1
|
Ruiz-Castelan JE, Villa-Díaz F, Castro ME, Melendez FJ, Scior T. The α/β3 complex of human voltage-gated sodium channel hNa v1.7 to study mechanistic differences in presence and absence of auxiliary subunit β3. J Mol Model 2025; 31:168. [PMID: 40397258 PMCID: PMC12095431 DOI: 10.1007/s00894-025-06378-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 04/25/2025] [Indexed: 05/22/2025]
Abstract
CONTEXT In the context of structural interactomics, we generated a 3D model between α and β3 subunits for the hitherto unknown human voltage-gated sodium channel complex (hNa 1.7α/β3). We embedded our 3D model in a membrane lipid bilayer for molecular dynamics (MD) simulations of the sodium cation passage from the outer vestibule through the inner pore segment of our hNa 1.7 complex in presence and absence of auxiliary subunit β3 with remarkable changes close to electrophysiological study results. A complete passage could not be expected due to because the inactivated state of the underlying 3D template. A complete sodium ion passage would require an open state of the channel. The computed observations concerning side chain rearrangements for favorable cooperativity under evolutionary neighborhood conditions, favorable and unfavorable amino acid interactions, proline kink, loop, and helix displacements were all found in excellent keeping with the extant literature without any exception nor contradiction. Complex-stabilizing pairs of interacting amino acids with evolutionary neighborhood complementary were identified. METHODS The following tools were used: sequence search and alignment by FASTA and Clustal Omega; 3D model visualization and homology modeling by Vega ZZ, SPDBV, Chimera and Modeller, respectively; missing sections (loops) by Alphafold; geometry optimization prior to MD runs by GROMACS 2021.4 under the CHARMM 36 force field; local healing of bad contacts by SPDBV based on its Ramachandran plots; protein-protein docking by HDOCK 2.4; membrane insertion assisted by OPM; Berendsen V-rescaling for NVT; Parrinello-Rahman and Nose-Hoover for MPT; MD analyses by VMD and XMGRACE.
Collapse
Grants
- 100256733-VIEP2024 Vicerrectoría de Investigación y Estudios de Posgrado (VIEP-BUAP, Mexico)
- 100256733-VIEP2024 Vicerrectoría de Investigación y Estudios de Posgrado (VIEP-BUAP, Mexico)
- 100256733-VIEP2024 Vicerrectoría de Investigación y Estudios de Posgrado (VIEP-BUAP, Mexico)
- 100256733-VIEP2024 Vicerrectoría de Investigación y Estudios de Posgrado (VIEP-BUAP, Mexico)
- 100256733-VIEP2024 Vicerrectoría de Investigación y Estudios de Posgrado (VIEP-BUAP, Mexico)
- BUAP-CA-263 PRODEP Academic Group (SEP, Mexico)
- BUAP-CA-263 PRODEP Academic Group (SEP, Mexico)
- BUAP-CA-263 PRODEP Academic Group (SEP, Mexico)
- BUAP-CA-263 PRODEP Academic Group (SEP, Mexico)
- BUAP-CA-263 PRODEP Academic Group (SEP, Mexico)
Collapse
Affiliation(s)
| | - Fernando Villa-Díaz
- Laboratory of Basical Science, Tecnologico Nacional de Mexico, Campus Guaymas, C.P. 85480, Sonora, Mexico
| | | | - Francisco J Melendez
- Laboratory of Theoretical Chemistry, Faculty of Chemical Sciences, BUAP, C.P. 72570, Puebla, Mexico.
| | - Thomas Scior
- Laboratory of Computational Molecular Simulations, Faculty of Chemical Sciences, BUAP, C.P. 72570, Puebla, Mexico.
| |
Collapse
|
2
|
Palmisano VF, Anguita-Ortiz N, Faraji S, Nogueira JJ. Voltage-Gated Ion Channels: Structure, Pharmacology and Photopharmacology. Chemphyschem 2024; 25:e202400162. [PMID: 38649320 DOI: 10.1002/cphc.202400162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/21/2024] [Accepted: 04/22/2024] [Indexed: 04/25/2024]
Abstract
Voltage-gated ion channels are transmembrane proteins responsible for the generation and propagation of action potentials in excitable cells. Over the last decade, advancements have enabled the elucidation of crystal structures of ion channels. This progress in structural understanding, particularly in identifying the binding sites of local anesthetics, opens avenues for the design of novel compounds capable of modulating ion conduction. However, many traditional drugs lack selectivity and come with adverse side effects. The emergence of photopharmacology has provided an orthogonal way of controlling the activity of compounds, enabling the regulation of ion conduction with light. In this review, we explore the central pore region of voltage-gated sodium and potassium channels, providing insights from both structural and pharmacological perspectives. We discuss the different binding modes of synthetic compounds that can physically occlude the pore and, therefore, block ion conduction. Moreover, we examine recent advances in the photopharmacology of voltage-gated ion channels, introducing molecular approaches aimed at controlling their activity by using photosensitive drugs.
Collapse
Affiliation(s)
- Vito F Palmisano
- Department of Chemistry, Universidad Autónoma de Madrid, 28049, Madrid, Spain
- Theoretical Chemistry Group, Zernike Institute for Advanced Materials, University of Groningen, 9747 AG, Groningen, The Netherlands
| | - Nuria Anguita-Ortiz
- Department of Chemistry, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Shirin Faraji
- Theoretical Chemistry Group, Zernike Institute for Advanced Materials, University of Groningen, 9747 AG, Groningen, The Netherlands
| | - Juan J Nogueira
- Department of Chemistry, Universidad Autónoma de Madrid, 28049, Madrid, Spain
- IADCHEM, Institute for Advanced Research in Chemistry, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| |
Collapse
|
3
|
Palmisano VF, Faraji S, Nogueira JJ. Effect of stacking interactions on charge transfer states in photoswitches interacting with ion channels. Phys Chem Chem Phys 2023; 25:8331-8335. [PMID: 36883995 PMCID: PMC10696555 DOI: 10.1039/d2cp05678j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 02/24/2023] [Indexed: 03/06/2023]
Abstract
The activity of ion channels can be reversibly photo-controlled via the binding of molecular photoswitches, often based on an azobenzene scaffold. Those azobenzene derivatives interact with aromatic residues of the protein via stacking interactions. In the present work, the effect of face-to-face and t-shaped stacking interactions on the excited state electronic structure of azobenzene and p-diaminoazobenzene integrated into the NaV1.4 channel is computationally investigated. The formation of a charge transfer state, caused by electron transfer from the protein to the photoswitches, is observed. This state is strongly red shifted when the interaction takes place in a face-to-face orientation and electron donating groups are present on the aromatic ring of the amino acids. The low-energy charge transfer state can interfere with the photoisomerization process after excitation to the bright state by leading to the formation of radical species.
Collapse
Affiliation(s)
- Vito F Palmisano
- Department of Chemistry, Universidad Autónoma de Madrid, 28049, Madrid, Spain.
- Theoretical Chemistry Group, Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands.
| | - Shirin Faraji
- Theoretical Chemistry Group, Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands.
| | - Juan J Nogueira
- Department of Chemistry, Universidad Autónoma de Madrid, 28049, Madrid, Spain.
- Institute for Advanced Research in Chemistry (IAdChem), Universidad Autónoma de Madrid, Madrid 28049, Spain
| |
Collapse
|
4
|
Cárdenas G, Lucia‐Tamudo J, Mateo‐delaFuente H, Palmisano VF, Anguita‐Ortiz N, Ruano L, Pérez‐Barcia Á, Díaz‐Tendero S, Mandado M, Nogueira JJ. MoBioTools: A toolkit to setup quantum mechanics/molecular mechanics calculations. J Comput Chem 2023; 44:516-533. [PMID: 36507763 PMCID: PMC10107847 DOI: 10.1002/jcc.27018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/16/2022] [Accepted: 09/20/2022] [Indexed: 12/15/2022]
Abstract
We present a toolkit that allows for the preparation of QM/MM input files from a conformational ensemble of molecular geometries. The package is currently compatible with trajectory and topology files in Amber, CHARMM, GROMACS and NAMD formats, and has the possibility to generate QM/MM input files for Gaussian (09 and 16), Orca (≥4.0), NWChem and (Open)Molcas. The toolkit can be used in command line, so that no programming experience is required, although it presents some features that can also be employed as a python application programming interface. We apply the toolkit in four situations in which different electronic-structure properties of organic molecules in the presence of a solvent or a complex biological environment are computed: the reduction potential of the nucleobases in acetonitrile, an energy decomposition analysis of tyrosine interacting with water, the absorption spectrum of an azobenzene derivative integrated into a voltage-gated ion channel, and the absorption and emission spectra of the luciferine/luciferase complex. These examples show that the toolkit can be employed in a manifold of situations for both the electronic ground state and electronically excited states. It also allows for the automatic correction of the active space in the case of CASSCF calculations on an ensemble of geometries, as it is shown for the azobenzene derivative photoswitch case.
Collapse
Affiliation(s)
- Gustavo Cárdenas
- Department of ChemistryUniversidad Autónoma de MadridMadridSpain
| | | | | | | | | | - Lorena Ruano
- Department of ChemistryUniversidad Autónoma de MadridMadridSpain
| | | | - Sergio Díaz‐Tendero
- Department of ChemistryUniversidad Autónoma de MadridMadridSpain
- Institute for Advanced Research in Chemistry (IAdChem)Universidad Autónoma de MadridMadridSpain
- Condensed Matter Physics Center (IFIMAC)Universidad Autónoma de MadridMadridSpain
| | - Marcos Mandado
- Department of Physical ChemistryUniversity of VigoVigoSpain
| | - Juan J. Nogueira
- Department of ChemistryUniversidad Autónoma de MadridMadridSpain
- Institute for Advanced Research in Chemistry (IAdChem)Universidad Autónoma de MadridMadridSpain
| |
Collapse
|
5
|
Dhiman A, Paras, Ramachandran C. Opto-electronic properties of isomers of azobispyridine. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.139956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
6
|
Szabó PB, Sabanés Zariquiey F, Nogueira JJ. Cosolvent and Dynamic Effects in Binding Pocket Search by Docking Simulations. J Chem Inf Model 2021; 61:5508-5523. [PMID: 34730967 PMCID: PMC8659376 DOI: 10.1021/acs.jcim.1c00924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Indexed: 11/30/2022]
Abstract
The lack of conformational sampling in virtual screening projects can lead to inefficient results because many of the potential drugs may not be able to bind to the target protein during the static docking simulations. Here, we performed ensemble docking for around 2000 United States Food and Drug Administration (FDA)-approved drugs with the RNA-dependent RNA polymerase (RdRp) protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) as a target. The representative protein structures were generated by clustering classical molecular dynamics trajectories, which were evolved using three solvent scenarios, namely, pure water, benzene/water and phenol/water mixtures. The introduction of dynamic effects in the theoretical model showed improvement in docking results in terms of the number of strong binders and binding sites in the protein. Some of the discovered pockets were found only for the cosolvent simulations, where the nonpolar probes induced local conformational changes in the protein that lead to the opening of transient pockets. In addition, the selection of the ligands based on a combination of the binding free energy and binding free energy gap between the best two poses for each ligand provided more suitable binders than the selection of ligands based solely on one of the criteria. The application of cosolvent molecular dynamics to enhance the sampling of the configurational space is expected to improve the efficacy of virtual screening campaigns of future drug discovery projects.
Collapse
Affiliation(s)
- P. Bernát Szabó
- Department
of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
- Department
of Chemistry, Universidad Autónoma
de Madrid, Calle Francisco Tomás y Valiente, 7, 28049 Madrid, Spain
| | | | - Juan J. Nogueira
- Department
of Chemistry, Universidad Autónoma
de Madrid, Calle Francisco Tomás y Valiente, 7, 28049 Madrid, Spain
- IADCHEM,
Institute for Advanced Research in Chemistry, Universidad Autónoma de Madrid, Calle Francisco Tomás y Valiente, 7, 28049 Madrid, Spain
| |
Collapse
|
7
|
Differences in local anaesthetic and antiepileptic binding in the inactivated state of human sodium channel Nav1.4. Biophys J 2021; 120:5553-5563. [PMID: 34774501 DOI: 10.1016/j.bpj.2021.11.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/27/2021] [Accepted: 11/05/2021] [Indexed: 11/22/2022] Open
Abstract
Voltage-gated sodium channels play a vital role in nerve and muscle cells, enabling them to encode and transmit electrical signals. Currently, there exist several classes of drugs that aim to inhibit these channels for therapeutic purposes, including local anesthetics, antiepileptics and antiarrhythmics. However, sodium-channel-inhibiting drugs lack subtype specificity; instead, they inhibit all sodium channels in the human body. Improving understanding of the mechanisms of binding of existing nonselective drugs is important in providing insight into how subtype-selective drugs could be developed. This study used molecular dynamics simulations to investigate the binding of the antiepileptics carbamazepine and lamotrigine and the local anesthetic lidocaine in neutral and charged states to the recently resolved human Nav1.4 channel. Replica exchange solute tempering was used to enable greater sampling of each compound within the pore. It was found that all four compounds show similarities in their binding sites within the pore. However, the positions of the carbamazepine and lamotrigine did not occlude the center of the pore but preferentially bound to homologous domain DII and DIII. The charged and neutral forms of lidocaine positioned themselves more centrally in the pore, with more common interactions with DIV. The best localized binding site was for charged lidocaine, whose aromatic moiety interacted with Y1593, whereas the amine projected toward the selectivity filter. Comparisons with our previous simulations and published structures highlight potential differences between tonic and use-dependent block related to conformational changes occurring in the pore.
Collapse
|
8
|
Nin-Hill A, Mueller NPF, Molteni C, Rovira C, Alfonso-Prieto M. Photopharmacology of Ion Channels through the Light of the Computational Microscope. Int J Mol Sci 2021; 22:12072. [PMID: 34769504 PMCID: PMC8584574 DOI: 10.3390/ijms222112072] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 10/31/2021] [Accepted: 11/02/2021] [Indexed: 12/13/2022] Open
Abstract
The optical control and investigation of neuronal activity can be achieved and carried out with photoswitchable ligands. Such compounds are designed in a modular fashion, combining a known ligand of the target protein and a photochromic group, as well as an additional electrophilic group for tethered ligands. Such a design strategy can be optimized by including structural data. In addition to experimental structures, computational methods (such as homology modeling, molecular docking, molecular dynamics and enhanced sampling techniques) can provide structural insights to guide photoswitch design and to understand the observed light-regulated effects. This review discusses the application of such structure-based computational methods to photoswitchable ligands targeting voltage- and ligand-gated ion channels. Structural mapping may help identify residues near the ligand binding pocket amenable for mutagenesis and covalent attachment. Modeling of the target protein in a complex with the photoswitchable ligand can shed light on the different activities of the two photoswitch isomers and the effect of site-directed mutations on photoswitch binding, as well as ion channel subtype selectivity. The examples presented here show how the integration of computational modeling with experimental data can greatly facilitate photoswitchable ligand design and optimization. Recent advances in structural biology, both experimental and computational, are expected to further strengthen this rational photopharmacology approach.
Collapse
Affiliation(s)
- Alba Nin-Hill
- Departament de Química Inorgànica i Orgànica (Secció de Química Orgànica) and Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, 08028 Barcelona, Spain; (A.N.-H.); (C.R.)
| | - Nicolas Pierre Friedrich Mueller
- Institute for Advanced Simulations IAS-5 and Institute of Neuroscience and Medicine INM-9, Computational Biomedicine, Forschungszentrum Jülich, 52425 Jülich, Germany;
- Faculty of Mathematics and Natural Sciences, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Carla Molteni
- Physics Department, King’s College London, London WC2R 2LS, UK;
| | - Carme Rovira
- Departament de Química Inorgànica i Orgànica (Secció de Química Orgànica) and Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, 08028 Barcelona, Spain; (A.N.-H.); (C.R.)
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08020 Barcelona, Spain
| | - Mercedes Alfonso-Prieto
- Institute for Advanced Simulations IAS-5 and Institute of Neuroscience and Medicine INM-9, Computational Biomedicine, Forschungszentrum Jülich, 52425 Jülich, Germany;
- Cécile and Oskar Vogt Institute for Brain Research, University Hospital Düsseldorf, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| |
Collapse
|