Abylgazina L, Bachetzky C, Senkovska I, Kaskel S, Brunner E. Solid-state NMR studies of metal ion and solvent influences upon the flexible metal-organic framework DUT-8. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2022; 120:101809. [PMID: 35753266 DOI: 10.1016/j.ssnmr.2022.101809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/10/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
Within the present contribution, we describe solid-state NMR spectroscopic studies of the paddle wheel unit in the prototypic flexible MOF compound DUT-8(M) (M = Ni, Co, Zn). The 13C NMR chemical shift of these carboxylates shows a remarkable behavior. The pure 2,6-H2ndc linker carboxylates as well as DUT-8(Zn) exhibit a13C chemical shift of only about 170 ppm. In contrast, much higher values are observed for DUT-8(Ni) and especially DUT-8(Co). In the open pore state, the shift strongly depends on the solvent polarity in these two latter cases. The present contribution elucidates the reason for this solvent influence. It is concluded that the solvent mainly modifies the isotropic Fermi contact coupling constant for the excited high-spin states in DUT-8(Ni) and DUT-8(Co).
Collapse
Affiliation(s)
- Marcus Rauche
- Bioanalytical Chemistry, Faculty of Chemistry and Food Chemistry, TU Dresden, D-01062, Dresden, Germany
| | - Sebastian Ehrling
- Inorganic Chemistry I, Faculty of Chemistry and Food Chemistry, TU Dresden, D-01062, Dresden, Germany
| | - Leila Abylgazina
- Inorganic Chemistry I, Faculty of Chemistry and Food Chemistry, TU Dresden, D-01062, Dresden, Germany
| | - Christopher Bachetzky
- Bioanalytical Chemistry, Faculty of Chemistry and Food Chemistry, TU Dresden, D-01062, Dresden, Germany
| | - Irena Senkovska
- Inorganic Chemistry I, Faculty of Chemistry and Food Chemistry, TU Dresden, D-01062, Dresden, Germany
| | - Stefan Kaskel
- Inorganic Chemistry I, Faculty of Chemistry and Food Chemistry, TU Dresden, D-01062, Dresden, Germany
| | - Eike Brunner
- Bioanalytical Chemistry, Faculty of Chemistry and Food Chemistry, TU Dresden, D-01062, Dresden, Germany.
| |
Collapse
|
20
|
Zacharias SC, Ramon G, Bourne SA. Solvatochromism and the effect of solvent on properties in a two-dimensional coordination polymer of cobalt-trimesate. CrystEngComm 2022. [DOI: 10.1039/d2ce00039c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A 2D coordination polymer can exchange guest species from liquid sorption, with accompanying visible colour changes.
Collapse
Affiliation(s)
- Savannah C. Zacharias
- Centre for Supramolecular Chemistry Research, Department of Chemistry, University of Cape Town, Rondebosch, Cape Town, 7701, South Africa
| | - Gaëlle Ramon
- Centre for Supramolecular Chemistry Research, Department of Chemistry, University of Cape Town, Rondebosch, Cape Town, 7701, South Africa
| | - Susan A. Bourne
- Centre for Supramolecular Chemistry Research, Department of Chemistry, University of Cape Town, Rondebosch, Cape Town, 7701, South Africa
| |
Collapse
|
21
|
Schneemann A, Jing Y, Evans JD, Toyao T, Hijikata Y, Kamiya Y, Shimizu KI, Burtch NC, Noro SI. Alkyl decorated metal-organic frameworks for selective trapping of ethane from ethylene above ambient pressures. Dalton Trans 2021; 50:10423-10435. [PMID: 34240094 DOI: 10.1039/d1dt01477c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The trapping of paraffins is beneficial compared to selective olefin adsorption for adsorptive olefin purification from a process engineering point of view. Here we demonstrate the use of a series of Zn2(X-bdc)2(dabco) (where X-bdc2- is bdc2- = 1,4-benzenedicarboxylate with substituting groups X, DM-bdc2- = 2,5-dimethyl-1,4-benzenedicarboxylate or TM-bdc2- = 2,3,5,6-tetramethyl-1,4-benzenedicarboxylate and dabco = diazabicyclo[2.2.2.]octane) metal-organic frameworks (MOFs) for the adsorptive removal of ethane from ethylene streams. The best performing material from this series is Zn2(TM-bdc)2(dabco) (DMOF-TM), which shows a high ethane uptake of 5.31 mmol g-1 at 110 kPa, with a good IAST selectivity of 1.88 towards ethane over ethylene. Through breakthrough measurements a high productivity of 13.1 L kg-1 per breakthrough is revealed with good reproducibility over five consecutive cycles. Molecular simulations show that the methyl groups of DMOF-TM are forming a van der Waals trap with the methylene groups from dabco, snuggly fitting the ethane. Further, rarely used high pressure coadsorption measurements, in pressure regimes that most scientific studies on hydrocarbon separation on MOFs ignore, reveal an increase in ethane capacity and selectivity for binary mixtures with increased pressures. The coadsorption measurements reveal good selectivity of 1.96 at 1000 kPa, which is verified also through IAST calculations up to 3000 kPa. This study overall showcases the opportunities that pore engineering by alkyl group incorporation and pressure increase offer to improve hydrocarbon separation in reticular materials.
Collapse
Affiliation(s)
- Andreas Schneemann
- Sandia National Laboratories, 7011 East Avenue, Livermore, CA 94550, USA.
| | - Yuan Jing
- Institute for Catalysis, Hokkaido University, Sapporo 001-0020, Japan
| | - Jack D Evans
- Lehrstuhl für Anorganische Chemie, Technische Universität Dresden, Bergstr. 66, 01069 Dresden, Germany
| | - Takashi Toyao
- Institute for Catalysis, Hokkaido University, Sapporo 001-0020, Japan and Elements Strategy Initiative for Catalysis and Batteries, Kyoto University, Katsura, Kyoto 615-8520, Japan
| | - Yuh Hijikata
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo 001-0021, Japan
| | - Yuichi Kamiya
- Faculty of Environmental Earth Science, Hokkaido University, Sapporo 060-0810, Japan.
| | - Ken-Ichi Shimizu
- Institute for Catalysis, Hokkaido University, Sapporo 001-0020, Japan and Elements Strategy Initiative for Catalysis and Batteries, Kyoto University, Katsura, Kyoto 615-8520, Japan
| | - Nicholas C Burtch
- Sandia National Laboratories, 7011 East Avenue, Livermore, CA 94550, USA.
| | - Shin-Ichiro Noro
- Faculty of Environmental Earth Science, Hokkaido University, Sapporo 060-0810, Japan.
| |
Collapse
|
22
|
Angeli GK, Loukopoulos E, Kouvidis K, Bosveli A, Tsangarakis C, Tylianakis E, Froudakis G, Trikalitis PN. Continuous Breathing Rare-Earth MOFs Based on Hexanuclear Clusters with Gas Trapping Properties. J Am Chem Soc 2021; 143:10250-10260. [PMID: 34185543 DOI: 10.1021/jacs.1c03762] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Guest responsive porous materials represent an important and fascinating class of multifunctional solids that have attracted considerable attention in recent years. An understanding of how these structures form is essential toward their rational design, which is a prerequisite for the development of tailor-made materials for advanced applications. We herein report a novel series of stable rare-earth (RE) MOFs that show a rare continuous breathing behavior and an unprecedented gas-trapping property. We used an asymmetric 4-c tetratopic carboxylate-based organic ligand that is capable of affording highly crystalline materials upon controlled reaction with RE cations. These MOFs, denoted as RE-thc-MOF-1 (RE: Y3+, Sm3+, Eu3+, Tb3+, Dy3+, Ho3+, and Er3+), feature hexanuclear RE6 clusters that display a highly unusual connectivity and serve as unique 8-c hemi-cuboctahedral secondary building block, resulting in a new (3,3,8)-c thc topology. Extensive single-crystal to single-crystal structural analyses coupled with detailed gas (N2, Ar, Kr, CO2, CH4, and Xe) and vapor (EtOH, CH3CN, C6H6, and C6H14) sorption studies, supported by accurate theoretical calculations, shed light onto the unique swelling behavior. The results reveal a synergistic action involving steric effects, associated with coordinated solvent molecules and 2-fluorobenzoate (2-FBA) nonbridging ligands, as well as cation-framework electrostatic interactions. We were able to probe the individual role of the coordinated solvent molecules and 2-FBA ligands and found that both cooperatively control the gas-breathing and -trapping properties, while 2-FBA controls the vapor adsorption selectivity. These findings provide unique opportunities toward the design and development of tunable RE-based flexible MOFs with tailor-made properties.
Collapse
Affiliation(s)
- Giasemi K Angeli
- Department of Chemistry, University of Crete, Voutes, 71003 Heraklion, Greece
| | - Edward Loukopoulos
- Department of Chemistry, University of Crete, Voutes, 71003 Heraklion, Greece
| | | | - Artemis Bosveli
- Department of Chemistry, University of Crete, Voutes, 71003 Heraklion, Greece
| | | | - Emmanuel Tylianakis
- Department of Chemistry, University of Crete, Voutes, 71003 Heraklion, Greece
| | - George Froudakis
- Department of Chemistry, University of Crete, Voutes, 71003 Heraklion, Greece
| | | |
Collapse
|