1
|
Tan K, Zhang H, Yang J, Wang H, Li Y, Ding G, Gu P, Yang S, Li J, Fan X. Organelle-oriented nanomedicines in tumor therapy: Targeting, escaping, or collaborating? Bioact Mater 2025; 49:291-339. [PMID: 40161442 PMCID: PMC11953998 DOI: 10.1016/j.bioactmat.2025.02.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 02/19/2025] [Accepted: 02/25/2025] [Indexed: 04/02/2025] Open
Abstract
Precise tumor therapy is essential for improving treatment specificity, enhancing efficacy, and minimizing side effects. Targeting organelles is a key strategy for achieving this goal and is a frontier research area attracting a considerable amount of attention. The concept of organelle targeting has a significant effect on the structural design of the nanodrugs employed. Most notably, the intricate interactions among different organelles in a tumor cell essentially create a unified system. Unfortunately, this aspect might have been somewhat overlooked when existing organelle-targeting nanodrugs were designed. In this review, we underscore the synergistic relationship among the various organelles and advocate for a holistic view of organelle-targeting design. Through the integration of biology and material science, recent advancements in organelle targeting, escaping, and collaborating are consolidated to offer fresh perspectives for the development of antitumor nanomedicines.
Collapse
Affiliation(s)
- Kexin Tan
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, and Center for Basic Medical Research and Innovation in Visual System Diseases of Ministry of Education, Shanghai, 200011, PR China
| | - Haiyang Zhang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, and Center for Basic Medical Research and Innovation in Visual System Diseases of Ministry of Education, Shanghai, 200011, PR China
| | - Jianyuan Yang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, and Center for Basic Medical Research and Innovation in Visual System Diseases of Ministry of Education, Shanghai, 200011, PR China
| | - Hang Wang
- National Key Laboratory of Materials for Integrated Circuits, Joint Laboratory of Graphene Materials and Applications, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, PR China
| | - Yongqiang Li
- National Key Laboratory of Materials for Integrated Circuits, Joint Laboratory of Graphene Materials and Applications, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, PR China
| | - Guqiao Ding
- National Key Laboratory of Materials for Integrated Circuits, Joint Laboratory of Graphene Materials and Applications, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, PR China
| | - Ping Gu
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, and Center for Basic Medical Research and Innovation in Visual System Diseases of Ministry of Education, Shanghai, 200011, PR China
| | - Siwei Yang
- National Key Laboratory of Materials for Integrated Circuits, Joint Laboratory of Graphene Materials and Applications, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, PR China
| | - Jipeng Li
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, and Center for Basic Medical Research and Innovation in Visual System Diseases of Ministry of Education, Shanghai, 200011, PR China
| | - Xianqun Fan
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, and Center for Basic Medical Research and Innovation in Visual System Diseases of Ministry of Education, Shanghai, 200011, PR China
| |
Collapse
|
2
|
Borah ST, Mondal A, Das B, Saha S, Das Sarma J, Gupta P. β-Cyclodextrin Encapsulated Platinum(II)-Based Nanoparticles: Photodynamic Therapy and Inhibition of the NF-κB Signaling Pathway in Glioblastoma. ACS APPLIED BIO MATERIALS 2025; 8:3331-3342. [PMID: 40148119 DOI: 10.1021/acsabm.5c00103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
This study explores cell death through photodynamic therapy (PDT) with β-cyclodextrin-encapsulated platinum(II)-based nanoparticles (Pt-NPs) and the effect on the NF-κB and stress pathways in glioblastoma. The encapsulation of the cyclometalated Pt(II) complex Pt(LL') within β-cyclodextrin (β-CD) enhances its biocompatibility, improves cellular penetration, and boosts emission, thereby increasing the effectiveness of PDT. Both Pt(LL') and Pt-NPs show minimal toxicity in the dark; however, Pt-NPs significantly increase toxicity toward glioblastoma Kr158 cells upon irradiation at 390 nm. The PDT-induced cell death is further validated through apoptosis assays and the modulation of some key survival pathways like NF-κB/p65, DJ-1, and ERp29. This is the first report of β-cyclodextrin-encapsulated platinum(II)-based nanoparticles designed to target glioblastoma cells through PDT, offering a promising strategy for enhancing therapeutic efficacy.
Collapse
Affiliation(s)
- Sakira Tabassum Borah
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, India 741246
| | - Anushka Mondal
- Department of Biological Sciences, Indian Institute of Science Education and Research, Kolkata, India 741246
| | - Bishnu Das
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, India 741246
| | - Sanchari Saha
- Department of Biological Sciences, Indian Institute of Science Education and Research, Kolkata, India 741246
| | - Jayasri Das Sarma
- Department of Biological Sciences, Indian Institute of Science Education and Research, Kolkata, India 741246
| | - Parna Gupta
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, India 741246
| |
Collapse
|
3
|
Zou JX, Chang MR, Kuznetsov NA, Kee JX, Babak MV, Ang WH. Metal-based immunogenic cell death inducers for cancer immunotherapy. Chem Sci 2025; 16:6160-6187. [PMID: 40160356 PMCID: PMC11949249 DOI: 10.1039/d4sc08495k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 02/24/2025] [Indexed: 04/02/2025] Open
Abstract
Immunogenic cell death (ICD) has attracted enormous attention over the past decade due to its unique characteristics in cancer cell death and its role in activating innate and adaptive immune responses against tumours. Many efforts have been dedicated to screening, identifying and discovering ICD inducers, resulting in the validation of several based on metal complexes. In this review, we provide a comprehensive summary of current metal-based ICD inducers, their molecular mechanisms for triggering ICD initiation and subsequent protective antitumour immune responses, along with considerations for validating ICD both in vitro and in vivo. We also aim to offer insights into the future development of metal complexes with enhanced ICD-inducing properties and their applications in potentiating antitumour immunity.
Collapse
Affiliation(s)
- Jiao Xia Zou
- Department of Chemistry, National University of Singapore 4 Science Drive 2 Singapore 117544 Singapore
| | - Meng Rui Chang
- Department of Chemistry, National University of Singapore 4 Science Drive 2 Singapore 117544 Singapore
| | - Nikita A Kuznetsov
- Drug Discovery Lab, Department of Chemistry, City University of Hong Kong 83 Tat Chee Avenue Hong Kong SAR 999077 People's Republic of China
| | - Jia Xuan Kee
- Department of Chemistry, National University of Singapore 4 Science Drive 2 Singapore 117544 Singapore
| | - Maria V Babak
- Drug Discovery Lab, Department of Chemistry, City University of Hong Kong 83 Tat Chee Avenue Hong Kong SAR 999077 People's Republic of China
| | - Wee Han Ang
- Department of Chemistry, National University of Singapore 4 Science Drive 2 Singapore 117544 Singapore
- NUS Graduate School - Integrative Science and Engineering Programme (ISEP), National University of Singapore 21 Lower Kent Ridge Rd Singapore 119077 Singapore
| |
Collapse
|
4
|
Arıkan Malkoç M, Özer Yaman S, Yuluğ E, Işık S, Kural B. L-Theanine Ameliorates Doxorubicin-Induced Ovarian Toxicity by Reducing Endoplasmic Reticulum Stress. Food Sci Nutr 2025; 13:e70150. [PMID: 40291931 PMCID: PMC12021995 DOI: 10.1002/fsn3.70150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/25/2025] [Accepted: 03/27/2025] [Indexed: 04/30/2025] Open
Abstract
Doxorubicin (DOX) is an anthracycline antibiotic widely used as an antineoplastic agent. L-theanine (LTN) is a unique amino acid obtained from tea (Camellia sinensis) and a highly valuable nutraceutical additive in the food industry. The aim of this study was to investigate the effects of LTN on ovarian endoplasmic reticulum stress (ERS) in DOX-induced rats. The rats were divided into one of four groups: Control (saline), DOX (20 mg/kg DOX, i.p.), DOX + LTN200 (DOX + 200 mg/kg LTN) and DOX + LTN400 (DOX + 400 mg/kg LTN). DOX was administered on the first day, followed by three consecutive days of LTN via oral gavage. The levels of ERS (GRP78, IRE1, and CHOP), oxidative stress (TOS, OSI, and MDA), inflammation (TNF-α) and fertility (E2 and PGN) parameters were analyzed using ELISA or assay kits. In addition, morphological and apoptotic (DNA fragmentation) changes in ovarian tissues were examined histologically. The study found that both doses of LTN were effective in reversing DOX-induced ERS by lowering oxidative stress, inflammation, and apoptosis, and alleviating morphological changes. However, the 400 mg/kg LTN group exhibited more significant effects. LTN treatment thus has the potential to alleviate the adverse effects on ovarian tissue caused by DOX by modulating the endoplasmic reticulum (ER) stress response and associated conditions.
Collapse
Affiliation(s)
- Meltem Arıkan Malkoç
- Vocational School of Health SciencesKaradeniz Technical UniversityTrabzonTürkiye
| | - Serap Özer Yaman
- Department of Medical Biochemistry, Faculty of MedicineUniversity of Health SciencesTrabzonTürkiye
| | - Esin Yuluğ
- Department of Histology and Embryology, Faculty of MedicineKaradeniz Technical UniversityTrabzonTürkiye
| | - Semanur Işık
- Department of Histology and Embryology, Faculty of MedicineKaradeniz Technical UniversityTrabzonTürkiye
| | - Birgül Kural
- Department of Medical Biochemistry, Faculty of MedicineKaradeniz Technical UniversityTrabzonTürkiye
| |
Collapse
|
5
|
Chaudhary A, Kumar A, Swain N, Chaudhary K, Sonker H, Dewan S, Patil RA, Singh RG. Endocytic Uptake of Self-Assembled Iridium(III) Nanoaggregates for Holistic Treatment of Metastatic 3D Triple-Negative Breast Tumor Spheroids. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2406809. [PMID: 39607393 DOI: 10.1002/smll.202406809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/23/2024] [Indexed: 11/29/2024]
Abstract
Triple-negative breast cancer (TNBC) presents a formidable challenge due to its aggressive behavior and limited array of treatment options available. This study focuses on employing nanoaggregate material of organometallic Ir(III) complexes for treating TNBC cell line MDA-MB-231. In this approach, Ir(III) complexes with enhanced cellular permeability are strategically designed and achieved through the incorporation of COOMe groups into their structure. The lead compound, IrL1, exhibits promiscuous nanoscale aggregation in RPMI cell culture media, characterized by a stable hydrodynamic effective diameter ranging from 190 to 202 nm over 48 h. With excellent photo-responsive contrast-enhanced cell imaging properties IrL1 exhibits an outstanding IC50, 48h value of 36.05± 0.03 nm when irradiated with 390 nm light in MDA-MB-231 (IC50, 48 h of Cisplatin is 5.29 µµ). In cell, investigation confirms that IrL1 nanoaggregates internalization via energy-dependent endocytosis undergo ferroptosis and ROS mediated cell death in MDA-MB-231 cells. Further, these in vivo studies using NOD-SCID mice confirmed that IrL1 exhibits a tendency to ablate tumors inoculated in mice models at therapeutically relevant doses. Thus, this comprehensive approach holds promise for expanding the repertoire of organometallic Ir(III) nanoaggregates with adaptable characteristics, thereby advancing their clinical utility of nanomedicine in the holistic treatment of metastatic 3D triple-negative breast tumor spheroids.
Collapse
Affiliation(s)
| | - Ashwini Kumar
- Department of Chemistry, IIT Kanpur, Kanpur, UP, 208016, India
| | - Nikhil Swain
- Department of Chemistry, IIT Kanpur, Kanpur, UP, 208016, India
| | - Kajal Chaudhary
- Department of Chemistry, IIT Kanpur, Kanpur, UP, 208016, India
| | - Himanshu Sonker
- Department of Chemistry, IIT Kanpur, Kanpur, UP, 208016, India
| | - Sayari Dewan
- Department of Chemistry, IIT Kanpur, Kanpur, UP, 208016, India
| | | | | |
Collapse
|
6
|
Yao J, Song S, Liu T, Wang J, Li C, Liu J, Yuan Y, Zhao H. Isoguanosine-Induced ER Stress via AMPK Enhances Chemosensitivity in OSCC. J Dent Res 2025:220345241303168. [PMID: 40071313 DOI: 10.1177/00220345241303168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2025] Open
Abstract
Oral squamous cell carcinoma (OSCC) is the most common malignancy of the head and neck; however, the efficacy of existing treatment is limited and new effective strategies need to be explored. Our previous work demonstrates that isoguanosine (isoG) is a promising nucleoside molecule with superior self-assembly capability and significant anti-OSCC potential. However, the antitumor mechanism of isoG remains unclear. In this study, we reveal that the antiproliferative effect of isoG is mediated by its cellular metabolite, isoguanosine 5'-monophosphate (isoGMP), which induces excessive endoplasmic reticulum (ER) stress and cell death through adenosine monophosphate-activated protein kinase (AMPK) activation. IsoG activates AMPK and induces ER stress at low concentrations, with minimal impact on cell viability at these concentrations. To further explore the therapeutic potential of isoG, we investigated its role in modulating chemosensitivity. Our findings show that AMPK activation enhances the sensitivity of OSCC cells to 5-fluorouracil (5-FU), and the combination of isoG and 5-FU exhibits a synergistic anticancer effect. Building on the self-assembly characteristics of isoG, we developed an innovative treatment platform by introducing dynamic borate ester bonds to form an isoguanosine-phenylenediboronic acid-isoguanosine (isoGPBisoG) structure. When combined with 5-FU, this platform achieved remarkable therapeutic efficacy in 2 OSCC cell-derived xenograft models, with tumor inhibition rates of 71.0% and 56.6%, respectively, compared with control. These findings establish isoG as a potent enhancer of chemotherapeutic efficacy in OSCC via AMPK activation. More importantly, the isoGPBisoG and 5-FU combination represents a significant paradigm of a synergistic therapy platform. This novel approach offers a promising direction for the development of more effective OSCC treatments.
Collapse
Affiliation(s)
- J Yao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management & Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - S Song
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management & Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - T Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management & Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - J Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management & Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - C Li
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, People's Republic of China
| | - J Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management & Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Y Yuan
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management & Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - H Zhao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management & Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
7
|
Liang JL, Huang QX, Chen QW, Jin XK, Han ZY, Ji P, Cheng SX, Chen WH, Zhang XZ. Perturbing Organelle-Level K +/Ca 2+ Homeostasis by Nanotherapeutics for Enhancing Ion-Mediated Cancer Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2416574. [PMID: 39955648 DOI: 10.1002/adma.202416574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 01/31/2025] [Indexed: 02/17/2025]
Abstract
Intracellular ions are involved in numerous pivotal immune processes, but the precise regulation of these signaling ions to achieve innovative immune therapeutic strategies is still a huge challenge. Here, an ion-mediated immunotherapy agent (IMIA) is engineered to achieve precise spatiotemporal control of perturbing K+/Ca2+ homeostasis at the organelle-level, thereby amplifying antitumor immune responses to achieve high-performance cancer therapy. By taking in intracellular K+ and supplying exogenous Ca2+ within tumor cells, K+/Ca2+ homeostasis is perturbed by IMIA. In parallel, perturbing K+ homeostasis induced endoplasmic reticulum (ER) stress triggers the release of Ca2+ from ER and causes a decreased concentration of Ca2+ in ER, which further accelerates ER-mitochondria Ca2+ flux and the influx of extracellular Ca2+ (store-operated Ca2+ entry (SOCE)) via opening Ca2+ release-activated Ca2+ (CRAC) channels, thus creating a self-amplifying ion interference loop to perturb K+/Ca2+ homeostasis. In this process, the elevated immunogenicity of tumor cells would evoke robust antitumor immune responses by driving the excretion of damage-associated molecular patterns (DAMPs). Importantly, this ion-immunotherapy strategy reshapes the immunosuppressive tumor microenvironment (TME), and awakens the systemic immune response and long-term immune memory effect, thus effectively inhibiting the growth of primary/distant tumors, orthotopic tumors as well as metastatic tumors in different mice models.
Collapse
Affiliation(s)
- Jun-Long Liang
- Department of Cardiology, Zhongnan Hospital, Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Qian-Xiao Huang
- Department of Cardiology, Zhongnan Hospital, Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Qi-Wen Chen
- Department of Cardiology, Zhongnan Hospital, Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Xiao-Kang Jin
- Department of Cardiology, Zhongnan Hospital, Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Zi-Yi Han
- Department of Cardiology, Zhongnan Hospital, Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Ping Ji
- Department of Cardiology, Zhongnan Hospital, Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Si-Xue Cheng
- Department of Cardiology, Zhongnan Hospital, Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Wei-Hai Chen
- Department of Cardiology, Zhongnan Hospital, Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Xian-Zheng Zhang
- Department of Cardiology, Zhongnan Hospital, Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| |
Collapse
|
8
|
Li Y, Liu H, Fang R, Jin J, Yang F, Chen J, Zhang J. Designing novel Au(III) complexes based on the structure of diazepam: Achieving a multiaction mechanism against glioma. Eur J Med Chem 2025; 283:117171. [PMID: 39705733 DOI: 10.1016/j.ejmech.2024.117171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/01/2024] [Accepted: 12/12/2024] [Indexed: 12/22/2024]
Abstract
Metal-based drugs have been used in the clinical treatment of tumors for over 30 years. However, no metal-based drugs have been clinically approved to treat glioma. Although metal complexes have excellent cytotoxicity, their most critical problem is crossing the blood-brain barrier. Therefore, to enable metal complexes to cross blood-brain barrier and target glioma therapy, herein, we propose to rationally used the basic structure of diazepam (5-chlorobenzophenone) and thiosemicarbazide to synthesize gold (Au) complexes C1, C2 and C3 with antiglioma activity. The C3 complex with two methyl groups attached to the N3 of thiosemicarbazone exhibited excellent cytotoxicity to glioma cells through its multiaction mechanism against glioma, inducing apoptosis, autophagy death, and deoxyribonucleic acid damage. In addition, the synthesized C3 complex can effectively cross the blood-brain barrier and accumulate in glioma, considerably decreasing the untoward reaction in vivo. Our findings provide a novel strategy for designing metal-based complexes for the treatment of glioma.
Collapse
Affiliation(s)
- Yanping Li
- Mental Health Education Center of College Student, Guilin Medical University, Huan Cheng North 2nd Road 109, Guilin, 541004, PR China
| | - Haoran Liu
- Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guangxi Health Commission Key Laboratory of Tumor Immunology and Receptor-Targeted Drug Basic Research, Guilin Medical University, Huan Cheng North 2nd Road 109, Guilin, 541004, PR China
| | - Ronghao Fang
- Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guangxi Health Commission Key Laboratory of Tumor Immunology and Receptor-Targeted Drug Basic Research, Guilin Medical University, Huan Cheng North 2nd Road 109, Guilin, 541004, PR China
| | - Jiamin Jin
- Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guangxi Health Commission Key Laboratory of Tumor Immunology and Receptor-Targeted Drug Basic Research, Guilin Medical University, Huan Cheng North 2nd Road 109, Guilin, 541004, PR China
| | - Feng Yang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi, 541004, PR China
| | - Jian Chen
- Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guangxi Health Commission Key Laboratory of Tumor Immunology and Receptor-Targeted Drug Basic Research, Guilin Medical University, Huan Cheng North 2nd Road 109, Guilin, 541004, PR China.
| | - Juzheng Zhang
- Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guangxi Health Commission Key Laboratory of Tumor Immunology and Receptor-Targeted Drug Basic Research, Guilin Medical University, Huan Cheng North 2nd Road 109, Guilin, 541004, PR China.
| |
Collapse
|
9
|
Yuan R, Chen W, Zhuang M, Chi X, Ma L, Mi L, Dong M, Huang P, Wan Y, Zhang P, Wu H. Tröger's Base as a Potential Bridge to Type-I Photosensitizers: Mechanism and Antitumor Applications. J Med Chem 2025; 68:1483-1498. [PMID: 39772640 DOI: 10.1021/acs.jmedchem.4c01587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
In contrast to Type-II photodynamic therapy (PDT), Type-I PDT with less oxygen consumption has shown great potential against tumor hypoxia. However, there are limited strategies available for designing Type-I photosensitizers (PSs). Herein, we present a promising strategy for synthesizing Type-I PSs (TBC-1-TBC-4) using Tröger's base (TB) framework. The TB framework can promote intersystem crossing efficiency and create an electron-rich environment, making it the most likely site for electron transfer to O2 to generate Type-I ROS. As anticipated, TBC-1-TBC-4 demonstrates Type-I ROS generation capability and their impressive visible light-harvesting ability significantly enhances this capability. Among them, TBC-1 demonstrates outstanding biocompatibility and PDT efficiency in vitro under both normoxia and hypoxia. Furthermore, TBC-1 effectively inhibits tumor growth in vivo, with negligible side effects. This is attributed to TBC-1's efficient generation of Type-I ROS and endoplasmic reticulum targeting ability. This study thus offers useful insights into developing Type-I PSs.
Collapse
Affiliation(s)
- Rui Yuan
- Jiangsu Province Engineering Research Centre of Cardiovascular Drugs Targeting Endothelial Cell, School of Life Science, Jiangsu Normal University, No. 101 Shanghai Road, 221116 Xuzhou, China
| | - Wen Chen
- School of Chemistry and Materials Science, Jiangsu Normal University, No. 101 Shanghai Road, 221116 Xuzhou, China
| | - Minyan Zhuang
- Jiangsu Province Engineering Research Centre of Cardiovascular Drugs Targeting Endothelial Cell, School of Life Science, Jiangsu Normal University, No. 101 Shanghai Road, 221116 Xuzhou, China
| | - Xiaowei Chi
- School of Chemistry and Materials Science, Jiangsu Normal University, No. 101 Shanghai Road, 221116 Xuzhou, China
| | - Lin Ma
- Jiangsu Province Engineering Research Centre of Cardiovascular Drugs Targeting Endothelial Cell, School of Life Science, Jiangsu Normal University, No. 101 Shanghai Road, 221116 Xuzhou, China
| | - Lei Mi
- School of Chemistry and Materials Science, Jiangsu Normal University, No. 101 Shanghai Road, 221116 Xuzhou, China
| | - Mengxue Dong
- School of Chemistry and Materials Science, Jiangsu Normal University, No. 101 Shanghai Road, 221116 Xuzhou, China
| | - Peng Huang
- School of Chemistry and Materials Science, Jiangsu Normal University, No. 101 Shanghai Road, 221116 Xuzhou, China
| | - Yu Wan
- Jiangsu Province Engineering Research Centre of Cardiovascular Drugs Targeting Endothelial Cell, School of Life Science, Jiangsu Normal University, No. 101 Shanghai Road, 221116 Xuzhou, China
| | - Peng Zhang
- Jiangsu Province Engineering Research Centre of Cardiovascular Drugs Targeting Endothelial Cell, School of Life Science, Jiangsu Normal University, No. 101 Shanghai Road, 221116 Xuzhou, China
| | - Hui Wu
- School of Chemistry and Materials Science, Jiangsu Normal University, No. 101 Shanghai Road, 221116 Xuzhou, China
- Jiangsu Province Engineering Research Centre of Cardiovascular Drugs Targeting Endothelial Cell, School of Life Science, Jiangsu Normal University, No. 101 Shanghai Road, 221116 Xuzhou, China
| |
Collapse
|
10
|
Xiang Y, Li C, Wang Z, Feng J, Zhang J, Yang Y, Zhou J, Zhang J. TRIM13 Reduces Damage to Alveolar Epithelial Cells in COPD by Inhibiting Endoplasmic Reticulum Stress-Induced ER-Phagy. Lung 2024; 202:821-830. [PMID: 39382594 PMCID: PMC11541378 DOI: 10.1007/s00408-024-00753-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 09/20/2024] [Indexed: 10/10/2024]
Abstract
PURPOSE Tripartite motif-containing protein 13 (TRIM13) directly or indirectly participates in autophagy and apoptosis. However, it remains unclear whether TRIM13 participates in chronic obstructive pulmonary disease (COPD) progression. This study aimed to reveal the molecular mechanisms through which TRIM13 regulates alveolar epithelial cell injury in COPD to provide new molecular targets for COPD treatment. METHODS The TRIM13 expression levels were determined in clinical COPD patients and a rat emphysema model. A cigarette smoke-induced model of endoplasmic reticulum stress (ERS) and endoplasmic reticulum autophagy (ER-phagy) was developed using A549 cells, and the effects of TRIM13 gene overexpression/knockdown on ERS, ER-phagy, and cell apoptosis were assessed in these cells. RESULTS TRIM13 expression was significantly decreased in the lung tissues of COPD patients and rats with emphysema. Moreover, the apoptosis level was significantly increased in the lung tissues of rats with emphysema. TRIM13 gene overexpression reduced the expression levels of ERS-related molecules (GRP78, GRP94, XBP-1, and eIF2a) in the COPD model; it also lowered the ER-phagy level, as evidenced by decreased number of autolysosomes observed by transmission electron microscopy, improved endoplasmic reticulum structure, reduced LC3-II/LC3-I and Beclin1 expression levels, and increased expression level of the autophagy inhibitory molecule Bcl-2. TRIM13 gene knockdown, however, led to opposite results. CONCLUSION TRIM13 expression attenuated alveolar epithelial cell injury in COPD by inhibiting ERS-induced ER-phagy.
Collapse
Affiliation(s)
- Yaling Xiang
- Department of Respiratory Critical Care Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, China
| | - Chuntao Li
- Department of Respiratory Critical Care Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, China
| | - Zhiyuan Wang
- Department of Respiratory Critical Care Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, China
| | - Jiagang Feng
- Department of Respiratory Critical Care Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, China
| | - Jiaqiang Zhang
- Department of Respiratory Critical Care Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, China
| | - Yue Yang
- Department of Respiratory Critical Care Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, China
| | - Jinbiao Zhou
- Department of Respiratory Critical Care Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, China
| | - Jianqing Zhang
- Department of Respiratory Critical Care Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, China.
| |
Collapse
|
11
|
Mishra T, Dubey N, Basu S. Small molecules for impairing endoplasmic reticulum in cancer. Org Biomol Chem 2024; 22:8689-8699. [PMID: 39373910 DOI: 10.1039/d4ob01238k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
The endoplasmic reticulum plays an important role in maintaining the protein homeostasis of cells as well as regulating Ca2+ storage. An increased load of unfolded proteins in the endoplasmic reticulum due to alterations in the cell's metabolic pathway leads to the activation of the unfolded protein response, also known as ER stress. ER stress plays a major role in maintaining the growth and survival of various cancer cells, but persistent ER stress can also lead to cell death and hence can be a therapeutic pathway in the treatment of cancer. In this review, we focus on different types of small molecules that impair different ER stress sensors, the protein degradation machinery, and chaperone proteins. We also review the metal complexes and other miscellaneous compounds inducing ER stress through multiple mechanisms. Finally, we discuss the challenges in this emerging area of research and the potential direction of research to overcome them towards next-generation ER-targeted cancer therapy.
Collapse
Affiliation(s)
- Tripti Mishra
- Department of Chemistry, Indian Institute of Technology (IIT) Gandhinagar, Palaj, Gandhinagar, Gujarat, 382355, India.
| | - Navneet Dubey
- Department of Chemistry, Indian Institute of Technology (IIT) Gandhinagar, Palaj, Gandhinagar, Gujarat, 382355, India.
| | - Sudipta Basu
- Department of Chemistry, Indian Institute of Technology (IIT) Gandhinagar, Palaj, Gandhinagar, Gujarat, 382355, India.
| |
Collapse
|
12
|
Wu M, Yan J, Qin S, Fu L, Sun S, Li W, Lv J, Chen L. Connections Between Endoplasmic Reticulum Stress and Prognosis of Hepatocarcinoma. Bioengineering (Basel) 2024; 11:1136. [PMID: 39593796 PMCID: PMC11591847 DOI: 10.3390/bioengineering11111136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/04/2024] [Accepted: 11/09/2024] [Indexed: 11/28/2024] Open
Abstract
Endoplasmic reticulum (ER) stress is a state in which misfolded or unfolded proteins accumulate in the lumen of the ER as a result of some exogenous or endogenous factors. It plays a crucial role in the pathogenesis of malignancies, affecting cell survival, proliferation, and metastasis in cancer. ER stress genes could provide new ideas for potential therapeutic targets in cancer. In our study, we aimed to construct an ER stress-related genes (ERGs) model for hepatocellular carcinoma (HCC). ERGs with differential expression and significant survival were screened to construct a prognostic model. The effectiveness of the model was successfully validated by external datasets. High and low-risk groups were classified based on risk scores. Functional analysis showed risk groups involved in the unfolded protein response, DNA repair, and other differential pathways. When compared to patients with low risk, the prognosis for HCC patients in the high-risk group might be worsened by disruptions in these pathways. Importantly, we considered genomic druggability and predicted drugs. Sorafenib-induced autophagy in HCC cells through an ES stress mechanism. Sorafenib was more sensitive for high-risk patients. In brief, our model predicted the prognosis of HCC and provided novel treatment strategies for the study of other cancers.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Junjie Lv
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China; (M.W.); (J.Y.); (S.Q.); (L.F.); (S.S.); (W.L.)
| | - Lina Chen
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China; (M.W.); (J.Y.); (S.Q.); (L.F.); (S.S.); (W.L.)
| |
Collapse
|
13
|
Xu W, Suo A, Aldai AJM, Wang Y, Fan J, Xia Y, Xu J, Chen Z, Zhao H, Zhang M, Qian J. Hollow Calcium/Copper Bimetallic Amplifier for Cuproptosis/Paraptosis/Apoptosis Cancer Therapy via Cascade Reinforcement of Endoplasmic Reticulum Stress and Mitochondrial Dysfunction. ACS NANO 2024; 18:30053-30068. [PMID: 39412236 DOI: 10.1021/acsnano.4c11455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
The endoplasmic reticulum (ER) and mitochondria are essential organelles that play crucial roles in maintaining cellular homeostasis. The simultaneous induction of ER stress and mitochondrial dysfunction represents a promising yet challenging strategy for cancer treatment. Herein, a hollow calcium-copper bimetallic nanoplatform is developed as a cascade amplifier to reinforce ER stress and mitochondrial dysfunction for breast cancer treatment. For this purpose, we report a facile method for preparing hollow CaCO3 (HCC) nanoparticles by regulating the dissolution-recrystallization process of amorphous CaCO3, and the amplifier D@HCC-CuTH is meticulously fabricated by sequentially coating disulfiram-loaded HCC nanoparticles with a copper coordination polymer and hyaluronan. In tumor cells, the dithiocarbamate-copper complex generated in situ by liberated disulfiram and Cu2+ inhibits the ubiquitin-proteasome system, causing irreversible ER stress and intracellular Ca2+ redistribution. Meanwhile, the amplifier induces mitochondrial dysfunction via triggering a self-amplifying loop of mitochondrial Ca2+ burst, and reactive oxygen species augment. Additionally, Cu2+ induces dihydrolipoamide S-acetyltransferase oligomerization in mitochondria, further exacerbating mitochondrial damage via cuproptosis. Collectively, ER stress amplification and mitochondrial dysfunction synergistically induce a cuproptosis-paraptosis-apoptosis trimodal cell death pathway, which demonstrates significant efficacy in suppressing tumor growth. This study presents a paradigm for synchronously inducing subcellular organelle disorders to boost cancer multimodal therapy.
Collapse
Affiliation(s)
- Weijun Xu
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Aili Suo
- Department of Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | | | - Yaping Wang
- Department of Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Jingjing Fan
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yuxiang Xia
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jiaxuan Xu
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Zhexi Chen
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Huichen Zhao
- Department of Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Mingzhen Zhang
- School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Junmin Qian
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
14
|
Attar GS, Kumar M, Bhalla V. Targeting sub-cellular organelles for boosting precision photodynamic therapy. Chem Commun (Camb) 2024; 60:11610-11624. [PMID: 39320942 DOI: 10.1039/d4cc02702g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Among various cancer treatment methods, photodynamic therapy has received significant attention due to its non-invasiveness and high efficiency in inhibiting tumour growth. Recently, specific organelle targeting photosensitizers have received increasing interest due to their precise accumulation and ability to trigger organelle-mediated cell death signalling pathways, which greatly reduces the drug dosage, minimizes toxicity, avoids multidrug resistance, and prevents recurrence. In this review, recent advances and representative photosensitizers used in targeted photodynamic therapy on organelles, specifically including the endoplasmic reticulum, Golgi apparatus, mitochondria, nucleus, and lysosomes, have been comprehensively reviewed with a focus on organelle structure and organelle-mediated cell death signalling pathways. Furthermore, a perspective on future research and potential challenges in precision photodynamic therapy has been presented at the end.
Collapse
Affiliation(s)
- Gopal Singh Attar
- Department of chemistry UGC Sponsored-Centre for Advanced Studies-I, Guru Nanak Dev University, Amritsar-143005, Punjab, India.
| | - Manoj Kumar
- Department of chemistry UGC Sponsored-Centre for Advanced Studies-I, Guru Nanak Dev University, Amritsar-143005, Punjab, India.
| | - Vandana Bhalla
- Department of chemistry UGC Sponsored-Centre for Advanced Studies-I, Guru Nanak Dev University, Amritsar-143005, Punjab, India.
| |
Collapse
|
15
|
Xu M, Wu G, You Q, Chen X. The Landscape of Smart Biomaterial-Based Hydrogen Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401310. [PMID: 39166484 PMCID: PMC11497043 DOI: 10.1002/advs.202401310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 05/19/2024] [Indexed: 08/23/2024]
Abstract
Hydrogen (H2) therapy is an emerging, novel, and safe therapeutic modality that uses molecular hydrogen for effective treatment. However, the impact of H2 therapy is limited because hydrogen molecules predominantly depend on the systemic administration of H2 gas, which cannot accumulate at the lesion site with high concentration, thus leading to limited targeting and utilization. Biomaterials are developed to specifically deliver H2 and control its release. In this review, the development process, stimuli-responsive release strategies, and potential therapeutic mechanisms of biomaterial-based H2 therapy are summarized. H2 therapy. Specifically, the produced H2 from biomaterials not only can scavenge free radicals, such as reactive oxygen species (ROS) and lipid peroxidation (LPO), but also can inhibit the danger factors of initiating diseases, including pro-inflammatory cytokines, adenosine triphosphate (ATP), and heat shock protein (HSP). In addition, the released H2 can further act as signal molecules to regulate key pathways for disease treatment. The current opportunities and challenges of H2-based therapy are discussed, and the future research directions of biomaterial-based H2 therapy for clinical applications are emphasized.
Collapse
Affiliation(s)
- Min Xu
- College of Biomedical EngineeringTaiyuan University of TechnologyTaiyuan030024China
| | - Gege Wu
- Departments of Diagnostic Radiology, SurgeryChemical and Biomolecular Engineeringand Biomedical EngineeringYong Loo Lin School of Medicine and College of Design and EngineeringNational University of SingaporeSingapore119074Singapore
- Nanomedicine Translational Research ProgramNUS Center for NanomedicineYong Loo Lin School of MedicineNational University of SingaporeSingapore117597Singapore
- Theranostics Center of Excellence (TCE)Yong Loo Lin School of MedicineNational University of Singapore11 Biopolis Way, HeliosSingapore138667Singapore
- Clinical Imaging Research CentreCentre for Translational MedicineYong Loo Lin School of MedicineNational University of SingaporeSingapore117599Singapore
| | - Qing You
- Departments of Diagnostic Radiology, SurgeryChemical and Biomolecular Engineeringand Biomedical EngineeringYong Loo Lin School of Medicine and College of Design and EngineeringNational University of SingaporeSingapore119074Singapore
- Nanomedicine Translational Research ProgramNUS Center for NanomedicineYong Loo Lin School of MedicineNational University of SingaporeSingapore117597Singapore
- Theranostics Center of Excellence (TCE)Yong Loo Lin School of MedicineNational University of Singapore11 Biopolis Way, HeliosSingapore138667Singapore
- Clinical Imaging Research CentreCentre for Translational MedicineYong Loo Lin School of MedicineNational University of SingaporeSingapore117599Singapore
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, SurgeryChemical and Biomolecular Engineeringand Biomedical EngineeringYong Loo Lin School of Medicine and College of Design and EngineeringNational University of SingaporeSingapore119074Singapore
- Nanomedicine Translational Research ProgramNUS Center for NanomedicineYong Loo Lin School of MedicineNational University of SingaporeSingapore117597Singapore
- Theranostics Center of Excellence (TCE)Yong Loo Lin School of MedicineNational University of Singapore11 Biopolis Way, HeliosSingapore138667Singapore
- Clinical Imaging Research CentreCentre for Translational MedicineYong Loo Lin School of MedicineNational University of SingaporeSingapore117599Singapore
| |
Collapse
|
16
|
You Y, Lin S, Tang C, Li Y, Yan D, Wang D, Chen X. Dual-/multi-organelle-targeted AIE probes associated with oxidative stress for biomedical applications. J Mater Chem B 2024; 12:8812-8824. [PMID: 39150370 DOI: 10.1039/d4tb01440e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
In situ monitoring of biological processes between different organelles upon oxidative stress is one of the most important research hotspots. Fluorescence imaging is especially suitable for biomedical applications due to its distinct advantages of high spatiotemporal resolution, high sensitivity, non-invasiveness, and in situ monitoring capabilities. However, most fluorescent probes can only achieve light-up imaging of single organelles, thus the combined use of two or more probes is usually required for monitoring biological processes between organelles, which can suffer from tedious staining and washing procedures, increased cytotoxicity and poor photostability. Exogenetic oxidants can affect broad-spectrum subcellular organelles, which are not conducive to in situ monitoring of biological processes between specific organelles. To tackle these challenges, a series of dual-/multi-organelle-targeted aggregation-induced emission (AIE) probes associated with oxidative stress have been designed and developed in the past few years. Herein, the recent progress of these AIE probes is summarized in biomedical applications, such as apoptosis monitoring, interplay between organelles, microenvironmental changes of organelles, organelle morphology tracking, precise cancer therapy, and so forth. Moreover, the further outlook for dual-/multi-organelle-targeted AIE probes is discussed, aiming to promote innovative research in biomedical applications.
Collapse
Affiliation(s)
- Yuanyuan You
- School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China.
| | - Songling Lin
- School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China.
| | - Chengwei Tang
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, 523808, China.
| | - Yuchao Li
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, 523808, China.
| | - Dingyuan Yan
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Dong Wang
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Xiaohui Chen
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, 523808, China.
| |
Collapse
|
17
|
M M, Chhatar S, Dey S, Panda TR, Chakraborty S, Ray P, Patra C, Patra M. Analysis of Antiangiogenic Potential and Cell Death Mechanism of a Kinetically Inert Platinum Antitumor Agent. ACS Med Chem Lett 2024; 15:1482-1490. [PMID: 39291013 PMCID: PMC11403735 DOI: 10.1021/acsmedchemlett.4c00207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/08/2024] [Accepted: 08/15/2024] [Indexed: 09/19/2024] Open
Abstract
Cancer is a multifaceted disease involving various pathological processes, including uncontrolled proliferation, development of resistance, angiogenesis, metastasis, etc. Therefore, chemotherapeutic agents capable of simultaneously inhibiting proliferation, circumventing chemoresistance, and inhibiting angiogenesis can address multiple aspects of cancer progression. We recently identified a highly promising kinetically inert platinum antitumor agent, namely, Pt-1, that can circumvent cisplatin resistance and showed negligible nephrotoxicity. In this study, we explored the antiangiogenic potential and elucidated the detailed mechanism of cell death through which it exerts its antitumor activity. Pt-1 strongly inhibited angiogenesis in a zebrafish in vivo model at its therapeutically relevant nontoxic dose. Further, Pt-1 exerted antitumor activity through necroptosis- and paraptosis-mediated cell death. Taken together, the combination of antitumor activity with antiangiogenic property in Pt-1 makes it a highly promising antitumor candidate.
Collapse
Affiliation(s)
- Manikandan M
- Medicinal Chemistry and Cell Biology Laboratory, Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai, Maharashtra 400005, India
| | - Sushanta Chhatar
- Medicinal Chemistry and Cell Biology Laboratory, Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai, Maharashtra 400005, India
| | - Saurabh Dey
- Department of Developmental Biology, Agharkar Research Institute, G G Agarkar Road, Pune, 411004 Maharashtra, India
| | - Tushar Ranjan Panda
- Medicinal Chemistry and Cell Biology Laboratory, Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai, Maharashtra 400005, India
| | - Sourav Chakraborty
- Imaging Cell Signaling & Therapeutics Lab, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Sector 22, Kharghar, Navi Mumbai, Maharashtra 410210, India
- Homi Bhabha National Institute, second floor, BARC Training School Complex, Anushaktinagar, Mumbai, Maharashtra 400094, India
| | - Pritha Ray
- Imaging Cell Signaling & Therapeutics Lab, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Sector 22, Kharghar, Navi Mumbai, Maharashtra 410210, India
- Homi Bhabha National Institute, second floor, BARC Training School Complex, Anushaktinagar, Mumbai, Maharashtra 400094, India
| | - Chinmoy Patra
- Department of Developmental Biology, Agharkar Research Institute, G G Agarkar Road, Pune, 411004 Maharashtra, India
| | - Malay Patra
- Medicinal Chemistry and Cell Biology Laboratory, Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai, Maharashtra 400005, India
| |
Collapse
|
18
|
Mentese A, Demir S, Yulug E, Kucuk H, Alemdar NT, Demir EA, Aliyazicioglu Y. Gentisic acid attenuates 5-fluorouracil-induced ovotoxicity in rats via modulating Nrf2 signalling: An experimental approach. Reprod Toxicol 2024; 128:108661. [PMID: 38986848 DOI: 10.1016/j.reprotox.2024.108661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/25/2024] [Accepted: 07/06/2024] [Indexed: 07/12/2024]
Abstract
5-Fluorouracil (5-FU) is the third most used chemotherapeutic in the world with its anticancer effect resulting from its potential to block DNA replication. Like other cytotoxic agents, 5-FU has side effects on healthy tissues, and the reproductive system is among the tissues most affected by these undesirable effects. Gentisic acid (GEA) is a secondary metabolite that is abundant in fruits, vegetables and spices and has antioxidant activity. This study was conducted to investigate the toxicity of 5-FU in rat ovarian tissue and to determine the therapeutic activity of GEA on ovotoxicity caused by 5-FU. The results showed that 5-FU caused histopathological findings by suppressing Nrf2 pathway and accordingly increasing oxidative stress, inflammation, endoplasmic reticulum stress and apoptosis. However, GEA treatments after 5-FU application ameliorated 5-FU-induced ovotoxicity dose-dependently through activation of Nrf2 pathway. All these findings provided strong evidence supporting the hypothesis that GEA treatment may have therapeutic effects against 5-FU-induced ovarian damage. However, the beneficial effect of GEA use in eliminating ovarian damage in women after 5-FU chemotherapy should continue to be investigated with more detailed molecular studies.
Collapse
Affiliation(s)
- Ahmet Mentese
- Department of Medical Services and Techniques, Vocational School of Health Services, Karadeniz Technical University, Trabzon 61080, Turkiye
| | - Selim Demir
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Karadeniz Technical University, Trabzon 61080, Turkiye.
| | - Esin Yulug
- Department of Histology and Embryology, Faculty of Medicine, Karadeniz Technical University, Trabzon 61080, Turkey
| | - Hatice Kucuk
- Department of Pathology, Kanuni Training and Research Hospital, University of Health Sciences, Trabzon 61250, Turkiye
| | - Nihal Turkmen Alemdar
- Department of Medical Biochemistry, Graduate School of Health Sciences, Karadeniz Technical University, Trabzon 61080, Turkiye; Department of Medical Services and Techniques, Vocational School of Health Services, Recep Tayyip Erdogan University, Rize 53100, Turkiye
| | - Elif Ayazoglu Demir
- Department of Chemistry and Chemical Processing Technologies, Macka Vocational School, Karadeniz Technical University, Trabzon 61750, Turkiye
| | - Yuksel Aliyazicioglu
- Department of Medical Biochemistry, Faculty of Medicine, Karadeniz Technical University, Trabzon 61080, Turkey
| |
Collapse
|
19
|
Wang FY, Yang LM, Xiong XL, Yang J, Yang Y, Tang JQ, Gao L, Lu Y, Wang Y, Zou T, Liang H, Huang KB. Rhodium(III) Complex Noncanonically Potentiates Antitumor Immune Responses by Inhibiting Wnt/β-Catenin Signaling. J Med Chem 2024; 67:13778-13787. [PMID: 39134504 DOI: 10.1021/acs.jmedchem.4c00583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Metal-based chemoimmunotherapy has recently garnered significant attention for its capacity to stimulate tumor-specific immunity beyond direct cytotoxic effects. Such effects are usually caused by ICD via the activation of DAMP signals. However, metal complexes that can elicit antitumor immune responses other than ICD have not yet been described. Herein, we report that a rhodium complex (Rh-1) triggers potent antitumor immune responses by downregulating Wnt/β-catenin signaling with subsequent activation of T lymphocyte infiltration to the tumor site. The results of mechanistic experiments suggest that ROS accumulation following Rh-1 treatment is a critical trigger of a decrease in β-catenin and enhanced secretion of CCL4, a key mediator of T cell infiltration. Through these properties, Rh-1 exerts a synergistic effect in combination with PD-1 inhibitors against tumor growth in vivo. Taken together, our work describes a promising metal-based antitumor agent with a noncanonical mode of action to sensitize tumor tissues to ICB therapy.
Collapse
Affiliation(s)
- Feng-Yang Wang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Liang-Mei Yang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Xiao-Lin Xiong
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Science, Sun Yat-Sen University, Guangzhou 510006, China
| | - Jing Yang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Yan Yang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Science, Sun Yat-Sen University, Guangzhou 510006, China
| | - Jiu-Qin Tang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Lei Gao
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Yuan Lu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Yuan Wang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Science, Sun Yat-Sen University, Guangzhou 510006, China
| | - Taotao Zou
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Science, Sun Yat-Sen University, Guangzhou 510006, China
| | - Hong Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Ke-Bin Huang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| |
Collapse
|
20
|
Hata M, Kadoya Y, Ueno J, Taki M, Kodera M. Dicopper Complexes of p-Cresol-2,6-bis(amide-tether-dpa 4-X) (X = MeO and Cl): Selective ROS Generation and Cytotoxicity Enhancement Controlled by Electronic and Hydrophobic Effects of the MeO and Cl Groups. Inorg Chem 2024; 63:13893-13902. [PMID: 39011904 DOI: 10.1021/acs.inorgchem.4c01072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Two new p-cresol-2,6-bis(amide-tether-dpa4-X) ligands (HL4-X, X = MeO and Cl) and their dicopper complexes [Cu2(μ-1,1-OAc)(μ-1,3-OAc)(L4-MeO)]Y (Y = PF6 1a, OAc 1b) and [Cu2(μ-1,3-OAc)2(L4-Cl)]Y (Y = ClO4 2a, OAc 2b) were synthesized. The electronic and hydrophobic effects of the MeO and Cl groups were examined compared with nonsubstituted complex [Cu2(μ-1,1-OAc)(μ-1,3-OAc)(L)]+ (3). The electronic effects were found in crystal structures, spectroscopic characterization, and redox potentials of these complexes. 1b and 2b were reduced to Cu(I)Cu(I) with sodium ascorbate and reductively activated O2 to produce H2O2 and HO•. The H2O2 release and HO• generation are promoted by the electronic effects. The hydrophobic effects increased the lipophilicity of 1b and 2b. Cellular ROS generation of 1b, 2b, and 3 was visualized by DCFH-DA. To examine the intracellular behavior, boron dipyrromethene (Bodipy)-modified complexes 4B and 5B corresponding to 1b and 2b were synthesized. These support that 1b and 2b are localized at the ER and Golgi apparatus. The cytotoxicity of 1b and 2b against various cell lines was examined by MTT assay. 1b and 2b were 7- and 41-fold more cytotoxic than 3. 1b generated ROS selectively in cancer cell but 2b nonselectively in cancer and normal cells, causing cancer- and normal-cell-selective cytotoxicity, respectively.
Collapse
Affiliation(s)
- Machi Hata
- Department of Molecular Chemistry and Biochemistry, Doshisha University, Kyotanabe Kyoto 610-0321, Japan
| | - Yuki Kadoya
- Department of Molecular Chemistry and Biochemistry, Doshisha University, Kyotanabe Kyoto 610-0321, Japan
| | - Jin Ueno
- Department of Molecular Chemistry and Biochemistry, Doshisha University, Kyotanabe Kyoto 610-0321, Japan
| | - Masayasu Taki
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo, Chikusa, Nagoya 464-8601, Japan
| | - Masahito Kodera
- Department of Molecular Chemistry and Biochemistry, Doshisha University, Kyotanabe Kyoto 610-0321, Japan
| |
Collapse
|
21
|
Besleaga I, Raptová R, Stoica AC, Milunovic MNM, Zalibera M, Bai R, Igaz N, Reynisson J, Kiricsi M, Enyedy ÉA, Rapta P, Hamel E, Arion VB. Are the metal identity and stoichiometry of metal complexes important for colchicine site binding and inhibition of tubulin polymerization? Dalton Trans 2024; 53:12349-12369. [PMID: 38989784 PMCID: PMC11264232 DOI: 10.1039/d4dt01469c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 06/29/2024] [Indexed: 07/12/2024]
Abstract
Quite recently we discovered that copper(II) complexes with isomeric morpholine-thiosemicarbazone hybrid ligands show good cytotoxicity in cancer cells and that the molecular target responsible for this activity might be tubulin. In order to obtain better lead drug candidates, we opted to exploit the power of coordination chemistry to (i) assemble structures with globular shape to better fit the colchicine pocket and (ii) vary the metal ion. We report the synthesis and full characterization of bis-ligand cobalt(III) and iron(III) complexes with 6-morpholinomethyl-2-formylpyridine 4N-(4-hydroxy-3,5-dimethylphenyl)-3-thiosemicarbazone (HL1), 6-morpholinomethyl-2-acetylpyridine 4N-(4-hydroxy-3,5-dimethylphenyl)-3-thiosemicarbazone (HL2), and 6-morpholinomethyl-2-formylpyridine 4N-phenyl-3-thiosemicarbazone (HL3), and mono-ligand nickel(II), zinc(II) and palladium(II) complexes with HL1, namely [CoIII(HL1)(L1)](NO3)2 (1), [CoIII(HL2)(L2)](NO3)2 (2), [CoIII(HL3)(L3)](NO3)2 (3), [FeIII(L2)2]NO3 (4), [FeIII(HL3)(L3)](NO3)2 (5), [NiII(L1)]Cl (6), [Zn(L1)Cl] (7) and [PdII(HL1)Cl]Cl (8). We discuss the effect of the metal identity and metal complex stoichiometry on in vitro cytotoxicity and antitubulin activity. The high antiproliferative activity of complex 4 correlated well with inhibition of tubulin polymerization. Insights into the mechanism of antiproliferative activity were supported by experimental results and molecular docking calculations.
Collapse
Affiliation(s)
- Iuliana Besleaga
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 42, A-1090 Vienna, Austria.
| | - Renáta Raptová
- Institute of Physical Chemistry and Chemical Physics, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, SK-81237 Bratislava, Slovakia
- Institute of Physical and Theoretical Chemistry, Graz University of Technology, Stremayrgasse 9/II, A-8010 Graz, Austria
| | - Alexandru-Constantin Stoica
- Inorganic Polymers Department, "Petru Poni" Institute of Macromolecular Chemistry, Aleea Gr. Ghica Voda 41 A, Iasi 700487, Romania
| | - Miljan N M Milunovic
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 42, A-1090 Vienna, Austria.
| | - Michal Zalibera
- Institute of Physical Chemistry and Chemical Physics, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, SK-81237 Bratislava, Slovakia
| | - Ruoli Bai
- Molecular Pharmacology Branch, Developmental Therapeutics Program, Division of Cancer Diagnosis and Treatment, National Cancer Institute, Frederick National Laboratory for Cancer Research, National Institutes of Health, Frederick, Maryland 21702, USA
| | - Nóra Igaz
- Department of Biochemistry and Molecular Biology, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary
| | - Jóhannes Reynisson
- School of Pharmacy and Bioengineering, Keele University, Newcastle-under-Lyme, Staffordshire ST5 5BG, UK
| | - Mónika Kiricsi
- School of Pharmacy and Bioengineering, Keele University, Newcastle-under-Lyme, Staffordshire ST5 5BG, UK
| | - Éva A Enyedy
- Department of Molecular and Analytical Chemistry, Interdisciplinary Excellence Centre, University of Szeged, Dóm tér 7-8, H-6720 Szeged, Hungary.
- MTA-SZTE Lendület Functional Metal Complexes Research Group, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary
| | - Peter Rapta
- Institute of Physical Chemistry and Chemical Physics, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, SK-81237 Bratislava, Slovakia
| | - Ernest Hamel
- Molecular Pharmacology Branch, Developmental Therapeutics Program, Division of Cancer Diagnosis and Treatment, National Cancer Institute, Frederick National Laboratory for Cancer Research, National Institutes of Health, Frederick, Maryland 21702, USA
| | - Vladimir B Arion
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 42, A-1090 Vienna, Austria.
- Inorganic Polymers Department, "Petru Poni" Institute of Macromolecular Chemistry, Aleea Gr. Ghica Voda 41 A, Iasi 700487, Romania
| |
Collapse
|
22
|
Miao Y, Chen Q, Liu X, Bu J, Zhang Z, Liu T, Yue Z, Huang L, Sun S, Li H, Yang A, Yang Z, Chen C. Comprehensive analysis of endoplasmic reticulum stress related signature in head and neck squamous carcinoma. Sci Rep 2024; 14:16972. [PMID: 39043683 PMCID: PMC11266686 DOI: 10.1038/s41598-024-65090-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 06/17/2024] [Indexed: 07/25/2024] Open
Abstract
Head and neck squamous carcinoma (HNSC) is a prevalent malignant disease, with the majority of patients being diagnosed at an advanced stage. Endoplasmic reticulum stress (ERS) is considered to be a process that promotes tumorigenesis and impacts the tumor microenvironment (TME) in various cancers. The study aims to investigate the predictive value of ERS in HNSC and explore the correlation between ERS-related genes and TME. A series of bioinformatics analyses were carried out based on mRNA and scRNA-seq data from the TCGA and GEO databases. We conducted RT-qPCR and western blot to validate the signature, and performed cell functional experiments to investigate the in vitro biological functions of the gene. We identified 63 ERS-related genes that were associated with outcome and stage in HNSC. A three-gene signature (ATF6, TRIB3, and UBXN6) was developed, which presents predictive value in the prognosis and immunotherapy response of HNSC patients. The high-risk group exhibited a worse prognosis but may benefit from immunotherapy. Furthermore, there was a significant correlation between the signature and immune infiltration. In the high-risk group, fibroblasts were more active in intercellular communication, and more T cells were observed at the end of the sequential phase. The genes in the ERS-related signature were overexpressed in HNSC cells, and the knockdown of TRIB3 significantly inhibited cell proliferation and migration. This study established a novel ERS-related signature that has potential implications for HNSC therapy and the understanding of TME.
Collapse
Affiliation(s)
- Yu Miao
- Department of Otorhinolaryngology, Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan People's Hospital, 16th Floor, No. 2 Inpatient Building, Qingyuan, People's Republic of China
| | - Qiaorong Chen
- Department of Head and Neck Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510060, People's Republic of China
| | - Xinyu Liu
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510060, People's Republic of China
| | - Jian Bu
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510060, People's Republic of China
| | - Zhuoqi Zhang
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510060, People's Republic of China
| | - Tongjing Liu
- Department of Otorhinolaryngology, Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan People's Hospital, 16th Floor, No. 2 Inpatient Building, Qingyuan, People's Republic of China
| | - Zhenjie Yue
- Department of Otorhinolaryngology, Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan People's Hospital, 16th Floor, No. 2 Inpatient Building, Qingyuan, People's Republic of China
| | - Lizhen Huang
- Department of Otorhinolaryngology, Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan People's Hospital, 16th Floor, No. 2 Inpatient Building, Qingyuan, People's Republic of China
| | - Shuaishuai Sun
- Department of Otorhinolaryngology, Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan People's Hospital, 16th Floor, No. 2 Inpatient Building, Qingyuan, People's Republic of China
| | - Hao Li
- The Second Clinical College of Hainan Medical University, Haikou, 570100, People's Republic of China
| | - Ankui Yang
- Department of Head and Neck Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Zhongyuan Yang
- Department of Head and Neck Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China.
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China.
| | - Cuifang Chen
- Department of Otorhinolaryngology, Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan People's Hospital, 16th Floor, No. 2 Inpatient Building, Qingyuan, People's Republic of China.
| |
Collapse
|
23
|
Sun Y, Chen S, Hou Y, Kang SH, Lin JM. Organelle Proximity Analysis for Enhanced Quantification of Mitochondria-Endoplasmic Reticulum Interactions in Single Cells via Super-Resolution Microscopy. Anal Chem 2024; 96:11557-11565. [PMID: 38959297 DOI: 10.1021/acs.analchem.4c02338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Mitochondria (MT) and the endoplasmic reticulum (ER) maintain lipid and calcium homeostasis through membrane contacts, particularly MT-ER contacts (MERCs), spanning distances from 10 to 50 nm. However, the variation of different distance ranges and the metabolic factors influencing this variation remain poorly understood. This study employed microfluidic chip-based super-resolution microscopy in conjunction with a Moore-Neighbor tracing-incorporated organelle proximity analysis algorithm. This approach enabled precise three-dimensional localization of single-fluorescence protein molecules within narrow and irregular membrane proximities. It achieved lateral localization precision of less than 20 nm, resulting in a minimum MERC distance of approximately 8 nm in spatial and mean distances across multiple threshold ranges. Additionally, we demonstrated that the MERC distance variation was correlated with MT size rather than ER width. The proportion of each distance range varied significantly after the stimuli. Free cholesterol showed a negative correlation with various distances, while distances of 10-30 nm were associated with glucose, glutamine, and pyruvic acid. Furthermore, the 30-40 nm range was influenced by citric acid. These results underscore the role of advanced subcellular organelle analysis in elucidating the single-molecule behavior and organelle morphology in single-cell studies.
Collapse
Affiliation(s)
- Yucheng Sun
- Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Shiyu Chen
- Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Ying Hou
- Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Seong Ho Kang
- Department of Applied Chemistry and Institute of Natural Sciences, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - Jin-Ming Lin
- Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
24
|
Ao Q, Hu H, Huang Y. Ferroptosis and endoplasmic reticulum stress in rheumatoid arthritis. Front Immunol 2024; 15:1438803. [PMID: 39076977 PMCID: PMC11284608 DOI: 10.3389/fimmu.2024.1438803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 07/01/2024] [Indexed: 07/31/2024] Open
Abstract
Ferroptosis is an iron-dependent mode of cell death distinct from apoptosis and necrosis. Its mechanisms mainly involve disordered iron metabolism, lipid peroxide deposition, and an imbalance of the antioxidant system. The endoplasmic reticulum is an organelle responsible for protein folding, lipid metabolism, and Ca2+ regulation in cells. It can be induced to undergo endoplasmic reticulum stress in response to inflammation, oxidative stress, and hypoxia, thereby regulating intracellular environmental homeostasis through unfolded protein responses. It has been reported that ferroptosis and endoplasmic reticulum stress (ERS) have an interaction pathway and jointly regulate cell survival and death. Both have also been reported separately in rheumatoid arthritis (RA) mechanism studies. However, studies on the correlation between ferroptosis and ERS in RA have not been reported so far. Therefore, this paper reviews the current status of studies and the potential correlation between ferroptosis and ERS in RA, aiming to provide a research reference for developing treatments for RA.
Collapse
Affiliation(s)
- Qin Ao
- Guizhou Universisity of Traditional Chinese Medicine, Guiyang, China
- Department of Rheumatology and Immunology, The Affiliated Hospital of Guizhou Medical Universisity, Guiyang, China
| | - Huan Hu
- Center for General Practice Medicine, Department of Rheumatology and Immunology, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Ying Huang
- Guizhou Universisity of Traditional Chinese Medicine, Guiyang, China
- Department of Rheumatology and Immunology, The Affiliated Hospital of Guizhou Medical Universisity, Guiyang, China
| |
Collapse
|
25
|
Melones-Herrero J, Delgado-Aliseda P, Figueiras S, Velázquez-Gutiérrez J, Quiroga AG, Calés C, Sánchez-Pérez I. Trans-[Pt(amine)Cl 2(PPh 3)] Complexes Target Mitochondria and Endoplasmic Reticulum in Gastric Cancer Cells. Int J Mol Sci 2024; 25:7739. [PMID: 39062981 PMCID: PMC11276749 DOI: 10.3390/ijms25147739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/01/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Gastric cancer prognosis is still notably poor despite efforts made to improve diagnosis and treatment of the disease. Chemotherapy based on platinum agents is generally used, regardless of the fact that drug toxicity leads to limited clinical efficacy. In order to overcome these problems, our group has been working on the synthesis and study of trans platinum (II) complexes. Here, we explore the potential use of two phosphine-based agents with the general formula trans-[Pt(amine)Cl2(PPh3)], called P1 and P2 (with dimethylamine or isopropylamine, respectively). A cytotoxicity analysis showed that P1 and especially P2 decrease cell viability. Specifically, P2 exhibits higher activity than cisplatin in gastric cancer cells while its toxicity in healthy cells is slightly lower. Both complexes generate Reactive Oxygen Species, produce DNA damage and mitochondrial membrane depolarization, and finally lead to induced apoptosis. Thus, an intrinsic apoptotic pathway emerges as the main type of cell death through the activation of BAX/BAK and BIM and the degradation of MCL1. Additionally, we demonstrate here that P2 produces endoplasmic reticulum stress and activates the Unfolded Protein Response, which also relates to the impairment observed in autophagy markers such as p62 and LC3. Although further studies in other biological models are needed, these results report the biomolecular mechanism of action of these Pt(II)-phosphine prototypes, thus highlighting their potential as novel and effective therapies.
Collapse
Affiliation(s)
- Jorge Melones-Herrero
- Department of Biochemistry, School of Medicine, Autonomous University of Madrid (UAM), 28029 Madrid, Spain; (J.M.-H.); (P.D.-A.); (S.F.); (J.V.-G.); (C.C.)
- Instituto de Investigaciones Biomédicas “Sols-Morreale” (IIBM), CSIC-UAM, 28029 Madrid, Spain
- Biomarkers and Personalized Approach to Cancer (BioPAC) Group, Area 3 Cancer-Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain
| | - Patricia Delgado-Aliseda
- Department of Biochemistry, School of Medicine, Autonomous University of Madrid (UAM), 28029 Madrid, Spain; (J.M.-H.); (P.D.-A.); (S.F.); (J.V.-G.); (C.C.)
- Instituto de Investigaciones Biomédicas “Sols-Morreale” (IIBM), CSIC-UAM, 28029 Madrid, Spain
- Biomarkers and Personalized Approach to Cancer (BioPAC) Group, Area 3 Cancer-Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain
| | - Sofía Figueiras
- Department of Biochemistry, School of Medicine, Autonomous University of Madrid (UAM), 28029 Madrid, Spain; (J.M.-H.); (P.D.-A.); (S.F.); (J.V.-G.); (C.C.)
- Instituto de Investigaciones Biomédicas “Sols-Morreale” (IIBM), CSIC-UAM, 28029 Madrid, Spain
- Biomarkers and Personalized Approach to Cancer (BioPAC) Group, Area 3 Cancer-Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain
| | - Javier Velázquez-Gutiérrez
- Department of Biochemistry, School of Medicine, Autonomous University of Madrid (UAM), 28029 Madrid, Spain; (J.M.-H.); (P.D.-A.); (S.F.); (J.V.-G.); (C.C.)
- Instituto de Investigaciones Biomédicas “Sols-Morreale” (IIBM), CSIC-UAM, 28029 Madrid, Spain
| | - Adoración Gomez Quiroga
- Department of Inorganic Chemistry, School of Sciences, Autonomous University of Madrid (UAM), 28049 Madrid, Spain;
- Institute for Advance Research in Chemistry, Autonomous University of Madrid (UAM), 28049 Madrid, Spain
| | - Carmela Calés
- Department of Biochemistry, School of Medicine, Autonomous University of Madrid (UAM), 28029 Madrid, Spain; (J.M.-H.); (P.D.-A.); (S.F.); (J.V.-G.); (C.C.)
- Instituto de Investigaciones Biomédicas “Sols-Morreale” (IIBM), CSIC-UAM, 28029 Madrid, Spain
- Biomarkers and Personalized Approach to Cancer (BioPAC) Group, Area 3 Cancer-Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain
| | - Isabel Sánchez-Pérez
- Department of Biochemistry, School of Medicine, Autonomous University of Madrid (UAM), 28029 Madrid, Spain; (J.M.-H.); (P.D.-A.); (S.F.); (J.V.-G.); (C.C.)
- Instituto de Investigaciones Biomédicas “Sols-Morreale” (IIBM), CSIC-UAM, 28029 Madrid, Spain
- Biomarkers and Personalized Approach to Cancer (BioPAC) Group, Area 3 Cancer-Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain
- Centro de Investigación Biomédica en Red, Área Rare Diseases, CIBERER-ISCIII, 28029 Madrid, Spain
- Unidad Asociada de Biomedicina, UCLM-CSIC, 28029 Madrid, Spain
| |
Collapse
|
26
|
Milunovic MM, Ohui K, Besleaga I, Petrasheuskaya TV, Dömötör O, Enyedy ÉA, Darvasiova D, Rapta P, Barbieriková Z, Vegh D, Tóth S, Tóth J, Kucsma N, Szakács G, Popović-Bijelić A, Zafar A, Reynisson J, Shutalev AD, Bai R, Hamel E, Arion VB. Copper(II) Complexes with Isomeric Morpholine-Substituted 2-Formylpyridine Thiosemicarbazone Hybrids as Potential Anticancer Drugs Inhibiting Both Ribonucleotide Reductase and Tubulin Polymerization: The Morpholine Position Matters. J Med Chem 2024; 67:9069-9090. [PMID: 38771959 PMCID: PMC11181322 DOI: 10.1021/acs.jmedchem.4c00259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/19/2024] [Accepted: 05/09/2024] [Indexed: 05/23/2024]
Abstract
The development of copper(II) thiosemicarbazone complexes as potential anticancer agents, possessing dual functionality as inhibitors of R2 ribonucleotide reductase (RNR) and tubulin polymerization by binding at the colchicine site, presents a promising avenue for enhancing therapeutic effectiveness. Herein, we describe the syntheses and physicochemical characterization of four isomeric proligands H2L3-H2L6, with the methylmorpholine substituent at pertinent positions of the pyridine ring, along with their corresponding Cu(II) complexes 3-6. Evidently, the position of the morpholine moiety and the copper(II) complex formation have marked effects on the in vitro antiproliferative activity in human uterine sarcoma MES-SA cells and the multidrug-resistant derivative MES-SA/Dx5 cells. Activity correlated strongly with quenching of the tyrosyl radical (Y•) of mouse R2 RNR protein, inhibition of RNR activity in the cancer cells, and inhibition of tubulin polymerization. Insights into the mechanism of antiproliferative activity, supported by experimental results and molecular modeling calculations, are presented.
Collapse
Affiliation(s)
| | - Katerina Ohui
- Institute
of Inorganic Chemistry, University of Vienna, Vienna A-1090, Austria
| | - Iuliana Besleaga
- Institute
of Inorganic Chemistry, University of Vienna, Vienna A-1090, Austria
| | - Tatsiana V. Petrasheuskaya
- Department
of Molecular and Analytical Chemistry, Interdisciplinary Excellence
Centre, University of Szeged, Dóm tér 7-8, Szeged H-6720, Hungary
- MTA-SZTE
Lendület Functional Metal Complexes Research Group, University of Szeged, Dóm tér 7, Szeged H-6720, Hungary
| | - Orsolya Dömötör
- Department
of Molecular and Analytical Chemistry, Interdisciplinary Excellence
Centre, University of Szeged, Dóm tér 7-8, Szeged H-6720, Hungary
- MTA-SZTE
Lendület Functional Metal Complexes Research Group, University of Szeged, Dóm tér 7, Szeged H-6720, Hungary
| | - Éva A. Enyedy
- Department
of Molecular and Analytical Chemistry, Interdisciplinary Excellence
Centre, University of Szeged, Dóm tér 7-8, Szeged H-6720, Hungary
- MTA-SZTE
Lendület Functional Metal Complexes Research Group, University of Szeged, Dóm tér 7, Szeged H-6720, Hungary
| | - Denisa Darvasiova
- Institute
of Physical Chemistry and Chemical Physics, Faculty of Chemical and
Food Technology, Slovak University of Technology
in Bratislava, Bratislava SK-81237, Slovakia
| | - Peter Rapta
- Institute
of Physical Chemistry and Chemical Physics, Faculty of Chemical and
Food Technology, Slovak University of Technology
in Bratislava, Bratislava SK-81237, Slovakia
| | - Zuzana Barbieriková
- Institute
of Physical Chemistry and Chemical Physics, Faculty of Chemical and
Food Technology, Slovak University of Technology
in Bratislava, Bratislava SK-81237, Slovakia
| | - Daniel Vegh
- Institute
of Organic Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Bratislava SK-81237, Slovakia
| | - Szilárd Tóth
- Institute
of Molecular Life Sciences, HUN-REN Research
Centre for Natural Sciences, Hungarian Research Network, Magyar Tudósok körútja
2, Budapest H-1117, Hungary
| | - Judit Tóth
- Institute
of Molecular Life Sciences, HUN-REN Research
Centre for Natural Sciences, Hungarian Research Network, Magyar Tudósok körútja
2, Budapest H-1117, Hungary
| | - Nóra Kucsma
- Institute
of Molecular Life Sciences, HUN-REN Research
Centre for Natural Sciences, Hungarian Research Network, Magyar Tudósok körútja
2, Budapest H-1117, Hungary
| | - Gergely Szakács
- Institute
of Molecular Life Sciences, HUN-REN Research
Centre for Natural Sciences, Hungarian Research Network, Magyar Tudósok körútja
2, Budapest H-1117, Hungary
- Center
for Cancer Research, Medical University
of Vienna, Vienna A-1090, Austria
| | - Ana Popović-Bijelić
- Faculty
of Physical Chemistry, University of Belgrade, Belgrade 11158, Serbia
| | - Ayesha Zafar
- School
of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Jóhannes Reynisson
- School
of Pharmacy and Bioengineering, Keele University, Newcastle-under-Lyme, Staffordshire ST5 5BG, United
Kingdom
| | - Anatoly D. Shutalev
- N.
D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 119991, Russian Federation
| | - Ruoli Bai
- Molecular
Pharmacology Branch, Developmental Therapeutics Program, Division
of Cancer Diagnosis and Treatment, National Cancer Institute, Frederick
National Laboratory for Cancer Research, National Institutes of Health, Frederick, Maryland 21702, United States
| | - Ernest Hamel
- Molecular
Pharmacology Branch, Developmental Therapeutics Program, Division
of Cancer Diagnosis and Treatment, National Cancer Institute, Frederick
National Laboratory for Cancer Research, National Institutes of Health, Frederick, Maryland 21702, United States
| | - Vladimir B. Arion
- Institute
of Inorganic Chemistry, University of Vienna, Vienna A-1090, Austria
- Inorganic
Polymers Department, “Petru Poni”
Institute of Macromolecular Chemistry, Aleea Gr. Ghica Voda 41 A, Iasi 700487, Romania
| |
Collapse
|
27
|
Wu S, Wang B, Li H, Wang H, Du S, Huang X, Fan Y, Gao Y, Gu L, Huang Q, Chen J, Zhang X, Huang Y, Ma X. Targeting STING elicits GSDMD-dependent pyroptosis and boosts anti-tumor immunity in renal cell carcinoma. Oncogene 2024; 43:1534-1548. [PMID: 38548966 DOI: 10.1038/s41388-024-03013-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 03/16/2024] [Accepted: 03/20/2024] [Indexed: 05/15/2024]
Abstract
While Stimulator-of-interferon genes (STING) is an innate immune adapter cruicial for sensing cytosolic DNA and modulating immune microenvironment, its tumor-promoting role in tumor survival and immune evasion remains largely unknown. Here we reported that renal cancer cells are exceptionally dependent on STING for survival and evading immunosurveillance via suppressing ER stress-mediated pyroptosis. We found that STING is significantly amplified and upregulated in clear cell renal cell carcinoma (ccRCC), and its elevated expression is associated with worse clinical outcomes. Mechanically, STING depletion in RCC cells specifically triggers activation of the PERK/eIF2α/ATF4/CHOP pathway and activates cleavage of Caspase-8, thereby inducing GSDMD-mediated pyroptosis, which is independent of the innate immune pathway of STING. Moreover, animal study revealed that STING depletion promoted infiltration of CD4+ and CD8+ T cells, consequently boosting robust antitumor immunity via pyroptosis-induced inflammation. From the perspective of targeted therapy, we found that Compound SP23, a PROTAC STING degrader, demonstrated comparable efficacy to STING depletion both in vitro and in vivo for treatment of ccRCC. These findings collectively unveiled an unforeseen function of STING in regulating GSDMD-dependent pyroptosis, thus regulating immune response in RCC. Consequently, pharmacological degradation of STING by SP23 may become an attractive strategy for treatment of advanced RCC.
Collapse
Affiliation(s)
- Shengpan Wu
- Department of Urology, The Third Medical Center, Chinese PLA General Hospital, 100853, Beijing, China
| | - Baojun Wang
- Department of Urology, The Third Medical Center, Chinese PLA General Hospital, 100853, Beijing, China
| | - Hongzhao Li
- Department of Urology, The Third Medical Center, Chinese PLA General Hospital, 100853, Beijing, China
| | - Hanfeng Wang
- Department of Urology, The Third Medical Center, Chinese PLA General Hospital, 100853, Beijing, China
| | - Songliang Du
- Department of Urology, The Third Medical Center, Chinese PLA General Hospital, 100853, Beijing, China
| | - Xing Huang
- Department of Urology, The Third Medical Center, Chinese PLA General Hospital, 100853, Beijing, China
| | - Yang Fan
- Department of Urology, The Third Medical Center, Chinese PLA General Hospital, 100853, Beijing, China
| | - Yu Gao
- Department of Urology, The Third Medical Center, Chinese PLA General Hospital, 100853, Beijing, China
| | - Liangyou Gu
- Department of Urology, The Third Medical Center, Chinese PLA General Hospital, 100853, Beijing, China
| | - Qingbo Huang
- Department of Urology, The Third Medical Center, Chinese PLA General Hospital, 100853, Beijing, China
| | - Jianjun Chen
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou, 510515, China
| | - Xu Zhang
- Department of Urology, The Third Medical Center, Chinese PLA General Hospital, 100853, Beijing, China.
| | - Yan Huang
- Department of Urology, The Third Medical Center, Chinese PLA General Hospital, 100853, Beijing, China.
| | - Xin Ma
- Department of Urology, The Third Medical Center, Chinese PLA General Hospital, 100853, Beijing, China.
| |
Collapse
|
28
|
Sun X, Wu L, Du L, Xu W, Han M. Targeting the organelle for radiosensitization in cancer radiotherapy. Asian J Pharm Sci 2024; 19:100903. [PMID: 38590796 PMCID: PMC10999375 DOI: 10.1016/j.ajps.2024.100903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/29/2023] [Accepted: 01/16/2024] [Indexed: 04/10/2024] Open
Abstract
Radiotherapy is a well-established cytotoxic therapy for local solid cancers, utilizing high-energy ionizing radiation to destroy cancer cells. However, this method has several limitations, including low radiation energy deposition, severe damage to surrounding normal cells, and high tumor resistance to radiation. Among various radiotherapy methods, boron neutron capture therapy (BNCT) has emerged as a principal approach to improve the therapeutic ratio of malignancies and reduce lethality to surrounding normal tissue, but it remains deficient in terms of insufficient boron accumulation as well as short retention time, which limits the curative effect. Recently, a series of radiosensitizers that can selectively accumulate in specific organelles of cancer cells have been developed to precisely target radiotherapy, thereby reducing side effects of normal tissue damage, overcoming radioresistance, and improving radiosensitivity. In this review, we mainly focus on the field of nanomedicine-based cancer radiotherapy and discuss the organelle-targeted radiosensitizers, specifically including nucleus, mitochondria, endoplasmic reticulum and lysosomes. Furthermore, the organelle-targeted boron carriers used in BNCT are particularly presented. Through demonstrating recent developments in organelle-targeted radiosensitization, we hope to provide insight into the design of organelle-targeted radiosensitizers for clinical cancer treatment.
Collapse
Affiliation(s)
- Xiaoyan Sun
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| | - Linjie Wu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| | - Lina Du
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Wenhong Xu
- Department of Radiation Oncology, Key Laboratory of Cancer Prevention and Intervention, The Second Afliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Min Han
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Department of Radiation Oncology, Key Laboratory of Cancer Prevention and Intervention, The Second Afliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310058, China
- Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
- Jinhua Institute of Zhejiang University, Jinhua 321299, China
- National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
29
|
Bi YY, Chen Q, Yang MY, Xing L, Jiang HL. Nanoparticles targeting mutant p53 overcome chemoresistance and tumor recurrence in non-small cell lung cancer. Nat Commun 2024; 15:2759. [PMID: 38553451 PMCID: PMC10980692 DOI: 10.1038/s41467-024-47080-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/20/2024] [Indexed: 04/02/2024] Open
Abstract
Non-small cell lung cancer (NSCLC) shows high drug resistance and leads to low survival due to the high level of mutated Tumor Protein p53 (TP53). Cisplatin is a first-line treatment option for NSCLC, and the p53 mutation is a major factor in chemoresistance. We demonstrate that cisplatin chemotherapy increases the risk of TP53 mutations, further contributing to cisplatin resistance. Encouragingly, we find that the combination of cisplatin and fluvastatin can alleviate this problem. Therefore, we synthesize Fluplatin, a prodrug consisting of cisplatin and fluvastatin. Then, Fluplatin self-assembles and is further encapsulated with poly-(ethylene glycol)-phosphoethanolamine (PEG-PE), we obtain Fluplatin@PEG-PE nanoparticles (FP NPs). FP NPs can degrade mutant p53 (mutp53) and efficiently trigger endoplasmic reticulum stress (ERS). In this study, we show that FP NPs relieve the inhibition of cisplatin chemotherapy caused by mutp53, exhibiting highly effective tumor suppression and improving the poor NSCLC prognosis.
Collapse
Affiliation(s)
- Yu-Yang Bi
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Qiu Chen
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Ming-Yuan Yang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Lei Xing
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing, 210009, China
| | - Hu-Lin Jiang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China.
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing, 210009, China.
- College of Pharmacy, Yanbian University, No.977, Gongyan Road, Yanji, 133000, China.
| |
Collapse
|
30
|
Demir S, Mentese A, Kucuk H, Yulug E, Turkmen Alemdar N, Ayazoglu Demir E, Aliyazicioglu Y. Ethyl pyruvate attenuates cisplatin-induced ovarian injury in rats via activating Nrf2 pathway. Drug Chem Toxicol 2024; 47:218-226. [PMID: 37246941 DOI: 10.1080/01480545.2023.2217481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 04/09/2023] [Accepted: 04/14/2023] [Indexed: 05/30/2023]
Abstract
Although cisplatin (CDDP) is an antineoplastic drug widely used for the treatment of various tumors, its toxicity on the reproductive system is a concern for patients. Ethyl pyruvate (EP) possesses potent antioxidant and anti-inflammatory activities. The objective of this study was to evaluate the therapeutic potential of EP on CDDP-mediated ovotoxicity for the first time. Rats were exposed to CDDP (5 mg/kg) and then treated with two doses of EP (20 and 40 mg/kg) for 3 days. Serum fertility hormone markers were evaluated using ELISA kits. Oxidative stress (OS), inflammation, endoplasmic reticulum stress (ERS) and apoptosis markers were also determined. In addition, how CDDP affects the nuclear factor erythroid 2-associated factor 2 (Nrf2) pathway and the effect of EP on this situation were also addressed. EP improved CDDP-induced histopathological findings and restored decreasing levels of fertility hormones. EP treatment also reduced the levels of CDDP-mediated OS, inflammation, ERS and apoptosis. In addition, EP attenuated CDDP-induced suppression in the levels of Nrf2 and its target genes, including heme oxygenase-1, NAD(P)H quinone dehydrogenase-1, superoxide dismutase and glutathione peroxidase. Histological and biochemical results showed that EP can have therapeutic effects against CDDP-induced ovotoxicity with antioxidant, anti-inflammatory and Nrf2 activator activities.
Collapse
Affiliation(s)
- Selim Demir
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Karadeniz Technical University, Trabzon, Turkey
| | - Ahmet Mentese
- Department of Medical Biochemistry, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Hatice Kucuk
- Department of Pathology, Kanuni Training and Research Hospital, University of Health Sciences, Trabzon, Turkey
| | - Esin Yulug
- Department of Histology and Embryology, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Nihal Turkmen Alemdar
- Department of Medical Biochemistry, Graduate School of Health Sciences, Karadeniz Technical University, Trabzon, Turkey
- Department of Medical Services and Techniques, Vocational School of Health Services, Recep Tayyip Erdogan University, Rize, Turkey
| | - Elif Ayazoglu Demir
- Department of Chemistry and Chemical Processing Technologies, Macka Vocational School, Karadeniz Technical University, Trabzon, Turkey
| | - Yuksel Aliyazicioglu
- Department of Medical Biochemistry, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| |
Collapse
|
31
|
Demir EA. Syringic acid alleviates cisplatin-induced ovarian injury through modulating endoplasmic reticulum stress, inflammation and Nrf2 pathway. J Trace Elem Med Biol 2024; 82:127356. [PMID: 38086229 DOI: 10.1016/j.jtemb.2023.127356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/29/2023] [Accepted: 12/04/2023] [Indexed: 01/10/2024]
Abstract
BACKGROUND Reproductive toxicity is one of the most important side effects of cisplatin (CIS) and leading to discontinuation of treatment. Syringic acid (SA) is a phenolic acid whose industrial use has increased in recent years due to its antioxidant properties. Recent reports highlight the importance of the supressed Nrf2 pathway in the molecular pathogenesis of CIS toxicity. Therefore, this study aimed to evaluate the therapeutic effect of SA on CIS-induced ovotoxicity through the Nrf2 pathway for the first time. MATERIAL AND METHODS Thirty female rats were divided into 5 groups: control, CIS, CIS+SA (5 and 10 mg/kg) and only SA (per se, 10 mg/kg). CIS was administered intraperitoneally at a dose of 5 mg/kg on the 1st day, injections of SA followed by three consecutive days in the rats. Serum anti-mullerian hormone (AMH) levels and ovarian oxidative stress (OS), inflammation, endoplasmic reticulum stress (ERS), apoptosis and Nrf2 pathway markers were determined colorimetrically. Histopathological examinations of the ovaries with hematoxylin and eosin staining were also used to evaluate CIS-induced ovotoxicity. RESULTS The CIS treatment depleted serum AMH levels, caused histopathological findings and increased OS, inflammation, ERS and apoptosis levels in ovarian tissue. However, treatments with SA significantly ameliorated CIS-induced biochemical and histopathological changes by activating Nrf2 pathway. CONCLUSION The promising adjuvant potential of SA to alleviate CIS-related ovarian damage should be supported by more comprehensive studies.
Collapse
Affiliation(s)
- Elif Ayazoglu Demir
- Department of Chemistry and Chemical Processing Technologies, Macka Vocational School, Karadeniz Technical University, 61750 Trabzon, Turkey.
| |
Collapse
|
32
|
Tian W, Zhong W, Yang Z, Chen L, Lin S, Li Y, Wang Y, Yang P, Long X. Synthesis, characterization and discovery of multiple anticancer mechanisms of dibutyltin complexes based on salen-like ligands. J Inorg Biochem 2024; 251:112434. [PMID: 38029537 DOI: 10.1016/j.jinorgbio.2023.112434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/15/2023] [Accepted: 11/19/2023] [Indexed: 12/01/2023]
Abstract
A series of novel dibutyltin complexes based on salen-like ligands (S01-S03) were synthesized and characterized using ultraviolet-visible spectra,infrared spectra, 1H, 13C, and 119Sn nuclear magnetic resonance, high-resolution mass spectrometry, X-ray crystallography, and thermogravimetric analysis. Complex S03 had excellent anticancer activity in vitro (IC50 = 1.5 ± 0.2 μM in CAL-27 cell lines), which highly activated ROS expression levels and induced apoptosis and cell cycle arrest at the G2/M phase. Interestingly, complex S03 induced cancer cell death through multiple mechanisms (mitochondrial pathway, ER-stress pathway, and DNA damage pathway). This study reveals new mechanisms of organotin complexes and provides new insights into the development of organotin metal complexes as anticancer drugs in the future, and compounds with multiple anticancer mechanisms may be a new strategy for delaying or overcoming drug resistance to chemotherapy and target therapy.
Collapse
Affiliation(s)
- Wei Tian
- Guangxi International Zhuang Medicine Hospital, Nanning 530201, China; Guangxi International Zhuang Medicine Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning 530201, China; Guangxi Institute of Ethnic Medicine, Nanning 530201, China.
| | - Wen Zhong
- Guangxi International Zhuang Medicine Hospital, Nanning 530201, China; Guangxi International Zhuang Medicine Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning 530201, China; Guangxi Institute of Ethnic Medicine, Nanning 530201, China
| | - Zengyan Yang
- Guangxi International Zhuang Medicine Hospital, Nanning 530201, China; Guangxi International Zhuang Medicine Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning 530201, China; Guangxi Institute of Ethnic Medicine, Nanning 530201, China
| | - Ling Chen
- Guangxi International Zhuang Medicine Hospital, Nanning 530201, China; Guangxi International Zhuang Medicine Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning 530201, China; Guangxi Institute of Ethnic Medicine, Nanning 530201, China
| | - Shijie Lin
- Guangxi International Zhuang Medicine Hospital, Nanning 530201, China; Guangxi International Zhuang Medicine Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning 530201, China; Guangxi Institute of Ethnic Medicine, Nanning 530201, China
| | - Yanping Li
- Guangxi International Zhuang Medicine Hospital, Nanning 530201, China; Guangxi International Zhuang Medicine Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning 530201, China; Guangxi Institute of Ethnic Medicine, Nanning 530201, China
| | - Yuxing Wang
- Guangxi International Zhuang Medicine Hospital, Nanning 530201, China; Guangxi International Zhuang Medicine Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning 530201, China; Guangxi Institute of Ethnic Medicine, Nanning 530201, China
| | - Peilin Yang
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning 530004, China
| | - Xing Long
- Guangxi International Zhuang Medicine Hospital, Nanning 530201, China; Guangxi International Zhuang Medicine Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning 530201, China; Guangxi Institute of Ethnic Medicine, Nanning 530201, China
| |
Collapse
|
33
|
M M, Chhatar S, Gadre S, Paul S, Vaidya SP, Khatri S, Duari P, Kode J, Ingle A, Kolthur-Seetharam U, Patra M. Improving In Vivo Tumor Accumulation and Efficacy of Platinum Antitumor Agents by Electronic Tuning of the Kinetic Lability. Chemistry 2024; 30:e202302720. [PMID: 37888749 DOI: 10.1002/chem.202302720] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/27/2023] [Accepted: 10/27/2023] [Indexed: 10/28/2023]
Abstract
The impact of kinetic lability or reactivity on in vitro cytotoxicity, stability in plasma, in vivo tumor and tissue accumulation, and antitumor efficacy of functional platinum(II) (Pt) anticancer agents containing a O˄O β-diketonate leaving ligand remain largely unexplored. To investigate this, we synthesized Pt complexes [(NH3 )2 Pt(L1-H)]NO3 and [(DACH)Pt(L1-H)]NO3 (L1=4,4,4-trifluoro-1-ferrocenylbutane-1,3-dione, DACH=1R,2R-cyclohexane-1,2-diamine) containing an electron deficient [L1-H]- O˄O leaving ligand and [(NH3 )2 Pt(L2-H)]NO3 and [(DACH)Pt(L2-H)]NO3 (L2=1-ferrocenylbutane-1,3-dione) containing an electron-rich [L2-H]- O˄O leaving ligand. While all four complexes have comparable lipophilicity, the presence of the electron-withdrawing CF3 group was found to dramatically enhance the reactivity of these complexes toward nucleophilic biomolecules. In vitro cellular assays revealed that the more reactive complexes have higher cellular uptake and higher anticancer potency as compared to their less reactive analogs. But the scenario is opposite in vivo, where the less reactive complex showed improved tissue and tumor accumulation and better anticancer efficacy in mice bearing ovarian xenograft when compared to its more reactive analog. Finally, in addition to demonstrating the profound but contrasting impact of kinetic lability on in vitro and in vivo antitumor potencies, we also described the impact of kinetic lability on the mechanism of action of this class of promising antitumor agents.
Collapse
Affiliation(s)
- Manikandan M
- Medicinal Chemistry and Cell Biology Laboratory, Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai, Maharashtra, 400005, India
| | - Sushanta Chhatar
- Medicinal Chemistry and Cell Biology Laboratory, Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai, Maharashtra, 400005, India
| | - Shubhankar Gadre
- Medicinal Chemistry and Cell Biology Laboratory, Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai, Maharashtra, 400005, India
| | - Subhadeep Paul
- Medicinal Chemistry and Cell Biology Laboratory, Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai, Maharashtra, 400005, India
| | - Shreyas P Vaidya
- Medicinal Chemistry and Cell Biology Laboratory, Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai, Maharashtra, 400005, India
| | - Subhash Khatri
- Molecular Physiology Laboratory, Department of Biological Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai, Maharashtra, 400005, India
| | - Prakash Duari
- Medicinal Chemistry and Cell Biology Laboratory, Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai, Maharashtra, 400005, India
| | - Jyoti Kode
- Tumor Immunology & Immunotherapy Group (Kode lab), Advanced Centre for Treatment, Research & Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, 410210, India
- Anti-Cancer Drug Screening Facility (ACDSF), ACTREC, Tata Memorial Centre Kharghar, Navi Mumbai, 410210, India
- Homi Bhabha National Institute (HBNI), Training School Complex Anushakti Nagar, Mumbai, 400094, India
| | - Arvind Ingle
- Homi Bhabha National Institute (HBNI), Training School Complex Anushakti Nagar, Mumbai, 400094, India
- Laboratory Animal Facility, ACTREC, Tata Memorial Centre Kharghar, Navi Mumbai, 410210, India
| | - Ullas Kolthur-Seetharam
- Molecular Physiology Laboratory, Department of Biological Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai, Maharashtra, 400005, India
- Tata Institute of Fundamental Research-Hyderabad (TIFRH), Hyderabad, 500019, India
| | - Malay Patra
- Medicinal Chemistry and Cell Biology Laboratory, Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai, Maharashtra, 400005, India
| |
Collapse
|
34
|
Wan S, Li KP, Wang CY, Yang JW, Chen SY, Wang HB, Li XR, Yang L. Immunologic Crosstalk of Endoplasmic Reticulum Stress Signaling in Bladder Cancer. Curr Cancer Drug Targets 2024; 24:701-719. [PMID: 38265406 DOI: 10.2174/0115680096272663231121100515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/19/2023] [Accepted: 11/02/2023] [Indexed: 01/25/2024]
Abstract
Bladder cancer (BC) is a common malignant tumor of the urinary system. While current approaches involving adjuvant chemotherapy, radiotherapy, and immunotherapy have shown significant progress in BC treatment, challenges, such as recurrence and drug resistance, persist, especially in the case of muscle-invasive bladder cancer (MIBC). It is mainly due to the lack of pre-existing immune response cells in the tumor immune microenvironment. Micro-environmental changes (such as hypoxia and under-nutrition) can cause the aggregation of unfolded and misfolded proteins in the lumen, which induces endoplasmic reticulum (ER) stress. ER stress and its downstream signaling pathways are closely related to immunogenicity and tumor drug resistance. ER stress plays a pivotal role in a spectrum of processes within immune cells and the progression of BC cells, encompassing cell proliferation, autophagy, apoptosis, and resistance to therapies. Recent studies have increasingly recognized the potential of natural compounds to exhibit anti-BC properties through ER stress induction. Still, the efficacy of these natural compounds remains less than that of immune checkpoint inhibitors (ICIs). Currently, the ER stress-mediated immunogenic cell death (ICD) pathway is more encouraging, which can enhance ICI responses by mediating immune stemness. This article provides an overview of the recent developments in understanding how ER stress influences tumor immunity and its implications for BC. Targeting this pathway may soon emerge as a compelling therapeutic strategy for BC.
Collapse
Affiliation(s)
- Shun Wan
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, 730000, PR China
- Gansu Province Clinical Research Center for Urology, Lanzhou, 730000, PR China
| | - Kun-Peng Li
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, 730000, PR China
- Gansu Province Clinical Research Center for Urology, Lanzhou, 730000, PR China
| | - Chen-Yang Wang
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, 730000, PR China
- Gansu Province Clinical Research Center for Urology, Lanzhou730000, PR China
| | - Jian-Wei Yang
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, 730000, PR China
| | - Si-Yu Chen
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, 730000, PR China
- Gansu Province Clinical Research Center for Urology, Lanzhou, 730000, PR China
| | - Hua-Bin Wang
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, 730000, PR China
- Gansu Province Clinical Research Center for Urology, Lanzhou, 730000, PR China
| | - Xiao-Ran Li
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, 730000, PR China
- Gansu Province Clinical Research Center for Urology, Lanzhou, 730000, PR China
| | - Li Yang
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, 730000, PR China
- Gansu Province Clinical Research Center for Urology, Lanzhou, 730000, PR China
| |
Collapse
|
35
|
Das S, Joshi P, Patra M. Necrosis-Inducing High-Valent Oxo-Rhenium(V) Complexes with Potent Antitumor Activity: Synthesis, Aquation Chemistry, Cisplatin Cross-Resistance Profile, and Mechanism of Action. Inorg Chem 2023; 62:19720-19733. [PMID: 37974075 DOI: 10.1021/acs.inorgchem.3c03110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Chemotherapy with the cytotoxic platinum (Pt) drugs cisplatin, carboplatin, and oxaliplatin is the mainstay of anticancer therapy in the clinic. The antitumor activity of Pt drugs originates from their ability to induce apoptosis via covalent adduct formation with nuclear DNA. While the phenomenal clinical success is highly encouraging, resistance and adverse toxic side effects limit the wider applicability of Pt drugs. To circumvent these limitations, we embarked on an effort to explore the antitumor potential of a new class of oxo-rhenium(V) complexes of the type [(N∧N)(EG)Re(O)Cl] (where EG = ethylene glycolate and N∧N = bipyridine, Bpy (1); phenanthroline, Phen (2); 3,4,7,8-tetramethyl-phenanthroline, Me4Phen (3)). Investigation of speciation chemistry in aqueous media revealed the formation of [(N∧N)Re(O)(OH)3] as the biologically active species. Complex 3 was found to be the most potent among the three, with IC50 values ranging from 0.1 to 0.4 μM against a panel of cancer cells, which is 5-70-fold lower when compared with cisplatin. The higher potency of 3 is attributed to its higher lipophilicity, which enhanced cellular uptake. Importantly, complex 3 efficiently overcomes cisplatin resistance in ovarian, lung, and prostate cancer cells. In addition to reporting the aquation chemistry and identifying the active species in aqueous media, we performed in-depth in vitro mechanistic studies, which revealed that complex 3 preferentially accumulates in mitochondria, depletes mitochondrial membrane potential, and upregulates intracellular reactive oxygen species (ROS), leading to ER stress-mediated necrosis-mediated cancer cell death.
Collapse
Affiliation(s)
- Shubhangi Das
- Laboratory of Medicinal Chemistry and Cell Biology, Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Navy Nagar, 400005 Mumbai, India
| | - Pulkit Joshi
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Navy Nagar, 400005 Mumbai, India
| | - Malay Patra
- Laboratory of Medicinal Chemistry and Cell Biology, Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Navy Nagar, 400005 Mumbai, India
| |
Collapse
|
36
|
Wu H, Zhang Y, Liang J, Wu J, Zhang Y, Su H, Zhang Q, Shen Y, Shen S, Wang L, Zou X, Hang C, Zhang S, Lv Y. Lithium chloride induces apoptosis by activating endoplasmic reticulum stress in pancreatic cancer. Transl Oncol 2023; 38:101792. [PMID: 37806114 PMCID: PMC10579530 DOI: 10.1016/j.tranon.2023.101792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 08/11/2023] [Accepted: 09/22/2023] [Indexed: 10/10/2023] Open
Abstract
Lithium compounds, a classic class of metal complex medicine that target GSK 3β and are widely known as mood-stabilizer, have recently been reported as potential anti-tumor drugs. The objective of this investigation was to explore the anticancer potential of lithium chloride (LiCl) and elucidate its mode of action in pancreatic cancer cells. The MTT, colony formation, and Edu assay were used to evaluate the impact of LiCl on pancreatic cancer cell proliferation. Various methods were employed to investigate the anti-tumor activity of LiCl and its underlying mechanisms. Cell cycle analysis and apoptosis detection assays were utilized for in vitro experiments, while the orthotopic pancreatic cancer mouse model was employed to evaluate the effectiveness of LiCl treatment in vivo. Furthermore, the impact of LiCl on the proliferation of patient-derived organoids was also studied. The results demonstrated that LiCl inhibited the proliferation of pancreatic cancer (PC) cells, induced G2/M phase arrest, and activated apoptosis. Notably, the triggering of endoplasmic reticulum (ER) stress by LiCl was observed, leading to the activation of the PERK/CHOP/GADD34 pathway, which subsequently promoted apoptosis in PC cells. In the future, Lithium compounds could become an essential adjunct in the treatment of human pancreatic cancer.
Collapse
Affiliation(s)
- Hao Wu
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008 Jiangsu, PR China; Institute of Pancreatology, Nanjing University, Nanjing 210008 Jiangsu, PR China; Department of Geriatrics, Nanjing Red Cross Hospital, No. 242, Baixia Road, Qinhuai District, Nanjing 21000 Jiangsu, PR China
| | - Yin Zhang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008 Jiangsu, PR China; Institute of Pancreatology, Nanjing University, Nanjing 210008 Jiangsu, PR China
| | - Jiawei Liang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008 Jiangsu, PR China; Institute of Pancreatology, Nanjing University, Nanjing 210008 Jiangsu, PR China
| | - Jianzhuang Wu
- Institute of Pancreatology, Nanjing University, Nanjing 210008 Jiangsu, PR China; State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210033 Jiangsu, PR China
| | - Yixuan Zhang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008 Jiangsu, PR China; Institute of Pancreatology, Nanjing University, Nanjing 210008 Jiangsu, PR China
| | - Haochen Su
- Institute of Pancreatology, Nanjing University, Nanjing 210008 Jiangsu, PR China; Department of Gastroenterology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing 210008 Jiangsu, PR China
| | - Qiyue Zhang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008 Jiangsu, PR China; Institute of Pancreatology, Nanjing University, Nanjing 210008 Jiangsu, PR China
| | - Yonghua Shen
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008 Jiangsu, PR China; Institute of Pancreatology, Nanjing University, Nanjing 210008 Jiangsu, PR China
| | - Shanshan Shen
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008 Jiangsu, PR China; Institute of Pancreatology, Nanjing University, Nanjing 210008 Jiangsu, PR China
| | - Lei Wang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008 Jiangsu, PR China; Institute of Pancreatology, Nanjing University, Nanjing 210008 Jiangsu, PR China
| | - Xiaoping Zou
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008 Jiangsu, PR China; Institute of Pancreatology, Nanjing University, Nanjing 210008 Jiangsu, PR China; Department of Gastroenterology, Affiliated Taikang Xianlin Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210023 Jiangsu, PR China
| | - Cheng Hang
- Department of Gastroenterology, Taicang Affiliated Hospital of Soochow University, The First People's Hospital of Taicang, Taicang 215400 Jiangsu, PR China.
| | - Shu Zhang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008 Jiangsu, PR China; Institute of Pancreatology, Nanjing University, Nanjing 210008 Jiangsu, PR China.
| | - Ying Lv
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008 Jiangsu, PR China; Institute of Pancreatology, Nanjing University, Nanjing 210008 Jiangsu, PR China; Department of Gastroenterology, Affiliated Taikang Xianlin Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210023 Jiangsu, PR China.
| |
Collapse
|
37
|
Ariafar S, Makhdoomi S, Mohammadi M. Arsenic and Tau Phosphorylation: a Mechanistic Review. Biol Trace Elem Res 2023; 201:5708-5720. [PMID: 37211576 DOI: 10.1007/s12011-023-03634-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/14/2023] [Indexed: 05/23/2023]
Abstract
Arsenic poisoning can affect the peripheral nervous system and cause peripheral neuropathy. Despite different studies on the mechanism of intoxication, the complete process is not explained yet, which can prevent further intoxication and produce effective treatment. In the following paper, we would like to consider the idea that arsenic might cause some diseases via inflammation induction, and tauopathy in neurons. Tau protein, one of the microtubule-associated proteins expressed in neurons, contributes to neuronal microtubules structure. Arsenic may be involved in cellular cascades involved in modulating tau function or hyperphosphorylation of tau protein, which ultimately leads to nerve destruction. For proof of this assumption, some investigations have been planned to measure the association between arsenic and quantities of phosphorylation of tau protein. Additionally, some researchers have investigated the association between microtubule trafficking in neurons and the levels of tau protein phosphorylation. It should be noticed that changing tau phosphorylation in arsenic toxicity may add a new feature to understanding the mechanism of poisonousness and aid in discovering novel therapeutic candidates such as tau phosphorylation inhibitors for drug development.
Collapse
Affiliation(s)
- Saba Ariafar
- Department of Pharmacology & Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Sajjad Makhdoomi
- Department of Pharmacology & Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mojdeh Mohammadi
- Department of Pharmacology & Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
38
|
Demir EA, Mentese A, Yilmaz ZS, Alemdar NT, Demir S, Aliyazicioglu Y. Evaluation of the therapeutic effects of arbutin on cisplatin-induced ovarian toxicity in rats through endoplasmic reticulum stress and Nrf2 pathway. Reprod Biol 2023; 23:100824. [PMID: 37976616 DOI: 10.1016/j.repbio.2023.100824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 11/03/2023] [Accepted: 11/05/2023] [Indexed: 11/19/2023]
Abstract
Arbutin (ARB) is a glycosylated hydroquinone with potent antioxidant effects. Although cisplatin (CP) is widely used in chemotherapy, its toxicity in healthy tissues, including ovotoxicity, is an insurmountable problem. This study aimed to evaluate the therapeutic effect of ARB against CP-related ovototoxicity by including nuclear factor erythroid 2-related factor 2 (Nrf2) pathway in rats for the first time. Rats treated one dose of CP (5 mg/kg) on the first day, followed by ARB (5 and 10 mg/kg) for three days. Serum reproductive hormone levels were determined using ELISA kits. Oxidative stress (OS), inflammation, endoplasmic reticulum stress (ERS) and apoptosis markers in ovarian tissue were also determined colorimetrically. In addition, how CP affects Nrf2 pathway and the effect of ARB on this situation were also addressed. ARB treatment reduced the levels of markers of OS, inflammation, ERS and apoptosis in ovarian tissue of CP-stimulated animals. ARB regenerated the depleted antioxidant system by triggering Nrf2 pathway in the ovarian tissues of animals stimulated by CP. Histological findings also supported the therapeutic efficacy of ARB. The results indicate that ARB may have therapeutic effects against CP-induced reproductive toxicity with its Nrf2 activator potential. ARB should be tested in more extensive studies as a new generation chemopreventive candidate molecule.
Collapse
Affiliation(s)
- Elif Ayazoglu Demir
- Department of Chemistry and Chemical Processing Technologies, Macka Vocational School, Karadeniz Technical University, 61750 Trabzon, Turkiye
| | - Ahmet Mentese
- Department of Medical Biochemistry, Faculty of Medicine, Karadeniz Technical University, 61080 Trabzon, Turkiye
| | - Zeynep Sagnak Yilmaz
- Department of Medical Pathology, Faculty of Medicine, Karadeniz Technical University, 61080 Trabzon, Turkiye
| | - Nihal Turkmen Alemdar
- Department of Medical Biochemistry, Graduate School of Health Sciences, Karadeniz Technical University, 61080 Trabzon, Turkiye; Department of Medical Services and Techniques, Vocational School of Health Services, Recep Tayyip Erdogan University, 53100 Rize, Turkiye
| | - Selim Demir
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Karadeniz Technical University, 61080 Trabzon, Turkiye.
| | - Yuksel Aliyazicioglu
- Department of Medical Biochemistry, Faculty of Medicine, Karadeniz Technical University, 61080 Trabzon, Turkiye
| |
Collapse
|
39
|
Mentese A, Demir S, Mungan SA, Alemdar NT, Demir EA, Aliyazicioglu Y. Gentisic acid ameliorates cisplatin-induced reprotoxicity through suppressing endoplasmic reticulum stress and upregulating Nrf2 pathway. Tissue Cell 2023; 85:102256. [PMID: 37918215 DOI: 10.1016/j.tice.2023.102256] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/13/2023] [Accepted: 10/23/2023] [Indexed: 11/04/2023]
Abstract
Reproductive toxicity is a serious side effect of cisplatin (CP) chemotherapy. Gentisic acid (GTA) is a phenolic acid with strong antioxidant properties. Here, we aimed to determine therapeutic effect of GTA against CP-induced testicular toxicity in rats for the first time. Male Sprague-Dawley rats received a single dose of CP (5 mg/kg; intraperitoneal) and treated with GTA (1.5 and 3 mg/kg; intraperitoneal; 3 consecutive days). The levels of oxidative stress (OS), inflammation, endoplasmic reticulum stress (ERS) and apoptosis biomarkers were assessed in the testicular tissue of rats. In addition, how CP affects the nuclear factor erythroid-2-related factor 2 (Nrf2) pathway and the effect of GTA on this situation were also addressed in the testicular tissue. CP administration induced histopathological changes in testicular tissue of rats with a significant increase in OS, inflammation, ERS and apoptosis biomarkers and a decrease in antioxidant capacity and Nrf2 expression levels. Administrations of GTA resulted in an amelioration of these altered parameters. These data suggest that GTA may be a potential therapeutic agent against CP-induced testicular toxicity. Activation of the Nrf2 pathway plays a key role of this therapeutic effect of GTA.
Collapse
Affiliation(s)
- Ahmet Mentese
- Department of Medical Biochemistry, Faculty of Medicine, Karadeniz Technical University, 61080 Trabzon, Turkey
| | - Selim Demir
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Karadeniz Technical University, 61080 Trabzon, Turkey.
| | - Sevdegul Aydin Mungan
- Department of Medical Pathology, Faculty of Medicine, Karadeniz Technical University, 61080 Trabzon, Turkey
| | - Nihal Turkmen Alemdar
- Department of Medical Biochemistry, Graduate School of Health Sciences, Karadeniz Technical University, 61080 Trabzon, Turkey; Department of Medical Services and Techniques, Vocational School of Health Services, Recep Tayyip Erdogan University, 53100 Rize, Turkey
| | - Elif Ayazoglu Demir
- Department of Chemistry and Chemical Processing Technologies, Macka Vocational School, Karadeniz Technical University, 61750 Trabzon, Turkey
| | - Yuksel Aliyazicioglu
- Department of Medical Biochemistry, Faculty of Medicine, Karadeniz Technical University, 61080 Trabzon, Turkey
| |
Collapse
|
40
|
Deng Z, Chen S, Liu G, Zhu G. Unlocking the potential of platinum drugs: organelle-targeted small-molecule platinum complexes for improved anticancer performance. RSC Chem Biol 2023; 4:1003-1013. [PMID: 38033725 PMCID: PMC10685827 DOI: 10.1039/d3cb00087g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 09/29/2023] [Indexed: 12/02/2023] Open
Abstract
Platinum-based drugs have revolutionized cancer chemotherapy; however, their therapeutic efficacy has been limited by severe side effects and drug resistance. Recently, approaches that target specific organelles in cancer cells have emerged as attractive alternatives to overcome these challenges. Many studies have validated these strategies and highlighted that organelle-targeted platinum complexes demonstrate increased anticancer activity, the ability to overcome drug resistance, novel molecular mechanisms, or even lower toxicity. This review provides a brief summary of various organelle-targeting strategies that promote the accumulation of platinum complexes in certain intracellular areas, such as the nucleus, mitochondria, endoplasmic reticulum (ER), and lysosomes. Moreover, the mechanisms through which these strategies improve anticancer performance, overcome drug resistance, and alter the action mode of conventional platinum drugs are discussed. By providing an extensive account of platinum complexes targeting different organelles, this review aims to assist researchers in understanding the design principles, identifying potential targets, and fostering innovative ideas for the development of platinum complexes.
Collapse
Affiliation(s)
- Zhiqin Deng
- Department of Chemistry, City University of Hong Kong Hong Kong SAR P. R. China
- City University of Hong Kong Shenzhen Research Institute Shenzhen 518057 P. R. China
- School of Medicine, Chongqing University Chongqing 400030 P. R. China
| | - Shu Chen
- Department of Chemistry, City University of Hong Kong Hong Kong SAR P. R. China
- City University of Hong Kong Shenzhen Research Institute Shenzhen 518057 P. R. China
| | - Gongyuan Liu
- Department of Chemistry, City University of Hong Kong Hong Kong SAR P. R. China
- City University of Hong Kong Shenzhen Research Institute Shenzhen 518057 P. R. China
| | - Guangyu Zhu
- Department of Chemistry, City University of Hong Kong Hong Kong SAR P. R. China
- City University of Hong Kong Shenzhen Research Institute Shenzhen 518057 P. R. China
| |
Collapse
|
41
|
Wang Y, Li X, Liu W, Sha J, Yu Z, Wang S, Ren H, Zhang W, Lee CS, Wang P. A dual organelle-targeting photosensitizer based on curcumin for enhanced photodynamic therapy. J Mater Chem B 2023; 11:10836-10844. [PMID: 37929670 DOI: 10.1039/d3tb01648j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
The efficiency of photodynamic therapy (PDT) is related to the subcellular localization of photosensitizers (PSs) because organelles are associated with many fundamental life-sustaining activities. In this work, we synthesized a PS (CN) based on curcumin (CUR) and obtained enhanced PDT efficiency by simultaneously targeting lipid droplets (LDs) and the endoplasmic reticulum (ER). Compared with CUR, CN with a D-π-A-π-D structure possessed stronger intramolecular charge transfer features, resulting in longer absorption and emission wavelengths. In cell imaging experiments of CN using a confocal laser scanning microscope, a bright green emission in LDs and a weak orange emission in the ER were simultaneously observed due to its sensitivity to polarity. Surprisingly, CN with low singlet oxygen yields (0.13) exhibited an excellent photodynamic effect. Further experimental results showed that the phototoxicity of CN resulted in apoptosis by destroying the ER and ferroptosis by oxidizing polyunsaturated fatty acids (PUFAs) in LDs. This work paves the way for developing more effective photosensitizers with superior dual-targeting specificity.
Collapse
Affiliation(s)
- Yanping Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials & CityU-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xuewei Li
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials & CityU-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Weimin Liu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials & CityU-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Qingdao Casfuture Research Institute CO., LTD, P. R. China
| | - Jie Sha
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials & CityU-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhe Yu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials & CityU-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Shuai Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials & CityU-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Haohui Ren
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials & CityU-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- Qingdao Casfuture Research Institute CO., LTD, P. R. China
| | - Wenjun Zhang
- Department of Materials Science and Engineering & Center of Super-Diamond and Advanced Films, City University of Hong Kong, Hong Kong, P. R. China
| | - Chun-Sing Lee
- Department of Materials Science and Engineering & Center of Super-Diamond and Advanced Films, City University of Hong Kong, Hong Kong, P. R. China
| | - Pengfei Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials & CityU-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
42
|
Gadre S, M M, Chakraborty G, Rayrikar A, Paul S, Patra C, Patra M. Development of a Highly In Vivo Efficacious Dual Antitumor and Antiangiogenic Organoiridium Complex as a Potential Anti-Lung Cancer Agent. J Med Chem 2023; 66:13481-13500. [PMID: 37784224 DOI: 10.1021/acs.jmedchem.3c00704] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
While the phenomenal clinical success of blockbuster platinum (Pt) drugs is highly encouraging, the inherent and acquired resistance and dose-limiting side effects severely limit their clinical application. To find a better alternative with translational potential, we synthesized a library of six organo-IrIII half-sandwich [(η5-CpX)Ir(N∧N)Cl]+-type complexes. In vitro screening identified two lead candidates [(η5-CpXPh)Ir(Ph2Phen)Cl]+ (5, CpXPh = tetramethyl-phenyl-cyclopentadienyl and Ph2Phen = 4,7-diphenyl-1,10-phenanthroline) and [(η5-CpXBiPh)Ir(Ph2Phen)Cl]+ (6, CpXBiPh = tetramethyl-biphenyl-cyclopentadienyl) with nanomolar IC50 values. Both 5 and 6 efficiently overcame Pt resistance and presented excellent cancer cell selectivity in vitro. Potent antiangiogenic properties of 6 were demonstrated in the zebrafish model. Satisfyingly, 6 and its nanoliposome Lipo-6 presented considerably higher in vivo antitumor efficacy as compared to cisplatin, as well as earlier reported IrIII half-sandwich complexes in mice bearing the A549 non-small lung cancer xenograft. In particular, complex 6 is the first example of this class that exerted dual in vivo antiangiogenic and antitumor properties.
Collapse
Affiliation(s)
- Shubhankar Gadre
- Medicinal Chemistry and Cell Biology Laboratory, Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai, Maharashtra 400005, India
| | - Manikandan M
- Medicinal Chemistry and Cell Biology Laboratory, Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai, Maharashtra 400005, India
| | - Gourav Chakraborty
- Department of Developmental Biology, Agharkar Research Institute, G G Agarkar Road, Pune, Maharashtra 411004, India
| | - Amey Rayrikar
- Department of Developmental Biology, Agharkar Research Institute, G G Agarkar Road, Pune, Maharashtra 411004, India
| | - Subhadeep Paul
- Medicinal Chemistry and Cell Biology Laboratory, Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai, Maharashtra 400005, India
| | - Chinmoy Patra
- Department of Developmental Biology, Agharkar Research Institute, G G Agarkar Road, Pune, Maharashtra 411004, India
| | - Malay Patra
- Medicinal Chemistry and Cell Biology Laboratory, Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai, Maharashtra 400005, India
| |
Collapse
|
43
|
Klemt I, Varzatskii O, Selin R, Vakarov S, Kovalska V, Bila G, Bilyy R, Voloshin Y, Cuartero IC, Hidalgo A, Frey B, Becker I, Friedrich B, Tietze R, Friedrich RP, Alexiou C, Ursu EL, Rotaru A, Solymosi I, Pérez-Ojeda ME, Mokhir A. 3D-Shaped Binders of Unfolded Proteins Inducing Cancer Cell-Specific Endoplasmic Reticulum Stress In Vitro and In Vivo. J Am Chem Soc 2023; 145:22252-22264. [PMID: 37773090 DOI: 10.1021/jacs.3c08827] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
The amount of unfolded proteins is increased in cancer cells, leading to endoplasmic reticulum (ER) stress. Therefore, cancer cells are sensitive to drugs capable of further enhancing ER stress. Examples of such drugs include the clinically approved proteosome inhibitors bortezomib and carfilzomib. Unfortunately, the known ER stress inducers exhibit dose-limiting side effects that justify the search for better, more cancer-specific drugs of this type. Herein, we report on FeC 2, which binds to unfolded proteins prevents their further processing, thereby leading to ER stress and ROS increase in cancer cells, but not in normal cells. FeC 2 exhibits low micromolar toxicity toward human acute promyelocytic leukemia HL-60, Burkitt's lymphoma BL-2, T-cell leukemia Jurkat, ovarian carcinoma A2780, lung cancer SK-MES-1, and murine lung cancer LLC1 cells. Due to the cancer-specific mode of action, 2 is not toxic in vivo up to the dose of 147 mg/kg, does not affect normal blood and bone marrow cells at the therapeutically active dose, but strongly suppresses both primary tumor growth (confirmed in Nemeth-Kellner lymphoma and LLC1 lung cancer models of murine tumor) and spreading of metastases (LLC1).
Collapse
Affiliation(s)
- Insa Klemt
- Department of Chemistry and Pharmacy, Organic Chemistry II, Friedrich-Alexander-University of Erlangen-Nürnberg (FAU), 91058 Erlangen, Germany
| | - Oleg Varzatskii
- Princeton Biomolecular Research Laboratories, 26A Saperne Pole Street, 01042 Kyiv, Ukraine
- V.I. Vernadsky Institute of General and Inorganic Chemistry, NASU, 32/34 Palladin Av., 03142 Kyiv, Ukraine
| | - Roman Selin
- Department of Chemistry and Pharmacy, Organic Chemistry II, Friedrich-Alexander-University of Erlangen-Nürnberg (FAU), 91058 Erlangen, Germany
| | - Serhii Vakarov
- Princeton Biomolecular Research Laboratories, 26A Saperne Pole Street, 01042 Kyiv, Ukraine
- V.I. Vernadsky Institute of General and Inorganic Chemistry, NASU, 32/34 Palladin Av., 03142 Kyiv, Ukraine
| | - Vladyslava Kovalska
- Princeton Biomolecular Research Laboratories, 26A Saperne Pole Street, 01042 Kyiv, Ukraine
- Institute of Molecular Biology and Genetics, NASU, 150 Zabolotnogo Street, 03143 Kyiv, Ukraine
| | - Galyna Bila
- Department of Histology, Cytology and Embryology, Danylo Halytsky Lviv National Medical University, Pekarska Street 69, 79010 Lviv, Ukraine
- Lectinotest R&D, Mechanichna Street 2, 79024 Lviv, Ukraine
| | - Rostyslav Bilyy
- Department of Histology, Cytology and Embryology, Danylo Halytsky Lviv National Medical University, Pekarska Street 69, 79010 Lviv, Ukraine
- Lectinotest R&D, Mechanichna Street 2, 79024 Lviv, Ukraine
| | - Yan Voloshin
- Nesmeyanov Institute of Organoelement Compounds, RAS, 28 Vavilova Street, 119334 Moscow, Russia
| | - Itziar Cossío Cuartero
- Program of Cardiovascular Regeneration, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), C. Melchor Fernández Almagro, 3, 28029 Madrid, Spain
| | - Andrés Hidalgo
- Program of Cardiovascular Regeneration, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), C. Melchor Fernández Almagro, 3, 28029 Madrid, Spain
| | - Benjamin Frey
- Department of Radiation Oncology, Translational Radiobiology, Universitaetsklinikum Erlangen, Friedrich-Alexander-University of Erlangen-Nürnberg (FAU), Glueckstrasse 4A, 91054 Erlangen, Germany
| | - Ina Becker
- Department of Radiation Oncology, Translational Radiobiology, Universitaetsklinikum Erlangen, Friedrich-Alexander-University of Erlangen-Nürnberg (FAU), Glueckstrasse 4A, 91054 Erlangen, Germany
| | - Bernhard Friedrich
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), University Hospital, Friedrich-Alexander-University of Erlangen-Nürnberg (FAU), Glückstraße 10a, 91054 Erlangen, Germany
| | - Rainer Tietze
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), University Hospital, Friedrich-Alexander-University of Erlangen-Nürnberg (FAU), Glückstraße 10a, 91054 Erlangen, Germany
| | - Ralf P Friedrich
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), University Hospital, Friedrich-Alexander-University of Erlangen-Nürnberg (FAU), Glückstraße 10a, 91054 Erlangen, Germany
| | - Christoph Alexiou
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), University Hospital, Friedrich-Alexander-University of Erlangen-Nürnberg (FAU), Glückstraße 10a, 91054 Erlangen, Germany
| | - Elena-Laura Ursu
- "Petru Poni" Institute of Macromolecular Chemistry, Romanian Academy, Centre of Advanced Research in Bionanoconjugates and Biopolymers, Grigore Ghica Voda Alley 41 A, 700487 Iasi, Romania
| | - Alexandru Rotaru
- "Petru Poni" Institute of Macromolecular Chemistry, Romanian Academy, Centre of Advanced Research in Bionanoconjugates and Biopolymers, Grigore Ghica Voda Alley 41 A, 700487 Iasi, Romania
| | - Iris Solymosi
- Department of Chemistry and Pharmacy, Organic Chemistry II, Friedrich-Alexander-University of Erlangen-Nürnberg (FAU), 91058 Erlangen, Germany
| | - M Eugenia Pérez-Ojeda
- Department of Chemistry and Pharmacy, Organic Chemistry II, Friedrich-Alexander-University of Erlangen-Nürnberg (FAU), 91058 Erlangen, Germany
| | - Andriy Mokhir
- Department of Chemistry and Pharmacy, Organic Chemistry II, Friedrich-Alexander-University of Erlangen-Nürnberg (FAU), 91058 Erlangen, Germany
| |
Collapse
|
44
|
Mentese A, Demir S, Kucuk H, Yulug E, Alemdar NT, Demir EA, Aliyazicioglu Y. Vanillic acid abrogates cisplatin-induced ovotoxicity through activating Nrf2 pathway. Tissue Cell 2023; 84:102161. [PMID: 37478646 DOI: 10.1016/j.tice.2023.102161] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/21/2023] [Accepted: 07/11/2023] [Indexed: 07/23/2023]
Abstract
Although cisplatin (CDDP) is an effective anticancer agent, the ovotoxicity that can occur in female patients limits its use. Oxidative stress (OS) and inflammation are known to contribute to CDDP-induced ovotoxicity. Vanillic acid (VA) is a dietary herbal secondary metabolite with high free radical scavenging activity. It was aimed to evaluate the therapeutic effects of VA against CDDP-induced ovotoxicity in rats in this study for the first time. Ovotoxicity was achieved with a single dose of CDDP (5 mg/kg) in female rats. The therapeutic effect of VA was evaluated with 3-day administration of two different doses (5 and 10 mg/kg). While OS, inflammation, endoplasmic reticulum stress (ERS) and apoptosis markers were measured in tissue samples, the levels of reproductive hormones were determined in serum samples using colorimetric methods. The results showed that CDDP-induced nuclear factor erythroid 2-associated factor 2 (Nrf2) inhibition combined with increased OS, inflammation, ERS and apoptosis increased ovarian damage. VA treatments reversed these changes via activating Nrf2 pathway dose-dependently. In addition, histopathological findings also supported the biochemical results. VA may be a good therapeutic molecule candidate for CDDP-induced ovarian damage due to strong antioxidant and Nrf2 activator properties.
Collapse
Affiliation(s)
- Ahmet Mentese
- Department of Medical Biochemistry, Faculty of Medicine, Karadeniz Technical University, 61080 Trabzon, Turkey
| | - Selim Demir
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Karadeniz Technical University, 61080 Trabzon, Turkey.
| | - Hatice Kucuk
- Department of Pathology, Kanuni Training and Research Hospital, University of Health Sciences, 61250 Trabzon, Turkey
| | - Esin Yulug
- Department of Histology and Embryology, Faculty of Medicine, Karadeniz Technical University, 61080 Trabzon, Turkey
| | - Nihal Turkmen Alemdar
- Department of Medical Biochemistry, Graduate School of Health Sciences, Karadeniz Technical University, 61080 Trabzon, Turkey; Department of Medical Services and Techniques, Vocational School of Health Services, Recep Tayyip Erdogan University, 53100 Rize, Turkey
| | - Elif Ayazoglu Demir
- Department of Ch emistry and Chemical Processing Technologies, Macka Vocational School, Karadeniz Technical University, 61750 Trabzon, Turkey
| | - Yuksel Aliyazicioglu
- Department of Medical Biochemistry, Faculty of Medicine, Karadeniz Technical University, 61080 Trabzon, Turkey
| |
Collapse
|
45
|
Gómez de Segura D, Giménez N, Rincón-Montón D, Moreno MT, Pichel JG, López IP, Lalinde E. A new family of luminescent [Pt(pbt) 2(C 6F 5)L] n+ ( n = 1, 0) complexes: synthesis, optical and cytotoxic studies. Dalton Trans 2023; 52:12390-12403. [PMID: 37594064 DOI: 10.1039/d3dt01759a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
Given the widely recognized bioactivity of 2-arylbenzothiazoles against tumor cells, we have designed a new family of luminescent heteroleptic pentafluorophenyl-bis(2-phenylbenzothiazolyl) PtIV derivatives, fac-[Pt(pbt)2(C6F5)L]n+ (n = 1, 0) [L = 4-Mepy 1, 4-pyridylbenzothiazole (pybt) 2, 4,4'-bipyridine (4,4'-bpy) 3, 1,2-bis-(4-pyridyl)ethylene (bpe) 4 (E/Z ratio: 90/10), 1,4-bis-(pyridyl)butadiyne (bpyb) 5, trifluoroacetate (-OCOCF3) 6] and a dinuclear complex [{Pt(pbt)2(C6F5)}2(μ-bpyb)](PF6)27, in which the trans ligand to the metalated C-(pbt) was varied to modify the optical properties and lipophilicity. Their photophysical properties were systematically studied through experimental and theoretical investigations, which were strongly dependent on the identity of the N-bonded ligand. Thus, complexes 1, 3 and 6 display, in different media, emission from the triplet excited states of primarily intraligand 3ILCT nature localized on the pbt ligand, while the emissions of 2, 5 and 7 were ascribed to a mixture of close 3IL'(N donor)/3ILCT(pbt) excited states, as supported by lifetime measurements and theoretical calculations. Irradiation of the initial E/Z mixture of 4 (15 min) led to a steady state composed of roughly 1 : 1.15 (E : Z) and this complex was not emissive at room temperature due to an enhanced intramolecular E to Z isomerization process of the 1,2-bis-(4-pyridyl)ethylene ligand. Complexes 1-3 and 6 showed excellent quantum yields for the generation of singlet oxygen in aerated MeCN solution with the values of ϕ(1O2) ranging from 0.66 to 0.86 using phenalenone as a reference. Cationic complexes 1-3 exhibited remarkable efficacy in the nanomolar range against A549 (lung carcinoma) and HeLa (cervix carcinoma) cell lines with notable selectivity relative to the non-tumorigenic BEAS-2B (bronchial epithelium) cells. In the A549 cell line, the neutral complex 6 showed low cytotoxicity (IC50: 29.40 μM) and high photocytotoxicity (IC50: 5.75) when cells were irradiated with blue light for 15 min. These complexes do not show evidence of DNA interaction.
Collapse
Affiliation(s)
- David Gómez de Segura
- Departamento de Química-Centro de Síntesis Química de La Rioja (CISQ), Universidad de La Rioja, 26006, Logroño, Spain.
| | - Nora Giménez
- Departamento de Química-Centro de Síntesis Química de La Rioja (CISQ), Universidad de La Rioja, 26006, Logroño, Spain.
| | - David Rincón-Montón
- Departamento de Química-Centro de Síntesis Química de La Rioja (CISQ), Universidad de La Rioja, 26006, Logroño, Spain.
| | - M Teresa Moreno
- Departamento de Química-Centro de Síntesis Química de La Rioja (CISQ), Universidad de La Rioja, 26006, Logroño, Spain.
| | - José G Pichel
- Lung Cancer and Respiratory Diseases Unit (CIBIR), Fundación Rioja Salud, 26006, Logroño, Spain.
- Spanish Biomedical Research Networking Centre in Respiratory Diseases (CIBERES), ISCIII, E-28029, Madrid, Spain
| | - Icíar P López
- Lung Cancer and Respiratory Diseases Unit (CIBIR), Fundación Rioja Salud, 26006, Logroño, Spain.
| | - Elena Lalinde
- Departamento de Química-Centro de Síntesis Química de La Rioja (CISQ), Universidad de La Rioja, 26006, Logroño, Spain.
| |
Collapse
|
46
|
Borutzki Y, Skos L, Gerner C, Meier‐Menches SM. Exploring the Potential of Metal-Based Candidate Drugs as Modulators of the Cytoskeleton. Chembiochem 2023; 24:e202300178. [PMID: 37345897 PMCID: PMC10946712 DOI: 10.1002/cbic.202300178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 06/23/2023]
Abstract
During recent years, accumulating evidence suggested that metal-based candidate drugs are promising modulators of cytoskeletal and cytoskeleton-associated proteins. This was substantiated by the identification and validation of actin, vimentin and plectin as targets of distinct ruthenium(II)- and platinum(II)-based modulators. Despite this, structural information about molecular interaction is scarcely available. Here, we compile the scattered reports about metal-based candidate molecules that influence the cytoskeleton, its associated proteins and explore their potential to interfere in cancer-related processes, including proliferation, invasion and the epithelial-to-mesenchymal transition. Advances in this field depend crucially on determining binding sites and on gaining comprehensive insight into molecular drug-target interactions. These are key steps towards establishing yet elusive structure-activity relationships.
Collapse
Affiliation(s)
- Yasmin Borutzki
- Institute of Inorganic ChemistryFaculty of ChemistryUniversity of Vienna1090ViennaAustria
- Department of Analytical ChemistryFaculty of ChemistryUniversity of Vienna1090ViennaAustria
- Doctoral School of ChemistryUniversity of Vienna1090ViennaAustria
| | - Lukas Skos
- Department of Analytical ChemistryFaculty of ChemistryUniversity of Vienna1090ViennaAustria
- Doctoral School of ChemistryUniversity of Vienna1090ViennaAustria
| | - Christopher Gerner
- Department of Analytical ChemistryFaculty of ChemistryUniversity of Vienna1090ViennaAustria
- Joint Metabolome FacilityUniversity of Vienna and Medical University Vienna1090ViennaAustria
| | - Samuel M. Meier‐Menches
- Institute of Inorganic ChemistryFaculty of ChemistryUniversity of Vienna1090ViennaAustria
- Department of Analytical ChemistryFaculty of ChemistryUniversity of Vienna1090ViennaAustria
- Joint Metabolome FacilityUniversity of Vienna and Medical University Vienna1090ViennaAustria
| |
Collapse
|
47
|
Li D, Wang W, Liu B, Jin D, Wang Y, He G, Guo L, Liu W, Li Y. Characterization of circSEC11A as a novel regulator of Iodine-125 radioactive seed-induced anticancer effects in hepatocellular carcinoma via targeting ZHX2/GADD34 axis. Cell Death Discov 2023; 9:294. [PMID: 37563132 PMCID: PMC10415397 DOI: 10.1038/s41420-023-01593-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/19/2023] [Accepted: 08/02/2023] [Indexed: 08/12/2023] Open
Abstract
Iodine-125 (I-125) radioactive seed implantation is used for the local treatment of hepatocellular carcinoma (HCC), but the molecular mechanisms regulating its anticancer effects remain incompletely understood. In this study, we report that hsa_circ_0000647 (circSEC11A) is highly expressed after I-125 treatment in HCC cell lines and tissues and is a key regulator of I-125-induced anticancer effects. CircSEC11A acts as a competing endogenous RNA (ceRNA) to sponge miR-3529-3p, promoting the expression of zinc fingers and homeoboxes 2 (ZHX2) and enhancing I-125-induced anticancer effects. Dual-luciferase reporter assay, RNA pull-down, RNA immunoprecipitation, and fluorescence in situ hybridization were thereafter performed to verify the interaction among the molecules. Anticancer effects were detected using CCK-8, flow cytometry, TUNEL, EdU, transwell, and wound healing assays. Furthermore, ZHX2 transcriptionally inhibits GADD34, a negative regulator of endoplasmic reticulum stress (ERS), to enhance I-125- induced anticancer effects in vivo and in vitro. In conclusion, we characterized circSEC11A as a novel regulator of I-125-induced anticancer effects in HCC via miR-3529-3p/ZHX2/GADD34 axis-mediated ERS. Thus, circSEC11A may act as a potential therapeutic target for I-125 implantation in the clinic.
Collapse
Affiliation(s)
- Dong Li
- Department of Interventional Medicine, The Second Hospital of Shandong University, Jinan, China
- Institute of Interventional Oncology, Shandong University, Jinan, China
| | - Wujie Wang
- Department of Interventional Medicine, The Second Hospital of Shandong University, Jinan, China
- Institute of Interventional Oncology, Shandong University, Jinan, China
| | - Bin Liu
- Department of Interventional Medicine, The Second Hospital of Shandong University, Jinan, China
- Institute of Interventional Oncology, Shandong University, Jinan, China
| | - Die Jin
- Department of Interventional Medicine, The Second Hospital of Shandong University, Jinan, China
- Institute of Interventional Oncology, Shandong University, Jinan, China
| | - Yang Wang
- Department of Interventional Medicine, The Second Hospital of Shandong University, Jinan, China
- Institute of Interventional Oncology, Shandong University, Jinan, China
| | - Guanghui He
- Department of Interventional Medicine, Weifang Second People's Hospital, Weifang, China
| | - Lei Guo
- Department of Vascular Anomalies and Interventional Radiology, Children's Hospital Affiliated to Shandong University, Jinan, China
| | - Wen Liu
- Department of Interventional Medicine, The Second Hospital of Shandong University, Jinan, China.
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China.
| | - Yuliang Li
- Department of Interventional Medicine, The Second Hospital of Shandong University, Jinan, China.
- Institute of Interventional Oncology, Shandong University, Jinan, China.
| |
Collapse
|
48
|
Hata M, Ueno J, Hitomi Y, Kodera M. Roles of DNA Target in Cancer Cell-Selective Cytotoxicity by Dicopper Complexes with DNA Target/Ligand Conjugates. ACS OMEGA 2023; 8:28690-28701. [PMID: 37576680 PMCID: PMC10413468 DOI: 10.1021/acsomega.3c03387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/18/2023] [Indexed: 08/15/2023]
Abstract
The DNA target/ligand conjugates (HLX, X = Pn and Mn, n = 1-3) were synthesized where various lengths of -CONH(CH2CH2O)nCH2CH2NHCO- linkers with a 9-phenanthrenyl (P) or methyl (M) terminal as DNA targets replace the methyl group of 2,6-di(amide-tether cyclen)-p-cresol ligand (HL). DNA binding, DNA cleavage, cellular uptake, and cytotoxicity of [Cu2(μ-OH)(LX)](ClO4)2 (1X) are examined and compared with those of [Cu2(μ-OH)(L)](ClO4)2 (1) to clarify roles of DNA targets. Upon reaction of 1X with H2O2, μ-1,1-O2H complexes are formed for DNA cleavage. 1P1, 1P2, and 1P3 are 22-, 11-, 3-fold more active for conversion of Form II to III in the cleavage of supercoiled plasmid DNA with H2O2 than 1, where the short P-linker may fix a dicopper moiety within a small number of base pairs to facilitate DNA double-strand breaks (dsb). This enhances the proapoptotic activity of 1P1, 1P2, and 1P3, which are 30-, 12-, and 9.9-fold cytotoxic against HeLa cells than 1. DNA dsb and cytotoxicity are 44% correlated in 1P1-3 but 5% in 1M1-3, suggesting specific DNA binding of P-linkers and nonspecific binding of M-linkers in biological cells. 1P1-3 exert cancer cell-selective cytotoxicity against lung and pancreas cancer and normal cells where the short P-linker enhances the selectivity, but 1M1-3 do not. Intracellular visualization, apoptosis assay, and caspase activity assay clarify mitochondrial apoptosis caused by 1P1-3. The highest cancer cell selectivity of 1P1 may be enabled by the short P-linker promoting dsb of mitochondrial DNA with H2O2 increased by mitochondrial dysfunction in cancer cells.
Collapse
Affiliation(s)
- Machi Hata
- Molecular Chemistry and Biochemistry, Doshisha University, Tatara-Miyakodani 1-3, Kyotanabe 610-0321, Japan
| | - Jin Ueno
- Molecular Chemistry and Biochemistry, Doshisha University, Tatara-Miyakodani 1-3, Kyotanabe 610-0321, Japan
| | - Yutaka Hitomi
- Molecular Chemistry and Biochemistry, Doshisha University, Tatara-Miyakodani 1-3, Kyotanabe 610-0321, Japan
| | - Masahito Kodera
- Molecular Chemistry and Biochemistry, Doshisha University, Tatara-Miyakodani 1-3, Kyotanabe 610-0321, Japan
| |
Collapse
|
49
|
Bashir M, Mantoo IA, Arjmand F, Tabassum S, Yousuf I. An overview of advancement of organoruthenium(II) complexes as prospective anticancer agents. Coord Chem Rev 2023; 487:215169. [DOI: 10.1016/j.ccr.2023.215169] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
|
50
|
Lu L, Jiang YX, Liu XX, Jin JM, Gu WJ, Luan X, Guan YY, Zhang LJ. FXR agonist GW4064 enhances anti-PD-L1 immunotherapy in colorectal cancer. Oncoimmunology 2023; 12:2217024. [PMID: 37261088 PMCID: PMC10228418 DOI: 10.1080/2162402x.2023.2217024] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 05/18/2023] [Accepted: 05/18/2023] [Indexed: 06/02/2023] Open
Abstract
Colorectal cancer (CRC) is one of the top three malignant tumors in terms of morbidity, and the limited efficacy of existing therapies urges the discovery of potential treatment strategies. Immunotherapy gradually becomes a promising cancer treatment method in recent decades; however, less than 10% of CRC patients could really benefit from immunotherapy. It is pressing to explore the potential combination therapy to improve the immunotherapy efficacy in CRC patients. It is reported that Farnesoid X receptor (FXR) is deficiency in CRC and associated with immunity. Herein, we found that GW4064, a FXR agonist, could induce apoptosis, block cell cycle, and mediate immunogenic cell death (ICD) of CRC cells in vitro. Disappointingly, GW4064 could not suppress the growth of CRC tumors in vivo. Further studies revealed that GW4064 upregulated PD-L1 expression in CRC cells via activating FXR and MAPK signaling pathways. Gratifyingly, the combination of PD-L1 antibody with GW4064 exhibited excellent anti-tumor effects in CT26 xenograft models and increased CD8+ T cells infiltration, with 33% tumor bearing mice cured. This paper illustrates the potential mechanisms of GW4064 to upregulate PD-L1 expression in CRC cells and provides important data to support the combination therapy of PD-L1 immune checkpoint blockade with FXR agonist for CRC patients.
Collapse
Affiliation(s)
- Lu Lu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Yi-Xin Jiang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiao-Xia Liu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jin-Mei Jin
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wen-Jie Gu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xin Luan
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ying-Yun Guan
- Department of Pharmacy, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Li-Jun Zhang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|