1
|
Lin N, Tsuji M, Bruzzese I, Chen A, Vrionides M, Jian N, Kittur F, Fay TP, Mani T. Molecular Engineering of Emissive Molecular Qubits Based on Spin-Correlated Radical Pairs. J Am Chem Soc 2025; 147:11062-11071. [PMID: 40105685 DOI: 10.1021/jacs.4c16164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Spin chemistry of photogenerated spin-correlated radical pairs (SCRPs) offers a practical approach to control chemical reactions and molecular emissions by using weak magnetic fields. This capability to harness magnetic field effects (MFEs) paves the way for developing SCRPs-based molecular qubits. Here, we introduce a new series of donor-chiral bridge-acceptor (D-χ-A) molecules that demonstrate significant MFEs on fluorescence intensity and lifetime in solution at room temperature─critical for quantum sensing. By precisely tuning the donor site through torsional locking, distance extension, and planarization, we achieved remarkable control over key quantum properties, including field-response range and line width. In the most responsive systems, emission lifetimes increased by over 200%, and the total emission intensity was modulated by up to 30%. This level of tunability shows the power of synthetic spin chemistry. The rational design principle of optically addressable SCRP-based molecular systems, presented in this work, represents a major leap toward functional synthetic molecular qubits, advancing the field of molecular quantum technologies.
Collapse
Affiliation(s)
- Neo Lin
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Miu Tsuji
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Isabella Bruzzese
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Angela Chen
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Michael Vrionides
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Noen Jian
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Farhan Kittur
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
- Glastonbury High School, Glastonbury, Connecticut 06033, United States
| | - Thomas P Fay
- Aix Marseille University, CNRS, ICR, Marseille 13397, France
| | - Tomoyasu Mani
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
| |
Collapse
|
2
|
Wasif Baig M, Pederzoli M, Kývala M, Pittner J. Quantum Chemical and Trajectory Surface Hopping Molecular Dynamics Study of Iodine-Based BODIPY Photosensitizer. J Comput Chem 2025; 46:e70026. [PMID: 40068139 PMCID: PMC11896635 DOI: 10.1002/jcc.70026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/20/2024] [Accepted: 12/27/2024] [Indexed: 03/15/2025]
Abstract
A computational study of I-BODIPY (2-ethyl-4,4-difluoro-6,7-diiodo-1,3-dimethyl-4-bora-3a,4a-diaza-s-indacene) has been carried out to investigate its key photophysical properties as a potential triplet photosensitizer capable of generating singlet oxygen. Multireference CASPT2 and CASSCF methods have been used to calculate vertical excitation energies and spin-orbit couplings (SOCs), respectively, in a model (mono-iodinated BODIPY) molecule to assess the applicability of the single-reference second-order algebraic diagrammatic construction, ADC(2), method to this and similar molecules. Subsequently, time-dependent density functional theory (TD-DFT), possibly within the Tamm-Dancoff approximation (TDA), using several exchange-correlation functionals has been tested on I-BODIPY against ADC(2), both employing a basis set with a two-component pseudopotential on the iodine atoms. Finally, the magnitudes of SOC between excited electronic states of all types found have thoroughly been discussed using the Slater-Condon rules applied to an arbitrary one-electron one-center effective spin-orbit Hamiltonian. The geometry dependence of SOCs between the lowest-lying states has also been addressed. Based on these investigations, the TD-DFT/B3LYP and TD-DFT(TDA)/BHLYP approaches have been selected as the methods of choice for the subsequent nuclear ensemble approach absorption spectra simulations and mixed quantum-classical trajectory surface hopping (TSH) molecular dynamics (MD) simulations, respectively. Two bright states in the visible spectrum of I-BODIPY have been found, exhibiting a redshift of the main peak with respect to unsubstituted BODIPY caused by the iodine substituents. Excited-state MD simulations including both non-adiabatic effects and SOCs have been performed to investigate the relaxation processes in I-BODIPY after its photoexcitation to theS 1 $$ {\mathrm{S}}_1 $$ state. The TSH MD simulations revealed that intersystem crossings occur on a time scale comparable to internal conversions and that after an initial phase of triplet population growth a "saturation" is reached where the ratio of the net triplet to singlet populations is about 4:1. The calculated triplet quantum yield of 0.85 is in qualitative agreement with the previously reported experimental singlet oxygen generation yield of 0.99± $$ \pm $$ 0.06.
Collapse
Affiliation(s)
- Mirza Wasif Baig
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of SciencesPrague 8Czech Republic
- Faculty of Science, Department of Physical and Macromolecular ChemistryCharles UniversityPrague 2Czech Republic
| | - Marek Pederzoli
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of SciencesPrague 8Czech Republic
| | - Mojmír Kývala
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of SciencesPrague 6Czech Republic
| | - Jiří Pittner
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of SciencesPrague 8Czech Republic
| |
Collapse
|
3
|
Curley RC, Arturo Arellano-Reyes R, McPherson JN, McKee V, Keyes TE. Enhancing Phototoxicity in BODIPY-Perylene Charge Transfer Dyads by Combined Iodination and Mesylation. Chemistry 2024; 30:e202403149. [PMID: 39373556 DOI: 10.1002/chem.202403149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/02/2024] [Accepted: 10/07/2024] [Indexed: 10/08/2024]
Abstract
The uptake and phototoxicity of a family of BODIPY-perylene charge transfer dyads are compared in live cancer and non-cancer cell lines to evaluate their performance in imaging and photodynamic therapy (PDT). The impact of iodination and mesylation of the meso position of the compounds on their optical properties, cell uptake and toxicity are compared. Notably, across all derivatives the probes were minimally dark toxic up to 50 μM, (the maximum concentration tested), but exhibited outstanding phototoxicity with nanomolar IC50 values and impressive phototoxic indices (PI, ratio of dark IC50 to light IC50), with best performance for the mesylated iodinated derivative MB2PI, which had a PI of >218 and >8.9 in MCF-7 cells and tumour spheroids respectively. This is significantly higher than non-iodinated analogue MB2P in MCF-7 cells with an observed PI of >109 and slightly higher than MB2PI in spheroids with a PI of >8. This compound also showed interesting emission spectral variation with localisation that responded to stimulation of inflammation. Additional studies confirmed efficient singlet oxygen generation by the BODIPYs, suggesting a Type II mechanism of phototoxicity. Overall, the data indicates that combining charge transfer and iodination is an effective strategy for enhancing phototherapeutic capacity of BODIPY PS.
Collapse
Affiliation(s)
- Rhianne C Curley
- School of Chemical Sciences, National Centre for Sensor Research, Dublin City University, Dublin, Ireland
| | | | - James N McPherson
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | - Vickie McKee
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | - Tia E Keyes
- School of Chemical Sciences, National Centre for Sensor Research, Dublin City University, Dublin, Ireland
| |
Collapse
|
4
|
Kim C, Kim H, Jo J, Kim S, Bongo AM, Kim HJ, Yang J. Moderately Heavy Atom-Substituted BODIPY Photosensitizer with Mitochondrial Targeting Ability for Imaging-Guided Photodynamic Therapy. ACS APPLIED BIO MATERIALS 2024; 7:8294-8304. [PMID: 39603692 DOI: 10.1021/acsabm.4c01108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Advanced photodynamic therapy requires photosensitizers with targeting, diagnostic, and therapeutic properties. To fulfill this multifunctionality, we report the synthesis of two triphenylphosphonium (TPP)-functionalized boron-dipyrromethene (BODIPY) dyes, TPPB-H and TPPB-Br, which incorporate a hydrogen atom and dibrominated vinyl moiety at the 6-position of the BODIPY core, respectively. The heavy-atom effect of the moderately heavy bromine atoms allowed TPPB-Br to achieve a proper balance between the toxic singlet oxygen (1O2) production and fluorescence efficiencies. In this dye, the bromine atom-induced stimulation of the singlet-to-triplet intersystem crossing dynamics resulted in an approximately 45-fold increase in the 1O2 quantum yield with respect to that of the nonbrominated counterpart (0.0059 and 0.28 for TPPB-H and TPPB-Br, respectively). This increase was accompanied only a 2-fold reduction in the fluorescence quantum yield (0.54 and 0.22 for TPPB-H and TPPB-Br, respectively). During multicolor confocal laser scanning microscopy observations conducted using two carcinomas, MCF-7 and HeLa, both BODIPY dyes exhibited high targeting specificity toward cancer cell mitochondria owing to the TPP cation functionalization. The two dyes also showed the feasibility of fluorescence cell imaging; however, only the dibrominated BODIPY TPPB-Br manifested pronounced photocytotoxicity with half-maximal inhibitory concentrations of 0.12 and 0.77 μM obtained for MCF-7 and HeLa cells, respectively. These findings demonstrate the potential applicability of TPPB-Br as an imaging-guided photodynamic therapy agent with mitochondrial specificity.
Collapse
Affiliation(s)
- Chanwoo Kim
- Department of Chemistry, Yonsei University, Wonju, Gangwon 26493, Korea
| | - Hayeon Kim
- Department of Chemistry, Chosun University, Gwangju 61452, Korea
| | - Jinwoong Jo
- Department of Chemistry, Yonsei University, Wonju, Gangwon 26493, Korea
| | - Soyeon Kim
- Department of Chemistry, Yonsei University, Wonju, Gangwon 26493, Korea
| | - Arrhon Mae Bongo
- Department of Chemistry, Chosun University, Gwangju 61452, Korea
| | - Ho-Joong Kim
- Department of Chemistry, Chosun University, Gwangju 61452, Korea
| | - Jaesung Yang
- Department of Chemistry, Yonsei University, Wonju, Gangwon 26493, Korea
| |
Collapse
|
5
|
Prabhakaran A, Jha KK, Sia RCE, Arellano Reyes RA, Sarangi NK, Kogut M, Guthmuller J, Czub J, Dietzek-Ivanšić B, Keyes TE. Triplet-Triplet Annihilation Upconverting Liposomes: Mechanistic Insights into the Role of Membranes in Two-Dimensional TTA-UC. ACS APPLIED MATERIALS & INTERFACES 2024; 16:29324-29337. [PMID: 38776974 PMCID: PMC11163426 DOI: 10.1021/acsami.4c00990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/11/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024]
Abstract
Triplet-triplet annihilation upconversion (TTA-UC) implemented in nanoparticle assemblies is of emerging interest in biomedical applications, including in drug delivery and imaging. As it is a bimolecular process, ensuring sufficient mobility of the sensitizer and annihilator to facilitate effective collision in the nanoparticle is key. Liposomes can provide the benefits of two-dimensional confinement and condensed concentration of the sensitizer and annihilator along with superior fluidity compared to other nanoparticle assemblies. They are also biocompatible and widely applied across drug delivery modalities. However, there are relatively few liposomal TTA-UC systems reported to date, so systematic studies of the influence of the liposomal environment on TTA-UC are currently lacking. Here, we report the first example of a BODIPY-based sensitizer TTA-UC system within liposomes and use this system to study TTA-UC generation and compare the relative intensity of the anti-Stokes signal for this system as a function of liposome composition and membrane fluidity. We report for the first time on time-resolved spectroscopic studies of TTA-UC in membranes. Nanosecond transient absorption data reveal the BODIPY-perylene dyad sensitizer has a long triplet lifetime in liposome with contributions from three triplet excited states, whose lifetimes are reduced upon coinclusion of the annihilator due to triplet-triplet energy transfer, to a greater extent than in solution. This indicates triplet energy transfer between the sensitizer and the annihilator is enhanced in the membrane system. Molecular dynamics simulations of the sensitizer and annihilator TTA collision complex are modeled in the membrane and confirm the co-orientation of the pair within the membrane structure and that the persistence time of the bound complex exceeds the TTA kinetics. Modeling also reliably predicted the diffusion coefficient for the sensitizer which matches closely with the experimental values from fluorescence correlation spectroscopy. The relative intensity of the TTA-UC output across nine liposomal systems of different lipid compositions was explored to examine the influence of membrane viscosity on upconversion (UC). UC showed the highest relative intensity for the most fluidic membranes and the weakest intensity for highly viscous membrane compositions, including a phase separation membrane. Overall, our study reveals that the co-orientation of the UC pair within the membrane is crucial for effective TTA-UC within a biomembrane and that the intensity of the TTA-UC output can be tuned in liposomal nanoparticles by modifying the phase and fluidity of the liposome. These new insights will aid in the design of liposomal TTA-UC systems for biomedical applications.
Collapse
Affiliation(s)
- Amrutha Prabhakaran
- School
of Chemical Sciences and National Centre for Sensor Research, Dublin City University, Dublin 9, Ireland
| | - Keshav Kumar Jha
- Research
Department Functional Interfaces, Leibniz
Institute of Photonic Technology Jena, Jena 07745, Germany
- Institute
of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Jena 07743, Germany
| | - Rengel Cane E. Sia
- Institute
of Physics and Applied Computer Science, Faculty of Applied Physics
and Mathematics, Gdańsk University
of Technology, Narutowicza 11/12, 80233 Gdańsk, Poland
| | - Ruben Arturo Arellano Reyes
- School
of Chemical Sciences and National Centre for Sensor Research, Dublin City University, Dublin 9, Ireland
| | - Nirod Kumar Sarangi
- School
of Chemical Sciences and National Centre for Sensor Research, Dublin City University, Dublin 9, Ireland
| | - Mateusz Kogut
- Department
of Physical Chemistry, Gdańsk University
of Technology, Narutowicza
11/12, 80233 Gdańsk, Poland
| | - Julien Guthmuller
- Institute
of Physics and Applied Computer Science, Faculty of Applied Physics
and Mathematics, Gdańsk University
of Technology, Narutowicza 11/12, 80233 Gdańsk, Poland
| | - Jacek Czub
- Department
of Physical Chemistry, Gdańsk University
of Technology, Narutowicza
11/12, 80233 Gdańsk, Poland
| | - Benjamin Dietzek-Ivanšić
- Research
Department Functional Interfaces, Leibniz
Institute of Photonic Technology Jena, Jena 07745, Germany
| | - Tia E. Keyes
- School
of Chemical Sciences and National Centre for Sensor Research, Dublin City University, Dublin 9, Ireland
| |
Collapse
|
6
|
Cortés-Villena A, Bellezza D, Cunha C, Rosa-Pardo I, Seijas-Da Silva Á, Pina J, Abellán G, Seixas de Melo JS, Galian RE, Pérez-Prieto J. Engineering Metal Halide Perovskite Nanocrystals with BODIPY Dyes for Photosensitization and Photocatalytic Applications. J Am Chem Soc 2024; 146:14479-14492. [PMID: 38572736 PMCID: PMC11140745 DOI: 10.1021/jacs.3c14335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/15/2024] [Accepted: 03/21/2024] [Indexed: 04/05/2024]
Abstract
The sensitization of surface-anchored organic dyes on semiconductor nanocrystals through energy transfer mechanisms has received increasing attention owing to their potential applications in photodynamic therapy, photocatalysis, and photon upconversion. Here, we investigate the sensitization mechanisms through visible-light excitation of two nanohybrids based on CsPbBr3 perovskite nanocrystals (NC) functionalized with borondipyrromethene (BODIPY) dyes, specifically 8-(4-carboxyphenyl)-1,3,5,7-tetramethyl-4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BDP) and 8-(4-carboxyphenyl)-2,6-diiodo-1,3,5,7-tetramethyl-4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (I2-BDP), named as NC@BDP and NC@I2-BDP, respectively. The ability of I2-BDP dyes to extract hot hole carriers from the perovskite nanocrystals is comprehensively investigated by combining steady-state and time-resolved fluorescence as well as femtosecond transient absorption spectroscopy with spectroelectrochemistry and quantum chemical theoretical calculations, which together provide a complete overview of the phenomena that take place in the nanohybrid. Förster resonance energy transfer (FRET) dominates (82%) the photosensitization of the singlet excited state of BDP in the NC@BDP nanohybrid with a rate constant of 3.8 ± 0.2 × 1010 s-1, while charge transfer (64%) mediated by an ultrafast charge transfer rate constant of 1.00 ± 0.08 × 1012 s-1 from hot states and hole transfer from the band edge is found to be mainly responsible for the photosensitization of the triplet excited state of I2-BDP in the NC@I2-BDP nanohybrid. These findings suggest that the NC@I2-BDP nanohybrid is a unique energy transfer photocatalyst for oxidizing α-terpinene to ascaridole through singlet oxygen formation.
Collapse
Affiliation(s)
- Alejandro Cortés-Villena
- Institute
of Molecular Science, University of Valencia, c/Catedrático José
Beltrán Martínez 2, 46980 Paterna, Valencia, Spain
| | - Delia Bellezza
- Institute
of Molecular Science, University of Valencia, c/Catedrático José
Beltrán Martínez 2, 46980 Paterna, Valencia, Spain
| | - Carla Cunha
- CQC-IMS,
Department of Chemistry, University of Coimbra, Coimbra P-3004-535, Portugal
| | - Ignacio Rosa-Pardo
- Institute
of Molecular Science, University of Valencia, c/Catedrático José
Beltrán Martínez 2, 46980 Paterna, Valencia, Spain
| | - Álvaro Seijas-Da Silva
- Institute
of Molecular Science, University of Valencia, c/Catedrático José
Beltrán Martínez 2, 46980 Paterna, Valencia, Spain
| | - João Pina
- CQC-IMS,
Department of Chemistry, University of Coimbra, Coimbra P-3004-535, Portugal
| | - Gonzalo Abellán
- Institute
of Molecular Science, University of Valencia, c/Catedrático José
Beltrán Martínez 2, 46980 Paterna, Valencia, Spain
| | | | - Raquel E. Galian
- Institute
of Molecular Science, University of Valencia, c/Catedrático José
Beltrán Martínez 2, 46980 Paterna, Valencia, Spain
| | - Julia Pérez-Prieto
- Institute
of Molecular Science, University of Valencia, c/Catedrático José
Beltrán Martínez 2, 46980 Paterna, Valencia, Spain
| |
Collapse
|
7
|
Doležel J, Poryvai A, Slanina T, Filgas J, Slavíček P. Spin-Vibronic Coupling Controls the Intersystem Crossing of Iodine-Substituted BODIPY Triplet Chromophores. Chemistry 2024; 30:e202303154. [PMID: 37905588 DOI: 10.1002/chem.202303154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/30/2023] [Accepted: 10/30/2023] [Indexed: 11/02/2023]
Abstract
4,4-Difluoro-4-borata-3a-azonia-4a-aza-s-indacene (BODIPY) dyes are extensively used in various applications of their triplet states, ranging from photoredox catalysis, through triplet sensitization to photodynamic therapy. However, the rational design of BODIPY triplet chromophores by ab initio modelling is limited by their strong interactions of spin, electronic and vibrational dynamics. In particular, spin-vibronic coupling is often overlooked when estimating intersystem crossing (ISC) rates. In this study, a combined experimental and theoretical approach using spin-vibronic coupling to correctly describe ISC in BODIPY dyes was developed. For this purpose, seven π-extended BODIPY derivatives with iodine atoms in different positions were examined. It was found that the heavy-atom effect of iodine atoms is site specific, causing high triplet yields in only some positions. This site-specific ISC was explained by El-Sayed rules, so both the contribution and character of the molecular orbitals involved in the excitation must be considered when predicting the ISC rates. Overall, the rational design of BODIPY triplet chromophores requires using (i) the high-quality electronic structure theory, including both static and dynamical correlations; and (ii) the two-component wave function Hamiltonian, and rationalizing; and (iii) ISC based on the character of the molecular orbitals of heavy atoms involved in the excitation, expanding El-Sayed rules beyond their traditional applications.
Collapse
Affiliation(s)
- Jiří Doležel
- Institute of Organic Chemistry and Biochemistry of the Czech Academy, Flemingovo nám. 542/2, Prague 6, 160 00, Czech Republic
| | - Anna Poryvai
- Institute of Organic Chemistry and Biochemistry of the Czech Academy, Flemingovo nám. 542/2, Prague 6, 160 00, Czech Republic
| | - Tomáš Slanina
- Institute of Organic Chemistry and Biochemistry of the Czech Academy, Flemingovo nám. 542/2, Prague 6, 160 00, Czech Republic
| | - Josef Filgas
- Department of Physical Chemistry, University of Chemistry and Technology, Prague, Technická 5, 166 28, Prague 6, Czech Republic
| | - Petr Slavíček
- Department of Physical Chemistry, University of Chemistry and Technology, Prague, Technická 5, 166 28, Prague 6, Czech Republic
| |
Collapse
|
8
|
Tohgha UN, Ly JT, Lee KM, Marsh ZM, Watson AM, Grusenmeyer TA, Godman NP, McConney ME. Switchable Optical Properties of Dyes and Nanoparticles in Electrowetting Devices. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:142. [PMID: 38251107 PMCID: PMC10821281 DOI: 10.3390/nano14020142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/27/2023] [Accepted: 12/31/2023] [Indexed: 01/23/2024]
Abstract
The optical properties of light-absorbing materials in optical shutter devices are critical to the use of such platforms for optical applications. We demonstrate switchable optical properties of dyes and nanoparticles in liquid-based electrowetting-on-dielectric (EWOD) devices. Our work uses narrow-band-absorbing dyes and nanoparticles, which are appealing for spectral-filtering applications targeting specific wavelengths while maintaining device transparency at other wavelengths. Low-voltage actuation of boron dipyromethene (BODIPY) dyes and nanoparticles (Ag and CdSe) was demonstrated without degradation of the light-absorbing materials. Three BODIPY dyes were used, namely Abs 503 nm, 535 nm and 560 nm for dye 1 (BODIPY-core), 2 (I2BODIPY) and 3 (BODIPY-TMS), respectively. Reversible and low-voltage (≤20 V) switching of dye optical properties was observed as a function of device pixel dimensions (300 × 900, 200 × 600 and 150 × 450 µm). Low-voltage and reversible switching was also demonstrated for plasmonic and semiconductor nanoparticles, such as CdSe nanotetrapods (abs 508 nm), CdSe nanoplatelets (Abs 461 and 432 nm) and Ag nanoparticles (Abs 430 nm). Nanoparticle-based devices showed minimal hysteresis as well as faster relaxation times. The study presented can thus be extended to a variety of nanomaterials and dyes having the desired optical properties.
Collapse
Affiliation(s)
- Urice N. Tohgha
- Air Force Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson AFB, OH 45433, USA; (U.N.T.); (K.M.L.); (Z.M.M.); (T.A.G.); (N.P.G.)
- Azimuth Corporation, Fairborn, OH 45431, USA
| | | | - Kyung Min Lee
- Air Force Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson AFB, OH 45433, USA; (U.N.T.); (K.M.L.); (Z.M.M.); (T.A.G.); (N.P.G.)
- Azimuth Corporation, Fairborn, OH 45431, USA
| | - Zachary M. Marsh
- Air Force Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson AFB, OH 45433, USA; (U.N.T.); (K.M.L.); (Z.M.M.); (T.A.G.); (N.P.G.)
| | - Alexander M. Watson
- Department of Engineering Management, School of Engineering, Systems, and Technology, University of Dayton, Dayton, OH 45469, USA
| | - Tod A. Grusenmeyer
- Air Force Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson AFB, OH 45433, USA; (U.N.T.); (K.M.L.); (Z.M.M.); (T.A.G.); (N.P.G.)
| | - Nicholas P. Godman
- Air Force Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson AFB, OH 45433, USA; (U.N.T.); (K.M.L.); (Z.M.M.); (T.A.G.); (N.P.G.)
| | - Michael E. McConney
- Air Force Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson AFB, OH 45433, USA; (U.N.T.); (K.M.L.); (Z.M.M.); (T.A.G.); (N.P.G.)
| |
Collapse
|
9
|
Long K, Lv W, Wang Z, Zhang Y, Chen K, Fan N, Li F, Zhang Y, Wang W. Near-infrared light-triggered prodrug photolysis by one-step energy transfer. Nat Commun 2023; 14:8112. [PMID: 38062051 PMCID: PMC10703928 DOI: 10.1038/s41467-023-43805-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
Prodrug photolysis enables spatiotemporal control of drug release at the desired lesions. For photoactivated therapy, near-infrared (NIR) light is preferable due to its deep tissue penetration and low phototoxicity. However, most of the photocleavable groups cannot be directly activated by NIR light. Here, we report a upconversion-like process via only one step of energy transfer for NIR light-triggered prodrug photolysis. We utilize a photosensitizer (PS) that can be activated via singlet-triplet (S-T) absorption and achieve photolysis of boron-dipyrromethene (BODIPY)-based prodrugs via triplet-triplet energy transfer. Using the strategy, NIR light can achieve green light-responsive photolysis with a single-photon process. A wide range of drugs and bioactive molecules are designed and demonstrated to be released under low-irradiance NIR light (100 mW/cm2, 5 min) with high yields (up to 87%). Moreover, a micellar nanosystem encapsulating both PS and prodrug is developed to demonstrate the practicality of our strategy in normoxia aqueous environment for cancer therapy. This study may advance the development of photocleavable prodrugs and photoresponsive drug delivery systems for photo-activated therapy.
Collapse
Affiliation(s)
- Kaiqi Long
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Pokfulam, Hong Kong, China
- Department of Pharmacology & Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
- Laboratory of Molecular Engineering and Nanomedicine, Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Wen Lv
- Laboratory of Molecular Engineering and Nanomedicine, Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Pokfulam, Hong Kong, China
- State Key Laboratory of Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, China
| | - Zihan Wang
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Pokfulam, Hong Kong, China
- Department of Pharmacology & Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
- Laboratory of Molecular Engineering and Nanomedicine, Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Yaming Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Pokfulam, Hong Kong, China
- Department of Pharmacology & Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
- Laboratory of Molecular Engineering and Nanomedicine, Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Kang Chen
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Pokfulam, Hong Kong, China
- Laboratory of Molecular Engineering and Nanomedicine, Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Ni Fan
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Pokfulam, Hong Kong, China
- Department of Pharmacology & Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
- Laboratory of Molecular Engineering and Nanomedicine, Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Feiyang Li
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Yichi Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Pokfulam, Hong Kong, China
- Department of Pharmacology & Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
- Laboratory of Molecular Engineering and Nanomedicine, Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Weiping Wang
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Pokfulam, Hong Kong, China.
- Department of Pharmacology & Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China.
- Laboratory of Molecular Engineering and Nanomedicine, Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Pokfulam, Hong Kong, China.
| |
Collapse
|
10
|
Demirel Topel S. Encapsulation of Diiodo‐BODIPY in Sodium Dodecyl Sulfate Stabilized Cellulose Acetate Capsules for Enhanced Singlet Oxygen Production in Aqueous Solution. ChemistrySelect 2023. [DOI: 10.1002/slct.202203579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Affiliation(s)
- Seda Demirel Topel
- Antalya Bilim University Faculty of Engineering and Natural Sciences Department of Electrical&Electronics Engineering Dosemealtı, Dosemealtı Antalya 07190 Turkey
| |
Collapse
|
11
|
Patalag LJ, Hoche J, Mitric R, Werz DB, Feringa BL. Transforming Dyes into Fluorophores: Exciton-Induced Emission with Chain-like Oligo-BODIPY Superstructures. Angew Chem Int Ed Engl 2022; 61:e202116834. [PMID: 35244983 PMCID: PMC9310714 DOI: 10.1002/anie.202116834] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Indexed: 11/24/2022]
Abstract
Herein we present a systematic study demonstrating to which extent exciton formation can amplify fluorescence based on a series of ethylene-bridged oligo-BODIPYs. A set of non- and weakly fluorescent BODIPY motifs was selected and transformed into discrete, chain-like oligomers by linkage via a flexible ethylene tether. The prepared superstructures constitute excitonically active entities with non-conjugated, Coulomb-coupled oscillators. The non-radiative deactivation channels of Internal Conversion (IC), also combined with an upstream reductive Photoelectron Transfer (rPET) and Intersystem Crossing (ISC) were addressed at the monomeric state and the evolution of fluorescence and (non-)radiative decay rates studied along the oligomeric series. We demonstrate that a "masked" fluorescence can be fully reactivated irrespective of the imposed conformational rigidity. This work challenges the paradigm that a collective fluorescence enhancement is limited to sterically induced motional restrictions.
Collapse
Affiliation(s)
- Lukas J. Patalag
- University of GroningenStratingh Institute for ChemistryNijenborgh 49747 AGGroningenThe Netherlands
| | - Joscha Hoche
- Universität WürzburgInstitute of Physical and Theoretical ChemistryAm Hubland97074WürzburgGermany
| | - Roland Mitric
- Universität WürzburgInstitute of Physical and Theoretical ChemistryAm Hubland97074WürzburgGermany
| | - Daniel B. Werz
- Technische Universität BraunschweigInstitute of Organic ChemistryHagenring 3038106BraunschweigGermany
| | - Ben L. Feringa
- University of GroningenStratingh Institute for ChemistryNijenborgh 49747 AGGroningenThe Netherlands
| |
Collapse
|
12
|
Patalag LJ, Hoche J, Mitric R, Werz DB, Feringa BL. Transforming Dyes Into Fluorophores: Exciton‐Induced Emission with Chain‐like Oligo‐BODIPY Superstructures. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202116834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Lukas J. Patalag
- University of Groningen: Rijksuniversiteit Groningen Stratingh Institute for Chemistry NETHERLANDS
| | - Joscha Hoche
- Universität Würzburg: Julius-Maximilians-Universitat Wurzburg Institute of Physical and Theoretical Chemistry GERMANY
| | - Roland Mitric
- Universität Würzburg: Julius-Maximilians-Universitat Wurzburg Institute of Theoretical and Physical Chemistry GERMANY
| | - Daniel B. Werz
- TU Braunschweig: Technische Universitat Braunschweig Institute for Organic Chemistry GERMANY
| | - Ben L Feringa
- University of Groningen Stratingh Institute for Chemistry, Faculty of Science and Engineering Nijenborgh 4 9747 AG Groningen NETHERLANDS
| |
Collapse
|