1
|
Ezeakunne C, Lamichhane B, Kattel S. Integrating density functional theory with machine learning for enhanced band gap prediction in metal oxides. Phys Chem Chem Phys 2025. [PMID: 39995270 DOI: 10.1039/d4cp03397c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
In this study, we used a combination of density functional theory with Hubbard U correction (DFT+U) and machine learning (ML) to accurately predict the band gaps and lattice parameters of metal oxides: TiO2 (rutile and anatase), cubic ZnO, cubic ZnO2, cubic CeO2, and cubic ZrO2. Our results show that including Up values for oxygen 2p orbitals alongside Ud/f for metal 3d or 4f orbitals significantly enhances the accuracy of these predictions. Through extensive DFT+U calculations, we identify optimal (Up, Ud/f) integer pairs that closely reproduce experimentally measured band gaps and lattice parameters for each oxide: (8 eV, 8 eV) for rutile TiO2; (3 eV, 6 eV) for anatase TiO2; (6 eV, 12 eV) for c-ZnO; (10 eV, 10 eV) for c-ZnO2; (9 eV, 5 eV) for c-ZrO2; and (7 eV, 12 eV) for c-CeO2. Our ML analysis showed that simple supervised ML models can closely reproduce these DFT+U results at a fraction of the computational cost and generalize well to related polymorphs. Our approach builds on existing high-throughput DFT+U frameworks by providing fast pre-DFT estimates of structural properties and band gaps. Since this work does not aim to improve the underlying DFT+U method, the ML model shares its limitations. We also note that the reported values of Up strongly depend on the choice of correlated orbitals, and caution is recommended with a different choice of correlated orbitals.
Collapse
Affiliation(s)
- Chidozie Ezeakunne
- Department of Physics, University of Central Florida, Orlando, FL 32816, USA.
| | - Bipin Lamichhane
- Department of Physics, Florida A&M University, Tallahassee, FL 32307, USA
| | - Shyam Kattel
- Department of Physics, University of Central Florida, Orlando, FL 32816, USA.
| |
Collapse
|
2
|
Xu X, Xu D, Zhou X, Huang J, Gu S, Zhang Z. Implantable photoelectrochemical-therapeutic methotrexate monitoring system with dual-atomic docking strategy. Nat Commun 2025; 16:1747. [PMID: 39966460 PMCID: PMC11836052 DOI: 10.1038/s41467-025-57084-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 02/05/2025] [Indexed: 02/20/2025] Open
Abstract
The need for precise modulation of blood concentrations of pharmaceutical molecule, especially for high-risk drugs like Methotrexate (MTX), is underscored by the significant impact of individual variations on treatment efficacy. Achieving selective recognition of pharmaceutical molecules within the complex biological environment is a substantial challenge. To tackle this, we propose a synergistic atomic-molecular docking strategy that utilizes a hybrid-dual single-atom Fe1-Zn1 on a TiO2 photoelectrode to selectively bind to the carboxyl and aminopyrimidine groups of MTX respectively. By integrating this Fe1-Zn1-TiO2 photoelectrode with a microcomputer system, an implantable photoelectrochemical-therapeutic drug monitoring (PEC-TDM) system is developed for real-time, continuous in vivo MTX monitoring. This system facilitates personalized therapeutic decision-making and intelligent drug delivery for individualized cancer therapy, potentially revolutionizing oncological care and enhancing patient outcomes.
Collapse
Affiliation(s)
- Xiankui Xu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Dawei Xu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Xue Zhou
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Jing Huang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Shiting Gu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Zhonghai Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China.
| |
Collapse
|
3
|
Wu Y, Chu W, Wang B, Prezhdo OV. Atomistic Origin of Microsecond Carrier Lifetimes at Perovskite Grain Boundaries: Machine Learning-Assisted Nonadiabatic Molecular Dynamics. J Am Chem Soc 2025; 147:5449-5458. [PMID: 39880404 PMCID: PMC11826977 DOI: 10.1021/jacs.4c18223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/22/2025] [Accepted: 01/23/2025] [Indexed: 01/31/2025]
Abstract
The polycrystalline nature of perovskites, stemming from their facile solution-based fabrication, leads to a high density of grain boundaries (GBs) and point defects. However, the impact of GBs on perovskite performance remains uncertain, with contradictory statements found in the literature. We developed a machine learning force field, sampled GB structures on a nanosecond time scale, and performed nonadiabatic (NA) molecular dynamics simulations of charge carrier trapping and recombination in stoichiometric and doped GBs. The simulations reveal long, microsecond carrier lifetimes, approaching experimental data, stemming from charge separation at the GBs and small NA coupling, 0.01-0.1 meV. Stoichiometric GBs exhibit transient trap states, which, however, are not particularly detrimental to the carrier lifetime. Halide dopants form interstitial defects in the bulk, but have a stabilizing influence on the GB structure by passivating undersaturated Pb atoms and reducing the transient trap state formation. On the contrary, excess Pb destabilizes GBs, allowing formation of persistent midgap states that trap charges. Still, the charge carrier lifetime reduces relatively little, because the midgap states decouple from the bands, and charges are more likely to escape back into bands upon a GB structural fluctuation. The atomistic study into the structural dynamics of perovskite GBs and its influence on charge carrier trapping and recombination provides valuable insights into the complex properties of perovskites and the intricate role of GBs in the material performance.
Collapse
Affiliation(s)
- Yifan Wu
- Department
of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Weibin Chu
- Department
of Chemistry, University of Southern California, Los Angeles, California 90089, United States
- Key
Laboratory of Computational Physical Sciences (Ministry of Education),
Institute of Computational Physical Sciences, Fudan University, Shanghai 200433, China
- Shanghai
Qi Zhi Institute, Shanghai 200030, China
| | - Bipeng Wang
- Department
of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Oleg V. Prezhdo
- Department
of Chemistry, University of Southern California, Los Angeles, California 90089, United States
- Department
of Physics and Astronomy, University of
Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
4
|
Jezierski D, Lorenzana J, Grochala W. Controlling orbital ordering of intergrowth structures with flat [Ag (II)F 2] layers to mimic oxocuprates(II). Phys Chem Chem Phys 2025; 27:2927-2938. [PMID: 39676626 DOI: 10.1039/d4cp04145c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Based on density functional theory calculations, we propose a new pathway toward compounds featuring flat [AgF2] layers which mimic [CuO2] layers in high-temperature oxocuprate superconductor precursors. Calculations predict the dynamic (phonon) and energetic stability of the new phases over diverse substrates. For some compounds with ferro orbital ordering, we find a gigantic intrasheet superexchange constant of up to -211 meV (DFT+U) and -256 meV (SCAN), calculated for hypothetical (CsMgF3)2KAgF3 intergrowth. Semiempirical calculations show that at optimum doping, the expected superconducting critical temperature should reach 200 K. The partial substitution of K+ with Ba2+ leads to noticeable electron doping of the [AgF2] sublattice, as revealed by progressive population of the upper-Hubbard band. On the other hand, modest 10-15% hole-doping through partial substitution of Mg2+ with Li+, primarily leads to the depopulation of p(z) orbitals of apical F atoms. We also find structures with an undesired antiferrodistortive structural ordering and discuss the structural factors that determine the transition from buckled to flat planes and from different types of orbital ordering using the Landau theory of phase transitions.
Collapse
Affiliation(s)
- Daniel Jezierski
- Center of New Technologies, University of Warsaw, 02089 Warsaw, Poland.
| | - José Lorenzana
- Institute for Complex Systems (ISC), CNR, 00185 Rome, Italy.
| | - Wojciech Grochala
- Center of New Technologies, University of Warsaw, 02089 Warsaw, Poland.
| |
Collapse
|
5
|
Yu D, Wang J, Wang G. Glass fiber treated with a glycine bridged silane coupling agent reinforcing polyamide 6(PA6): effect of hydrogen bonding. RSC Adv 2025; 15:3331-3338. [PMID: 39902107 PMCID: PMC11788644 DOI: 10.1039/d4ra07680j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 01/28/2025] [Indexed: 02/05/2025] Open
Abstract
Silane coupling agents play an indispensable role in improving interfacial adhesion of composite materials, but their interaction mechanism is often unclear. This article combines experiments and theoretical calculations to reveal the importance of hydrogen bonds between silane coupling agents and the matrix polyamide 6 in improving the mechanical properties of composite materials. Firstly, glycine bridged silane (GBSilane) was synthesized and the structure was confirmed by FT-IR, 1H NMR and HRMS. Secondly, with glass fiber treated using GBSilane as a filler, the mechanical properties of glass fiber/PA6 composite materials were studied. Compared with untreated glass fiber/PA6 composites, under the optimal treatment concentration of 1.5%, the tensile strength of glass fiber/PA6 composites treated with 3-aminopropyl triethoxysilane (APTES) and GBSilane increased by 41% and 67%, respectively, and the notch impact strength increased by 55% and 96.5%, respectively. Lastly, density functional theory (DFT) calculations revealed that stronger hydrogen bonds have formed between GBSilane and PA6 than APTES, which have induced the stronger PA6-GBSilane binding energy of 58.20 kJ mol-1. By comparison, the binding energy of PA6-APTES is only 30.91 kJ mol-1. These results demonstrated that the as-synthesized GBSilane could improve the mechanical properties of PA6 composites through an enhanced hydrogen bonding mechanism.
Collapse
Affiliation(s)
- Dinghua Yu
- Ningbo Polytechnic China Light Industry Plastic Mold Engineering Technology Research Center Ningbo 315800 PR China
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University Nanjing 211816 PR China +86-25-58139386
| | - Jianqiang Wang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University Nanjing 211816 PR China +86-25-58139386
| | - Guowei Wang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University Nanjing 211816 PR China +86-25-58139386
| |
Collapse
|
6
|
Liu C, Mukta MM, Kang B, Zhu Q. Semiconducting Electrides Derived from Sodalite: A First-Principles Study. ACS OMEGA 2025; 10:1635-1642. [PMID: 39829536 PMCID: PMC11740152 DOI: 10.1021/acsomega.4c09513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/12/2024] [Accepted: 12/18/2024] [Indexed: 01/22/2025]
Abstract
Electrides are ionic crystals, with electrons acting as anions occupying well-defined lattice sites. These exotic materials have attracted considerable attention in recent years for potential applications in catalysis, rechargeable batteries, and display technology. Among this class of materials, electride semiconductors can further expand the horizon of potential applications due to the presence of a band gap. However, there are only limited reports on semiconducting electrides, hindering the understanding of their physical and chemical properties. In recent work, we initiated an approach to derive potential electrides via selective removal of symmetric Wyckoff sites of anions from existing complex minerals. Herein, we present a follow-up effort to design semiconducting electrides from parental complex sodalites. Among four candidate compounds, we found that a cubic Ca4Al6O12 structure with the I-43m space group symmetry exhibits perfect electron localization at the sodalite cages, with a narrow electronic band gap of 1.8 eV, making it suitable for use in photocatalysis. Analysis of the electronic structures reveals that a lower electronegativity of the surrounding cations drives greater electron localization and promotes the formation of an electride band near the Fermi level. Our work proposes an alternative approach for designing new semiconducting electrides under ambient conditions and offers guidelines for further experimental exploration.
Collapse
Affiliation(s)
- Chang Liu
- Department
of Physics and Astronomy, University of
Nevada, Las Vegas, Nevada 89154, United
States
- International
Center for Computational Methods & Software, College of Physics, Jilin University, Changchun, Jilin 130012, China
| | - Musiha Mahfuza Mukta
- Department
of Mechanical Engineering and Engineering Science, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| | - Byungkyun Kang
- College
of Arts and Sciences, University of Delaware, Newark, Delaware 19716, United States
| | - Qiang Zhu
- Department
of Mechanical Engineering and Engineering Science, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| |
Collapse
|
7
|
Holzer C, Franzke YJ. A General and Transferable Local Hybrid Functional for Electronic Structure Theory and Many-Fermion Approaches. J Chem Theory Comput 2025; 21:202-217. [PMID: 39704224 DOI: 10.1021/acs.jctc.4c01309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Density functional theory has become the workhorse of quantum physics, chemistry, and materials science. Within these fields, a broad range of applications needs to be covered. These applications range from solids to molecular systems, from organic to inorganic chemistry, or even from electrons to other Fermions, such as protons or muons. This is emphasized by the plethora of density functional approximations that have been developed for various cases. In this work, two new local hybrid exchange-correlation density functionals are constructed from first-principles, promoting generality and transferability. We show that constraint satisfaction can be achieved even for admixtures with full exact exchange, without sacrificing accuracy. The performance of the new functionals CHYF-PBE and CHYF-B95 is assessed for thermochemical properties, excitation energies, Mössbauer isomer shifts, NMR spin-spin coupling constants, NMR shieldings and shifts, magnetizabilities, and EPR hyperfine coupling constants. Here, the new density functional shows excellent performance throughout all tests and is numerically robust only requiring small grids for converged results. Additionally, both functionals can easily be generalized to arbitrary Fermions as shown for electron-proton correlation energies. Therefore, we outline that density functionals generated in this way are general purpose tools for quantum mechanical studies.
Collapse
Affiliation(s)
- Christof Holzer
- Institute of Theoretical Solid State Physics, Karlsruhe Institute of Technology (KIT), Wolfgang-Gaede-Straße 1, 76131 Karlsruhe, Germany
| | - Yannick J Franzke
- Otto Schott Institute of Materials Research, Friedrich Schiller University Jena, Löbdergraben 32, 07743 Jena, Germany
| |
Collapse
|
8
|
Han Y, Liu Y, Zhang Y, He X, Fu X, Shi R, Jiao S, Zhao Y. Functionalized Quasi-Solid-State Electrolytes in Aqueous Zn-Ion Batteries for Flexible Devices: Challenges and Strategies. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2412447. [PMID: 39466981 DOI: 10.1002/adma.202412447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/27/2024] [Indexed: 10/30/2024]
Abstract
The rapid development of wearable and intelligent flexible devices has posed strict requirements for power sources, including excellent mechanical strength, inherent safety, high energy density, and eco-friendliness. Zn-ion batteries with aqueous quasi-solid-state electrolytes (AQSSEs) with various functional groups that contain electronegative atoms (O/N/F) with tunable electron accumulation states are considered as a promising candidate to power the flexible devices and tremendous progress has been achieved in this prospering area. Herein, this review proposes a comprehensive summary of the recent achievements using the AQSSE in flexible devices by focusing on the significance of different functional groups. The fundamentals and challenges of the ZIBs are introduced from a chemical view in the first place. Then, the mechanism behind the stabilization of the flexible ZIBs with the functionalized AQSSE is summarized and explained in detail. Then the recent progress regarding the enhanced electrochemical stability of the ZIBs with the AQSSE is summarized and classified based on the functional groups on the polymer chain. The advanced characterization methods for the AQSSE are briefly introduced in the following sections. Last but not least, current challenges and future perspectives for this promising area are provided from the authors' point of view.
Collapse
Affiliation(s)
- Yinlong Han
- School of Nanoscience and Materials Engineering, Key Lab for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, 475004, P. R. China
| | - Ye Liu
- School of Nanoscience and Materials Engineering, Key Lab for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, 475004, P. R. China
| | - Yan Zhang
- School of Nanoscience and Materials Engineering, Key Lab for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, 475004, P. R. China
| | - Xiaoxiao He
- School of Nanoscience and Materials Engineering, Key Lab for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, 475004, P. R. China
| | - Xianwei Fu
- National & Local Joint Engineering Research Center for Applied Technology of Hybrid Nanomaterials, Henan University, Kaifeng, 475004, P. R. China
| | - Ruijuan Shi
- School of Nanoscience and Materials Engineering, Key Lab for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, 475004, P. R. China
| | - Shilong Jiao
- School of Nanoscience and Materials Engineering, Key Lab for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, 475004, P. R. China
| | - Yong Zhao
- School of Nanoscience and Materials Engineering, Key Lab for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, 475004, P. R. China
| |
Collapse
|
9
|
Broderick DR, Herbert JM. Delocalization error poisons the density-functional many-body expansion. Chem Sci 2024; 15:19893-19906. [PMID: 39568898 PMCID: PMC11575576 DOI: 10.1039/d4sc05955g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 10/22/2024] [Indexed: 11/22/2024] Open
Abstract
The many-body expansion is a fragment-based approach to large-scale quantum chemistry that partitions a single monolithic calculation into manageable subsystems. This technique is increasingly being used as a basis for fitting classical force fields to electronic structure data, especially for water and aqueous ions, and for machine learning. Here, we show that the many-body expansion based on semilocal density functional theory affords wild oscillations and runaway error accumulation for ion-water interactions, typified by F-(H2O) N with N ≳ 15. We attribute these oscillations to self-interaction error in the density-functional approximation. The effect is minor or negligible in small water clusters, explaining why it has not been noticed previously, but grows to catastrophic proportion in clusters that are only moderately larger. This behavior can be counteracted with hybrid functionals but only if the fraction of exact exchange is ≳50%, whereas modern meta-generalized gradient approximations including ωB97X-V, SCAN, and SCAN0 are insufficient to eliminate divergent behavior. Other mitigation strategies including counterpoise correction, density correction (i.e., exchange-correlation functionals evaluated atop Hartree-Fock densities), and dielectric continuum boundary conditions do little to curtail the problematic oscillations. In contrast, energy-based screening to cull unimportant subsystems can successfully forestall divergent behavior. These results suggest that extreme caution is warranted when the many-body expansion is combined with density functional theory.
Collapse
Affiliation(s)
- Dustin R Broderick
- Department of Chemistry & Biochemistry, The Ohio State University 151 W. Woodruff Ave. Columbus Ohio 43210 USA
| | - John M Herbert
- Department of Chemistry & Biochemistry, The Ohio State University 151 W. Woodruff Ave. Columbus Ohio 43210 USA
| |
Collapse
|
10
|
Costain TS, Rolston JB, Neville SP, Schuurman MS. A DFT/MRCI Hamiltonian parameterized using only ab initio data. II. Core-excited states. J Chem Phys 2024; 161:114117. [PMID: 39301854 DOI: 10.1063/5.0227385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/05/2024] [Indexed: 09/22/2024] Open
Abstract
A newly parameterized combined density functional theory and multi-reference configuration interaction (DFT/MRCI) Hamiltonian, termed core-valence separation (CVS)-QE12, is defined for the computation of K-shell core-excitation and core-ionization energies. This CVS counterpart to the recently reported QE8 Hamiltonian [Costain et al., J. Chem. Phys, 160, 224106 (2024)] is parameterized by fitting to benchmark quality ab initio data. The definition of the CVS-QE12 and QE8 Hamiltonians differ from previous CVS-DFT/MRCI parameterizations in three primary ways: (i) the replacement of the BHLYP exchange-correlation functional with QTP17 to yield a balanced description of both core and valence excitation energies, (ii) the adoption of a new, three-parameter damping function, and (iii) the introduction of separate scaling of the core-valence and valence-valence Coulombic interactions. Crucially, the parameters of the CVS-QE12 Hamiltonian are obtained via fitting exclusively to highly accurate ab initio vertical core-excitation and ionization energies computed at the CVS-EOM-CCSDT level of theory. The CVS-QE12 Hamiltonian is validated against further benchmark computations and is found to furnish K-edge core vertical excitation and ionization energies exhibiting absolute errors ≤0.5 eV at low computational cost.
Collapse
Affiliation(s)
- Teagan Shane Costain
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Jibrael B Rolston
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Simon P Neville
- National Research Council Canada, 100 Sussex Dr., Ottawa, Ontario K1A 0R6, Canada
| | - Michael S Schuurman
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
- National Research Council Canada, 100 Sussex Dr., Ottawa, Ontario K1A 0R6, Canada
| |
Collapse
|
11
|
Liu X, Liu Y, Gibson LD, Ge M, Olds D, Leshchev D, Bai J, Plonka AM, Halstenberg P, Zhong H, Ghose S, Lin CH, Zheng X, Xiao X, Lee WK, Dai S, Samolyuk GD, Bryantsev VS, Frenkel AI, Chen-Wiegart YCK. Exploring Cr and molten salt interfacial interactions for molten salt applications. Phys Chem Chem Phys 2024; 26:21342-21356. [PMID: 38829308 DOI: 10.1039/d4cp01122h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Molten salts play an important role in various energy-related applications such as high-temperature heat transfer fluids and reaction media. However, the extreme molten salt environment causes the degradation of materials, raising safety and sustainability challenges. A fundamental understanding of material-molten salt interfacial evolution is needed. This work studies the transformation of metallic Cr in molten 50/50 mol% KCl-MgCl2via multi-modal in situ synchrotron X-ray nano-tomography, diffraction and spectroscopy combined with density functional theory (DFT) and ab initio molecular dynamics (AIMD) simulations. Notably, in addition to the dissolution of Cr in the molten salt to form porous structures, a δ-A15 Cr phase was found to gradually form as a result of the metal-salt interaction. This phase change of Cr is associated with a change in the coordination environment of Cr at the interface. DFT and AIMD simulations provide a basis for understanding the enhanced stability of δ-A15 Cr vs. bcc Cr, by revealing their competitive phase thermodynamics at elevated temperatures and probing the interfacial behavior of the molten salt at relevant facets. This study provides critical insights into the morphological and chemical evolution of metal-molten salt interfaces. The combination of multimodal synchrotron analysis and atomic simulation also offers an opportunity to explore a broader range of systems critical to energy applications.
Collapse
Affiliation(s)
- Xiaoyang Liu
- Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, NY, USA.
| | - Yang Liu
- Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, NY, USA.
| | - Luke D Gibson
- Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Mingyuan Ge
- National Synchrotron Light Source II (NSLS-II), Brookhaven National Laboratory, Upton, NY, USA
| | - Daniel Olds
- National Synchrotron Light Source II (NSLS-II), Brookhaven National Laboratory, Upton, NY, USA
| | - Denis Leshchev
- National Synchrotron Light Source II (NSLS-II), Brookhaven National Laboratory, Upton, NY, USA
| | - Jianming Bai
- National Synchrotron Light Source II (NSLS-II), Brookhaven National Laboratory, Upton, NY, USA
| | - Anna M Plonka
- Chemistry Division, Brookhaven National Laboratory, Upton, NY, USA
| | - Phillip Halstenberg
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA.
- Department of Chemistry, University of Tennessee, Knoxville, TN, USA
| | - Hui Zhong
- National Synchrotron Light Source II (NSLS-II), Brookhaven National Laboratory, Upton, NY, USA
| | - Sanjit Ghose
- National Synchrotron Light Source II (NSLS-II), Brookhaven National Laboratory, Upton, NY, USA
| | - Cheng-Hung Lin
- Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, NY, USA.
| | - Xiaoyin Zheng
- Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, NY, USA.
| | - Xianghui Xiao
- National Synchrotron Light Source II (NSLS-II), Brookhaven National Laboratory, Upton, NY, USA
| | - Wah-Keat Lee
- National Synchrotron Light Source II (NSLS-II), Brookhaven National Laboratory, Upton, NY, USA
| | - Sheng Dai
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA.
- Department of Chemistry, University of Tennessee, Knoxville, TN, USA
| | - German D Samolyuk
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | | | - Anatoly I Frenkel
- Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, NY, USA.
- Chemistry Division, Brookhaven National Laboratory, Upton, NY, USA
| | - Yu-Chen Karen Chen-Wiegart
- Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, NY, USA.
- National Synchrotron Light Source II (NSLS-II), Brookhaven National Laboratory, Upton, NY, USA
| |
Collapse
|
12
|
Bautista-Renedo J, Ireta J. Spurious proton transfer in hydrogen bonded dimers. Phys Chem Chem Phys 2024; 26:21468-21475. [PMID: 39081021 DOI: 10.1039/d4cp00907j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
In some hydrogen bonded systems, the proton may translocate along the hydrogen bond (hb) upon geometry optimization with electronic structure methods like density functional theory (DFT). Such proton transfer (pt) events, however, may be spurious. In this work, spurious pt events are investigated in a set of hydrogen bonded dimers formed with molecules HXN, where X stands for C, Si, Ge and Sn. It is found that standard approximations to the electronic exchange and correlation (xc) functional either predict spurious pt events or too strong hbs in all the (HXN)2 dimers except the (HCN)2 one. The latter result is revealed by comparing DFT calculations against wave function methods. Such spurious pt events may be avoided by fine-tuning the percentage of exact exchange (ex) in hybrid xc-functionals. It is shown that the minimum amount of ex to avoid a spurious pt event ranged from 8% to 90%, depending on the system, basis set and xc-functional approximation used. However, these fine-tuned xc-functionals inadequately describe the hb in the (HXN)2 dimers. Moreover, it is determined that the spurious pt event originates from a wrong description of the isolated HXN molecules by xc-functionals that do not include ex or a small amount of it. Therefore, it is argued that one can determine if a pt event is spurious by analyzing the geometry and electronic structure of the isolated molecule.
Collapse
Affiliation(s)
- Joanatan Bautista-Renedo
- Departamento de Química, División de Ciencias Básicas e Ingeniería, Universidad Autónoma Metropolitana-Iztapalapa, Ciudad de México 09340, Mexico.
| | - Joel Ireta
- Departamento de Química, División de Ciencias Básicas e Ingeniería, Universidad Autónoma Metropolitana-Iztapalapa, Ciudad de México 09340, Mexico.
| |
Collapse
|
13
|
Grotjahn R, Purnomo J, Jin D, Lutfi N, Furche F. Chemically Accurate Singlet-Triplet Gaps of Arylcarbenes from Local Hybrid Density Functionals. J Phys Chem A 2024; 128:6046-6060. [PMID: 39012067 DOI: 10.1021/acs.jpca.4c02852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Singlet-triplet (ST) gaps are key descriptors of carbenes, because their properties and reactivity are strongly spin-dependent. However, the theoretical prediction of ST gaps is challenging and generally thought to require elaborate correlated wave function methods or double-hybrid density functionals. By evaluating two recent test sets of arylcarbenes (AC12 and AC18), we show that local hybrid functionals based on the "common t" local mixing function (LMF) model achieve mean absolute errors below 1 kcal/mol at a computational cost only slightly higher than that of global hybrid functionals. An analysis of correlation contributions to the ST gaps suggests that the accuracy of the common t-LMF model is mainly due to an improved description of nondynamical correlation which, unlike exchange, is not additive in each spin-channel. Although spin-nonadditivity can be achieved using the local spin polarization alone, using the "common", i.e., spin-unresolved, iso-orbital indicator t for constructing the LMF is found to be critical for consistent accuracy in ST gaps of arylcarbenes. The results support the view of LHs as vehicles to improve the description of nondynamical correlation rather than sophisticated exchange mixing approaches.
Collapse
Affiliation(s)
- Robin Grotjahn
- Department of Chemistry, University of California, Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025, United States
| | - Justin Purnomo
- Department of Chemistry, University of California, Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025, United States
| | - Dayun Jin
- Department of Chemistry, University of California, Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025, United States
| | - Nicolas Lutfi
- Department of Chemistry, University of California, Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025, United States
| | - Filipp Furche
- Department of Chemistry, University of California, Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025, United States
| |
Collapse
|
14
|
Kalmár J, Karlický F. Mn 2C MXene functionalized by oxygen is a semiconducting antiferromagnet and an efficient visible light absorber. Phys Chem Chem Phys 2024; 26:19733-19741. [PMID: 38984393 DOI: 10.1039/d4cp02264e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Manganese-based MXenes are promising two-dimensional materials due to the broad palette of their magnetic phases and the possibility of experimental preparation because the corresponding MAX phase was already prepared. Here, we systematically investigated geometrical conformers and spin solutions of oxygen-terminated Mn2C MXene and performed subsequent many-body calculations to obtain reliable electronic and optical properties. Allowing energy-lowering using the correct spin ordering via supercell magnetic motifs is essential for the Mn2CO2 system. The stable ground-state Mn2CO2 conformation is antiferromagnetic (AFM) with zigzag lines of up and down spins on Mn atoms. The AFM nature is consistent with the parent MAX phase and even the clean depleted Mn2C sheet. Other magnetic states and geometrical conformations are energetically very close, providing state-switching possibilities in the material. Subsequent many-body GW and Bethe-Salpeter equation (BSE) calculations provide indirect semiconductor characteristics of AFM Mn2CO2 with a fundamental gap of 2.1 eV (and a direct gap of 2.4 eV), the first bright optical transition at 1.3 eV and extremely strongly bound (1.1 eV) first bright exciton. Mn2CO2 absorbs efficiently the whole visible light range and near ultraviolet range (between 10 and 20%).
Collapse
Affiliation(s)
- Jiří Kalmár
- Department of Physics, Faculty of Science, University of Ostrava, 30. dubna 22, 7013 Ostrava, Czech Republic.
| | - František Karlický
- Department of Physics, Faculty of Science, University of Ostrava, 30. dubna 22, 7013 Ostrava, Czech Republic.
| |
Collapse
|
15
|
Burgess AC, Linscott E, O'Regan DD. Tilted-Plane Structure of the Energy of Finite Quantum Systems. PHYSICAL REVIEW LETTERS 2024; 133:026404. [PMID: 39073931 DOI: 10.1103/physrevlett.133.026404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 04/18/2024] [Accepted: 05/17/2024] [Indexed: 07/31/2024]
Abstract
The piecewise linearity condition on the total energy with respect to the total magnetization of finite quantum systems is derived using the infinite-separation-limit technique. This generalizes the well-known constancy condition, related to static correlation error, in approximate density functional theory. The magnetic analog of Koopmans' theorem in density functional theory is also derived. Moving to fractional electron count, the tilted-plane condition is derived, lifting certain assumptions in previous works. This generalization of the flat-plane condition characterizes the total energy surface of a finite system for all values of electron count N and magnetization M. This result is used in combination with tabulated spectroscopic data to show the flat-plane structure of the oxygen atom, among others. We find that derivative discontinuities with respect to electron count sometimes occur at noninteger values. A diverse set of tilted-plane structures is shown to occur in d-orbital subspaces, depending on chemical coordination. General occupancy-based total-energy expressions are demonstrated thereby to be necessarily dependent on the symmetry-imposed degeneracies.
Collapse
|
16
|
Kaupp M, Wodyński A, Arbuznikov AV, Fürst S, Schattenberg CJ. Toward the Next Generation of Density Functionals: Escaping the Zero-Sum Game by Using the Exact-Exchange Energy Density. Acc Chem Res 2024; 57:1815-1826. [PMID: 38905497 PMCID: PMC11223257 DOI: 10.1021/acs.accounts.4c00209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/29/2024] [Accepted: 06/03/2024] [Indexed: 06/23/2024]
Abstract
ConspectusKohn-Sham density functional theory (KS DFT) is arguably the most widely applied electronic-structure method with tens of thousands of publications each year in a wide variety of fields. Its importance and usefulness can thus hardly be overstated. The central quantity that determines the accuracy of KS DFT calculations is the exchange-correlation functional. Its exact form is unknown, or better "unknowable", and therefore the derivation of ever more accurate yet efficiently applicable approximate functionals is the "holy grail" in the field. In this context, the simultaneous minimization of so-called delocalization errors and static correlation errors is the greatest challenge that needs to be overcome as we move toward more accurate yet computationally efficient methods. In many cases, an improvement on one of these two aspects (also often termed fractional-charge and fractional-spin errors, respectively) generates a deterioration in the other one. Here we report on recent notable progress in escaping this so-called "zero-sum-game" by constructing new functionals based on the exact-exchange energy density. In particular, local hybrid and range-separated local hybrid functionals are discussed that incorporate additional terms that deal with static correlation as well as with delocalization errors. Taking hints from other coordinate-space models of nondynamical and strong electron correlations (the B13 and KP16/B13 models), position-dependent functions that cover these aspects in real space have been devised and incorporated into the local-mixing functions determining the position-dependence of exact-exchange admixture of local hybrids as well as into the treatment of range separation in range-separated local hybrids. While initial functionals followed closely the B13 and KP16/B13 frameworks, meanwhile simpler real-space functions based on ratios of semilocal and exact-exchange energy densities have been found, providing a basis for relatively simple and numerically convenient functionals. Notably, the correction terms can either increase or decrease exact-exchange admixture locally in real space (and in interelectronic-distance space), leading even to regions with negative admixture in cases of particularly strong static correlations. Efficient implementations into a fast computer code (Turbomole) using seminumerical integration techniques make such local hybrid and range-separated local hybrid functionals promising new tools for complicated composite systems in many research areas, where simultaneously small delocalization errors and static correlation errors are crucial. First real-world application examples of the new functionals are provided, including stretched bonds, symmetry-breaking and hyperfine coupling in open-shell transition-metal complexes, as well as a reduction of static correlation errors in the computation of nuclear shieldings and magnetizabilities. The newest versions of range-separated local hybrids (e.g., ωLH23tdE) retain the excellent frontier-orbital energies and correct asymptotic exchange-correlation potential of the underlying ωLH22t functional while improving substantially on strong-correlation cases. The form of these functionals can be further linked to the performance of the recent impactful deep-neural-network "black-box" functional DM21, which itself may be viewed as a range-separated local hybrid.
Collapse
Affiliation(s)
- Martin Kaupp
- Institut für Chemie,
Theoretische Chemie/Quantenchemie, Technische
Universität Berlin, Sekr. C7, Strasse des 17. Juni 115, 10623 Berlin, Germany
| | - Artur Wodyński
- Institut für Chemie,
Theoretische Chemie/Quantenchemie, Technische
Universität Berlin, Sekr. C7, Strasse des 17. Juni 115, 10623 Berlin, Germany
| | - Alexei V. Arbuznikov
- Institut für Chemie,
Theoretische Chemie/Quantenchemie, Technische
Universität Berlin, Sekr. C7, Strasse des 17. Juni 115, 10623 Berlin, Germany
| | - Susanne Fürst
- Institut für Chemie,
Theoretische Chemie/Quantenchemie, Technische
Universität Berlin, Sekr. C7, Strasse des 17. Juni 115, 10623 Berlin, Germany
| | - Caspar J. Schattenberg
- Institut für Chemie,
Theoretische Chemie/Quantenchemie, Technische
Universität Berlin, Sekr. C7, Strasse des 17. Juni 115, 10623 Berlin, Germany
| |
Collapse
|
17
|
Janesko BG. Multiconfigurational Correlation at DFT + U Cost: On-Site Electron-Electron Interactions Yield a Block-Localized Configuration Interaction Hamiltonian. J Phys Chem A 2024; 128:5077-5087. [PMID: 38878060 DOI: 10.1021/acs.jpca.4c02326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
This work presents a first-principles wavefunction-in-DFT approach based on the Hubbard density functional theory (DFT) + U method. This approach begins with the standard DFT reference system of noninteracting electrons and introduces an electron-electron interaction projected onto DFT+U-type atomic states. The reference system's configuration interaction Hamiltonian is block-localized to these states and can be expressed in terms of state occupation numbers, state self-energies (which correspond to unscreened Hubbard U values), and the promotion energies of doubly excited Slater determinants. Simple approximations for the promotion energies provide multiconfigurational correlation energies without requiring explicit orbital localization/transform. Numerical results for fractionally occupied chromium atom, bonded chromium dimer, dissociating covalent bonds, and large active spaces show that the approach provides beyond-zero-sum accuracy at computational cost comparable to standard DFT+U.
Collapse
Affiliation(s)
- Benjamin G Janesko
- Department of Chemistry & Biochemistry, Texas Christian University, Fort Worth, Texas 76129, United States
| |
Collapse
|
18
|
He J, Wang T, Bi X, Tian Y, Huang C, Xu W, Hu Y, Wang Z, Jiang B, Gao Y, Zhu Y, Wang X. Subsurface A-site vacancy activates lattice oxygen in perovskite ferrites for methane anaerobic oxidation to syngas. Nat Commun 2024; 15:5422. [PMID: 38926349 PMCID: PMC11208437 DOI: 10.1038/s41467-024-49776-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Tuning the oxygen activity in perovskite oxides (ABO3) is promising to surmount the trade-off between activity and selectivity in redox reactions. However, this remains challenging due to the limited understanding in its activation mechanism. Herein, we propose the discovery that generating subsurface A-site cation (Lasub.) vacancy beneath surface Fe-O layer greatly improved the oxygen activity in LaFeO3, rendering enhanced methane conversion that is 2.9-fold higher than stoichiometric LaFeO3 while maintaining high syngas selectivity of 98% in anaerobic oxidation. Experimental and theoretical studies reveal that absence of Lasub.-O interaction lowered the electron density over oxygen and improved the oxygen mobility, which reduced the barrier for C-H bond cleavage and promoted the oxidation of C-atom, substantially boosting methane-to-syngas conversion. This discovery highlights the importance of A-site cations in modulating electronic state of oxygen, which is fundamentally different from the traditional scheme that mainly credits the redox activity to B-site cations and can pave a new avenue for designing prospective redox catalysts.
Collapse
Affiliation(s)
- Jiahui He
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- School of Chemical Engineering, Northwest University, International Scientific and Technological Cooperation Base of MOST for Clean Utilization of Hydrocarbon Resources, Chemical Engineering Research Center for the Ministry of Education for Advance Use Technology of Shanbei Energy, Xi'an, 710069, China
| | - Tengjiao Wang
- Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology, Dalian, 116023, China
| | - Xueqian Bi
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China
| | - Yubo Tian
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Chuande Huang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| | - Weibin Xu
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- School of Chemical Engineering, University of Chinese Academy of Science, Beijing, 100049, China
| | - Yue Hu
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- School of Chemical Engineering, University of Chinese Academy of Science, Beijing, 100049, China
| | - Zhen Wang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- School of Chemical Engineering, University of Chinese Academy of Science, Beijing, 100049, China
| | - Bo Jiang
- Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology, Dalian, 116023, China.
| | - Yuming Gao
- Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology, Dalian, 116023, China
| | - Yanyan Zhu
- School of Chemical Engineering, Northwest University, International Scientific and Technological Cooperation Base of MOST for Clean Utilization of Hydrocarbon Resources, Chemical Engineering Research Center for the Ministry of Education for Advance Use Technology of Shanbei Energy, Xi'an, 710069, China.
| | - Xiaodong Wang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| |
Collapse
|
19
|
Liu X, Wang F, Zhao Y, Azhati A, Wang X, Zhang Z, Lv X. First Principles Investigation of C, Cl 2 and CO Co-Adsorption on ZrSiO 4 Surfaces for Carbochlorination Reaction. MATERIALS (BASEL, SWITZERLAND) 2024; 17:1500. [PMID: 38612015 PMCID: PMC11012826 DOI: 10.3390/ma17071500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/11/2024] [Accepted: 03/19/2024] [Indexed: 04/14/2024]
Abstract
The study of the adsorption behavior of C, CO and Cl2 on the surface of ZrSiO4 is of great significance for the formulation of the technological parameters in the carbochlorination reaction process. Based on first principles, the adsorption structure, adsorption energy, Barder charge, differential charge density, partial density of states and energy barrier were calculated to research the adsorption and reaction mechanism of C and Cl2 on ZrSiO4 surfaces. The results indicated that when C, CO and Cl2 co-adsorbed on the surface of ZrSiO4, they interacted with surface atoms and the charge transfer occurred. The Cl2 molecules dissociated and formed Zr-Cl bonds, while C atoms formed C1=O1 bonds with O atoms. Compared with CO, the co-adsorption energy and reaction energy barrier of C and Cl2 are lower, and the higher the C content, the lower the adsorption energy and energy barrier, which is beneficial for promoting charge transfer and the dissociation of Cl2. The 110-2C-2Cl2 has the lowest adsorption energy and the highest reaction activity, with adsorption energy and energy barriers of -13.45 eV and 0.02 eV. The electrons released by C are 2.30 e, while the electrons accepted by Cl2 are 2.37 e.
Collapse
Affiliation(s)
- Xingping Liu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; (X.W.); (Z.Z.)
- Xinte Energy Co., Ltd., Urmqi 830011, China; (Y.Z.); (A.A.)
| | - Fumin Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; (X.W.); (Z.Z.)
| | - Yalan Zhao
- Xinte Energy Co., Ltd., Urmqi 830011, China; (Y.Z.); (A.A.)
| | - Arepati Azhati
- Xinte Energy Co., Ltd., Urmqi 830011, China; (Y.Z.); (A.A.)
| | - Xingtao Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; (X.W.); (Z.Z.)
| | - Zhengliang Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; (X.W.); (Z.Z.)
| | - Xueqian Lv
- Xinte Energy Co., Ltd., Urmqi 830011, China; (Y.Z.); (A.A.)
| |
Collapse
|
20
|
Zope RR, Yamamoto Y, Baruah T. How well do one-electron self-interaction-correction methods perform for systems with fractional electrons? J Chem Phys 2024; 160:084102. [PMID: 38385511 DOI: 10.1063/5.0182773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 01/28/2024] [Indexed: 02/23/2024] Open
Abstract
Recently developed locally scaled self-interaction correction (LSIC) is a one-electron SIC method that, when used with a ratio of kinetic energy densities (zσ) as iso-orbital indicator, performs remarkably well for both thermochemical properties as well as for barrier heights overcoming the paradoxical behavior of the well-known Perdew-Zunger self-interaction correction (PZSIC) method. In this work, we examine how well the LSIC method performs for the delocalization error. Our results show that both LSIC and PZSIC methods correctly describe the dissociation of H2+ and He2+ but LSIC is overall more accurate than the PZSIC method. Likewise, in the case of the vertical ionization energy of an ensemble of isolated He atoms, the LSIC and PZSIC methods do not exhibit delocalization errors. For the fractional charges, both LSIC and PZSIC significantly reduce the deviation from linearity in the energy vs number of electrons curve, with PZSIC performing superior for C, Ne, and Ar atoms while for Kr they perform similarly. The LSIC performs well at the endpoints (integer occupations) while substantially reducing the deviation. The dissociation of LiF shows both LSIC and PZSIC dissociate into neutral Li and F but only LSIC exhibits charge transfer from Li+ to F- at the expected distance from the experimental data and accurate ab initio data. Overall, both the PZSIC and LSIC methods reduce the delocalization errors substantially.
Collapse
Affiliation(s)
- Rajendra R Zope
- Department of Physics, The University of Texas at El Paso, El Paso, Texas 79968, USA
| | - Yoh Yamamoto
- Department of Physics, The University of Texas at El Paso, El Paso, Texas 79968, USA
| | - Tunna Baruah
- Department of Physics, The University of Texas at El Paso, El Paso, Texas 79968, USA
| |
Collapse
|
21
|
Determan JJ, Wilson AK. Correlation consistent basis sets designed for density functional theory: Third-row atoms (Ga-Br). J Chem Phys 2024; 160:084105. [PMID: 38385513 DOI: 10.1063/5.0176964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 01/02/2024] [Indexed: 02/23/2024] Open
Abstract
The correlation consistent basis sets (cc-pVnZ with n = D, T, Q, 5) for the Ga-Br elements have been redesigned, tuning the sets for use for density functional approximations. Steps to redesign these basis sets for an improved correlation energy recovery and efficiency include truncation of higher angular momentum functions, recontraction of basis set coefficients, and reoptimization of basis set exponents. These redesigned basis sets are compared with conventional cc-pVnZ basis sets and other basis sets, which are, in principle, designed to achieve systematic improvement with respect to increasing basis set size. The convergence of atomic energies, bond lengths, bond dissociation energies, and enthalpies of formation to the Kohn-Sham limit is improved relative to other basis sets where convergence to the Kohn-Sham limit is typically not observed.
Collapse
Affiliation(s)
- John J Determan
- Department of Chemistry, Western Illinois University, Macomb, Illinois 61455, USA
| | - Angela K Wilson
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, USA
| |
Collapse
|
22
|
Dai W, Zou Y, Wang J, Su Y, Zhang D. A First-Principles Study of Mechanical and Electronic Properties of Cr 0.5-xAl 0.5TM xN Hard Coatings (TM = Ti, V, Y, Zr, Hf, and Ta). MATERIALS (BASEL, SWITZERLAND) 2024; 17:1070. [PMID: 38473542 DOI: 10.3390/ma17051070] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/11/2024] [Accepted: 02/12/2024] [Indexed: 03/14/2024]
Abstract
The structural, mechanical, and electronic properties of cubic Cr0.5-xAl0.5TMxN, doped with TM (transition metal) elements (TM = Ti, V, Y, Zr, Hf, and Ta) at low concentrations (x = 0.03 and 0.06), was investigated by first-principles calculations. The results of the structural properties calculations reveal that the addition of Ti, Y, Hf, Zr, and Ta expand the volume, while V has the opposite effect. All doped compounds are thermodynamically stable, and Cr0.5-xAl0.5TMxN with TM = Ti is energetically more favorable than other doped compounds. At the same doping concentration, Cr0.5-xAl0.5VxN possesses the highest stiffness, hardness, and resistance to external forces due to its greatest mechanical properties, and Cr0.5-xAl0.5TaxN possesses the highest elastic anisotropy and the lowest Young's modulus. Substituting Cr atoms with TM atoms in a stepwise manner results in a decrease in the bulk modulus, shear modulus, Young's modulus, and theoretical hardness of Cr0.5-xAl0.5TMxN, while increasing its toughness. Based on the calculation results of the total and partial density of states of Cr0.5Al0.5N and Cr0.47Al0.5TM0.03N, all compounds exhibit metallic behavior as indicated by the finite density of states at the Fermi level. The contribution of Ti-3d, V-3d, and Ta-3d orbitals at Fermi level is significantly higher than that of other TM atoms, resulting in a more pronounced metallic character for Cr0.47Al0.5Ti0.03N, Cr0.47Al0.5V0.03N, and Cr0.47Al0.5Ta0.03N.
Collapse
Affiliation(s)
- Weike Dai
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China
| | - You Zou
- Information and Network Center, Central South University, Changsha 410083, China
| | - Jiong Wang
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China
| | - Yue Su
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China
| | - Donglan Zhang
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China
| |
Collapse
|
23
|
Guo S, Yue J, Li J, Liu Y, Cui T. Novel room-temperature full-Heusler thermoelectric material Li 2TlSb. Phys Chem Chem Phys 2024; 26:6774-6781. [PMID: 38323593 DOI: 10.1039/d3cp05612k] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
High lattice thermal conductivity stemming from the intrinsically ordered crystal and strong interatomic bonds tends to be seen as the bottleneck for achieving excellent thermoelectric properties in full-Heusler (FH) semiconductors. In this work, we propose a novel Li-based FH compound Li2TlSb by substituting one Li atom with a Tl atom in Li3Sb. Then we systematically investigated its transport and thermoelectric properties based on self-consistent phonon (SCP) theory, electron-phonon scattering, and the Boltzmann transport equation. The theoretical calculation confirms that it exhibits outstanding mechanical properties and extreme environment adaptability. Surprisingly, the combination of an unexpectedly high spatial degeneracy and light electron dispersion at valence bands results in a high power factor in p-type systems. Additionally, the rattling behavior governed by the Tl atom and resonant bonding is responsible for ultra-low lattice thermal conductivity with 0.79 W m-1 K-1 at room temperature. Finally, a maximum p-type ZT value of 1.77 at 300 K has been achieved, which surpasses those of most of the traditional thermoelectric (TE) materials. Our results demonstrate that Li2TlSb serves as a potential candidate for room-temperature thermoelectric materials and simultaneously provides new insights for rationally designing novel FH materials in the future.
Collapse
Affiliation(s)
- Siqi Guo
- Institute of High Pressure Physics, School of Physical Science and Technology, Ningbo University, Ningbo 315211, China.
| | - Jincheng Yue
- Institute of High Pressure Physics, School of Physical Science and Technology, Ningbo University, Ningbo 315211, China.
| | - Junda Li
- Institute of High Pressure Physics, School of Physical Science and Technology, Ningbo University, Ningbo 315211, China.
| | - Yanhui Liu
- Institute of High Pressure Physics, School of Physical Science and Technology, Ningbo University, Ningbo 315211, China.
| | - Tian Cui
- Institute of High Pressure Physics, School of Physical Science and Technology, Ningbo University, Ningbo 315211, China.
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
| |
Collapse
|
24
|
Chen Z, Dong R, Wang X, Huang L, Qiu L, Zhang M, Mi N, Xu M, He H, Gu C. Efficient Decomposition of Perfluoroalkyl Substances by Low Concentration Indole: New Insights into the Molecular Mechanisms. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 38329941 DOI: 10.1021/acs.est.3c08453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Perfluoroalkyl substances (PFAS) are a class of persistent organic pollutants known as "forever chemicals". Currently, the hydrated electron-based advanced reduction process (ARP) holds promise for the elimination of PFAS. However, the efficiency of ARP is often challenged by an oxygen-rich environment, resulting in the consumption of hydrated electron source materials in exchange for the high PFAS decomposition efficiency. Herein, we developed a ternary system constructed by indole and isopropyl alcohol (IPA), and the addition of IPA significantly enhanced the PFOA degradation and defluorination efficiency in the presence of low-concentration indole (<0.4 mM). Meanwhile, opposite results were obtained with a higher amount of indole (>0.4 mM). Further exploring the molecular mechanism of the reaction system, the addition of IPA played two roles. On one hand, IPA built an anaerobic reaction atmosphere and improved the yield and utilization efficiency of hydrated electrons with a low concentration of indole. On the other hand, IPA suppressed the attraction between indole and PFOA, thus reducing the hydrated electron transfer efficiency, especially with more indole. In general, the indole/PFAS/IPA system significantly improved the PFAS destruction efficiency with a small amount of hydrated electron donors, which provided new insights for development of simple and efficient techniques for the treatment of PFAS-contaminated wastewater.
Collapse
Affiliation(s)
- Zhanghao Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, P. R. China
| | - Ruochen Dong
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, P. R. China
| | - Xinhao Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, P. R. China
| | - Liuqing Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, P. R. China
| | - Longlong Qiu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, P. R. China
| | - Ming Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, P. R. China
- Department of Environmental Engineering, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Na Mi
- Ministry of Ecology and Environment, Nanjing Institute of Environmental Science, Nanjing 210042, P. R. China
| | - Min Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, P. R. China
| | - Huan He
- School of Environment, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Cheng Gu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
25
|
Naveas N, Pulido R, Marini C, Gargiani P, Hernandez-Montelongo J, Brito I, Manso-Silván M. First-Principles Calculations of Magnetite (Fe 3O 4) above the Verwey Temperature by Using Self-Consistent DFT + U + V. J Chem Theory Comput 2023; 19:8610-8623. [PMID: 37974305 PMCID: PMC10720343 DOI: 10.1021/acs.jctc.3c00860] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/10/2023] [Accepted: 10/30/2023] [Indexed: 11/19/2023]
Abstract
In this report, we have used the DFT + U + V approach, an extension of the DFT + U approach that takes into account both on-site and intersite interactions, to simulate structural, magnetic, and electronic properties together with the Fe and O K-edge XAS spectra of Fe3O4 above the Verwey temperature (Tv). Moreover, we compared the simulated XAS spectra with experimental XAS data. We examined both orthogonalized and nonorthogonalized atomic orbital projectors and compared DFT + U + V to DFT, DFT + U, and HSE as a hybrid functional. It is noteworthy that, despite the widespread use of the same Hubbard U value for Feoct and Fetet at the DFT + U level in the literature, the HP code identified two distinct values for them using the Hubbard approaches (DFT + U and DFT + U + V). The resulting Hubbard U and V parameters are strongly dependent on the chosen orbital projectors. This study demonstrates how DFT + U + V can improve the structural, magnetic, and electronic properties of Fe3O4 compared to approximate DFT and DFT + U. In this context, DFT + U + V supports the half-metallic character of the bulk crystal Fe3O4 above Tv, since the Fermi level is found in the t2g band with a Feoct down-spin. Thus, the observations in the current study emphasize the significance of intersite interactions in the theoretical analysis of Fe3O4 above the Tv.
Collapse
Affiliation(s)
- Nelson Naveas
- Departamento
de Física Aplicada, Universidad Autónoma
de Madrid, 28049 Madrid, Spain
- Departamento
de Ingeniería Química y Procesos de Minerales, Universidad de Antofagasta, Avenida Angamos 601, 1270300 Antofagasta, Chile
- Instituto
Universitario de Ciencia de Materiales “Nicolás Cabrera”
(INC), Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Ruth Pulido
- Instituto
Universitario de Ciencia de Materiales “Nicolás Cabrera”
(INC), Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain
- Departamento
de Química, Universidad de Antofagasta, Avenida Angamos 601, 1270300 Antofagasta, Chile
| | - Carlo Marini
- CELLS−ALBA
Synchrotron, 08290 Cerdanyola del Valles, Spain
| | | | | | - Ivan Brito
- Departamento
de Química, Universidad de Antofagasta, Avenida Angamos 601, 1270300 Antofagasta, Chile
| | - Miguel Manso-Silván
- Departamento
de Física Aplicada, Universidad Autónoma
de Madrid, 28049 Madrid, Spain
- Instituto
Universitario de Ciencia de Materiales “Nicolás Cabrera”
(INC), Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain
- Centro
de Microanálisis de Materiales, Universidad
Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
26
|
Brothers EN, Bengali AA, Scalmani G, Janesko BG, Verma P, Truhlar DG, Frisch MJ. Comparing Density Functional Theory Metal-Ligand Bond Dissociation Enthalpies with Experimental Solution-Phase Enthalpies of Activation for Bond Dissociation. J Phys Chem A 2023; 127:9695-9704. [PMID: 37939355 DOI: 10.1021/acs.jpca.3c04838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
The predictive ability of density functional theory is fundamental to its usefulness in chemical applications. Recent work has compared solution-phase enthalpies of activation for metal-ligand bond dissociation to enthalpies of reaction for bond dissociation, and the present work continues those comparisons for 43 density functional methods. The results for ligand dissociation enthalpies of 30 metal-ligand complexes tested in this work reveal significant inadequacies of some functionals as well as challenges from the dispersion corrections to some functionals. The analysis presented here demonstrates the excellent performance of a recent density functional, M11plus, which contains nonlocal rung-3.5 correlation. We also find a good agreement between theory and experiment for some functionals without empirical dispersion corrections such as M06, r2SCAN, M06-L, and revM11, as well as good performance for some functionals with added dispersion corrections such as ωB97X-D (which always has a correction) and BLYP, B3LYP, CAM-B3LYP, and PBE0 when the optional dispersion corrections are added.
Collapse
Affiliation(s)
- Edward N Brothers
- Gaussian, Inc., 340 Quinnipiac Street, Wallingford, Connecticut 06492, United States
| | - Ashfaq A Bengali
- Division of Arts and Sciences, Texas A&M University at Qatar, Doha, Qatar
| | - Giovanni Scalmani
- Gaussian, Inc., 340 Quinnipiac Street, Wallingford, Connecticut 06492, United States
| | - Benjamin G Janesko
- Department of Chemistry and Biochemistry, Texas Christian University, Fort Worth, Texas 76110, United States
| | - Pragya Verma
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Donald G Truhlar
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Michael J Frisch
- Gaussian, Inc., 340 Quinnipiac Street, Wallingford, Connecticut 06492, United States
| |
Collapse
|
27
|
Grotjahn R. Learning from the 4-(dimethylamino)benzonitrile twist: Two-parameter range-separated local hybrid functional with high accuracy for triplet and charge-transfer excitations. J Chem Phys 2023; 159:174102. [PMID: 37909451 DOI: 10.1063/5.0173701] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 10/06/2023] [Indexed: 11/03/2023] Open
Abstract
The recent ωLH22t range-separated local hybrid (RSLH) is shown to provide outstanding accuracy for the notorious benchmark problem of the two lowest excited-state potential energy curves for the amino group twist in 4-(dimethylamino)benzonitrile (DMABN). However, the design of ωLH22t as a general-purpose functional resulted in less convincing performance for triplet excitations, which is an important advantage of previous LHs. Furthermore, ωLH22t uses 8 empirical parameters to achieve broad accuracy. In this work, the RSLH ωLH23ct-sir is constructed with minimal empiricism by optimizing its local mixing function prefactor and range-separation parameter for only 8 excitation energies. ωLH23ct-sir maintains the excellent performance of ωLH22t for the DMABN twist and charge-transfer benchmarks but significantly improves the errors for triplet excitation energies (0.17 vs 0.24 eV). Additional test calculations for the AE6BH6 thermochemistry test set and large dipole moment and static polarizability test sets confirm that the focus on excitation energies in the optimization of ωLH23ct-sir has not caused any dramatic errors for ground-state properties. Although ωLH23ct-sir cannot replace ωLH22t as a general-purpose functional, it is preferable for problems requiring a universally good description of localized and charge-transfer excitations of both singlet and triplet multiplicity. Current limitations on the application of ωLH23ct-sir and other RSLHs to the study of singlet-triplet gaps of emitters for thermally activated delayed fluorescence are discussed. This work also includes the first systematic analysis of the influence of the local mixing function prefactor and the range-separation parameter in an RSLH on different types of excitations.
Collapse
Affiliation(s)
- Robin Grotjahn
- Department of Chemistry, University of California, Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025, USA
| |
Collapse
|
28
|
Louis H, Chukwuemeka K, Agwamba EC, Abdullah HY, Pembere AMS. Molecular simulation of Cu, Ag, and Au-decorated Si-doped graphene quantum dots (Si@QD) nanostructured as sensors for SO 2 trapping. J Mol Graph Model 2023; 124:108551. [PMID: 37399776 DOI: 10.1016/j.jmgm.2023.108551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 06/06/2023] [Accepted: 06/13/2023] [Indexed: 07/05/2023]
Abstract
In view of the numerous environmental hazards and health challenges linked to sulfur (iv) oxide (SO2), an indirect greenhouse gas, and the resultant need to develop efficient gas nanosensor devices, this research had as its principal focus on the theoretical evaluation of the gas sensing potential of metals: Ag, Au and Cu functionalized silicon-doped quantum dots (Si@QD) for the detection and adsorption of SO2 gas investigated using the first-principles density functional theory (DFT) computation at the B3LYP-D3(BJ)/def2-SVP level of theory. Eight (8) possible adsorption modes: SO2_O_Si@QD, SO2_O_Ag_Si@QD, SO2_O_Au_Si@QD, SO2_O_Cu_Si@QD, SO2_S_Si@QD, SO2_S_Ag_Si@QD, SO2_S_Au_Si@QD, and SO2_S_Cu_Si@QD were considered based on SO2 interactions with the studied materials at the -S and -O sites of the SO2 molecule. The counterpoise correction (BSSE) showed that five of the eight interactions had favorable Ead + BSSE values ranging from -0.31 to -1.98 eV. All the eight interactions were observed to be thermodynamically favorable with ΔG and ΔH ranging from -129.01 to -200.24 kcal/mol and -158.26 to -229.73 kcal/mol respectively. Results from the topology analysis reveal that van der Waals forces occurred the greatest at the gas-sensor interphase while SO2_S_ Cu_Si@QD is predicted to have the highest sensing potency based on the conductivity and recovery time estimations. These results confirm the potential efficient feasibility of real-world device application of the metals (Ag, Au, Cu) functionalized Si-doped QDs.
Collapse
Affiliation(s)
- Hitler Louis
- Computational and Bio-Simulation Research Group, University of Calabar, Calabar, Nigeria; Department of Pure and Applied Chemistry, University of Calabar, Calabar, Nigeria; Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, 603103, Tamil Nadu, India.
| | - Kelechi Chukwuemeka
- Computational and Bio-Simulation Research Group, University of Calabar, Calabar, Nigeria; Department of Chemical Sciences, Clifford University, Owerrinta, Nigeria
| | - Ernest C Agwamba
- Computational and Bio-Simulation Research Group, University of Calabar, Calabar, Nigeria; Department of Chemistry, Covenant University, Ota, Nigeria
| | - Hewa Y Abdullah
- Physics Education Department, Tishk International University, Erbil, Iraq
| | - Anthony M S Pembere
- Department of Chemical Sciences, Jaramogi Odinga University of Science and Technology, Bondo, Kenya
| |
Collapse
|
29
|
Ruderman A, Oviedo MB, Paz SA, Leiva EPM. Diversity of Behavior after Collisions of Sn and Si Nanoparticles Found Using a New Density Functional Tight-Binding Method. J Phys Chem A 2023; 127:8955-8965. [PMID: 37831543 DOI: 10.1021/acs.jpca.3c05534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2023]
Abstract
We present a new approach to studying nanoparticle collisions using density functional based tight binding (DFTB). A novel DFTB parametrization has been developed to study the collision process of Sn and Si clusters (NPs) using molecular dynamics (MD). While bulk structures were used as training sets, we show that our model is able to accurately reproduce the cohesive energy of the nanoparticles using density functional theory (DFT) as a reference. A surprising variety of phenomena are revealed for the Si/Sn nanoparticle collisions, depending on the size and velocity of the collision: from core-shell structure formation to bounce-off phenomena.
Collapse
Affiliation(s)
- Andrés Ruderman
- Facultad de Matemática, Astronomía Física y Computación, Universidad Nacional de Córdoba, Córdoba X5000HUA, Argentina
- Consejo Nacional de Investigaciones Cientıficas y Técnicas (CONICET), Instituto de Física Enrique Gaviola (IFEG), Córdoba X5000HUA, Argentina
| | - María Belén Oviedo
- Facultad de Ciencias Quımicas, Departamento de Quımica Teórica y Computacional, Universidad Nacional de Córdoba, Córdoba X5000HUA, Argentina
- Consejo Nacional de Investigaciones Cientıficas y Técnicas (CONICET), Instituto de Fisicoquımica de Córdoba (INFIQC), Córdoba X5000HUA, Argentina
| | - Sergio Alexis Paz
- Facultad de Ciencias Quımicas, Departamento de Quımica Teórica y Computacional, Universidad Nacional de Córdoba, Córdoba X5000HUA, Argentina
- Consejo Nacional de Investigaciones Cientıficas y Técnicas (CONICET), Instituto de Fisicoquımica de Córdoba (INFIQC), Córdoba X5000HUA, Argentina
| | - Ezequiel P M Leiva
- Facultad de Ciencias Quımicas, Departamento de Quımica Teórica y Computacional, Universidad Nacional de Córdoba, Córdoba X5000HUA, Argentina
- Consejo Nacional de Investigaciones Cientıficas y Técnicas (CONICET), Instituto de Fisicoquımica de Córdoba (INFIQC), Córdoba X5000HUA, Argentina
| |
Collapse
|
30
|
Franzke Y, Holzer C, Andersen JH, Begušić T, Bruder F, Coriani S, Della Sala F, Fabiano E, Fedotov DA, Fürst S, Gillhuber S, Grotjahn R, Kaupp M, Kehry M, Krstić M, Mack F, Majumdar S, Nguyen BD, Parker SM, Pauly F, Pausch A, Perlt E, Phun GS, Rajabi A, Rappoport D, Samal B, Schrader T, Sharma M, Tapavicza E, Treß RS, Voora V, Wodyński A, Yu JM, Zerulla B, Furche F, Hättig C, Sierka M, Tew DP, Weigend F. TURBOMOLE: Today and Tomorrow. J Chem Theory Comput 2023; 19:6859-6890. [PMID: 37382508 PMCID: PMC10601488 DOI: 10.1021/acs.jctc.3c00347] [Citation(s) in RCA: 74] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Indexed: 06/30/2023]
Abstract
TURBOMOLE is a highly optimized software suite for large-scale quantum-chemical and materials science simulations of molecules, clusters, extended systems, and periodic solids. TURBOMOLE uses Gaussian basis sets and has been designed with robust and fast quantum-chemical applications in mind, ranging from homogeneous and heterogeneous catalysis to inorganic and organic chemistry and various types of spectroscopy, light-matter interactions, and biochemistry. This Perspective briefly surveys TURBOMOLE's functionality and highlights recent developments that have taken place between 2020 and 2023, comprising new electronic structure methods for molecules and solids, previously unavailable molecular properties, embedding, and molecular dynamics approaches. Select features under development are reviewed to illustrate the continuous growth of the program suite, including nuclear electronic orbital methods, Hartree-Fock-based adiabatic connection models, simplified time-dependent density functional theory, relativistic effects and magnetic properties, and multiscale modeling of optical properties.
Collapse
Affiliation(s)
- Yannick
J. Franzke
- Fachbereich
Chemie, Philipps-Universität Marburg, Hans-Meerwein-Str. 4, 35032 Marburg, Germany
| | - Christof Holzer
- Institute
of Theoretical Solid State Physics, Karlsruhe
Institute of Technology (KIT), Wolfgang-Gaede-Str. 1, 76131 Karlsruhe, Germany
| | - Josefine H. Andersen
- DTU
Chemistry, Department of Chemistry, Technical
University of Denmark, Kemitorvet Building 207, DK-2800 Kongens Lyngby, Denmark
| | - Tomislav Begušić
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| | - Florian Bruder
- Fachbereich
Chemie, Philipps-Universität Marburg, Hans-Meerwein-Str. 4, 35032 Marburg, Germany
| | - Sonia Coriani
- DTU
Chemistry, Department of Chemistry, Technical
University of Denmark, Kemitorvet Building 207, DK-2800 Kongens Lyngby, Denmark
| | - Fabio Della Sala
- Institute
for Microelectronics and Microsystems (CNR-IMM), Via Monteroni, Campus Unisalento, 73100 Lecce, Italy
- Center for
Biomolecular Nanotechnologies @UNILE, Istituto
Italiano di Tecnologia, Via Barsanti, 73010 Arnesano, Italy
| | - Eduardo Fabiano
- Institute
for Microelectronics and Microsystems (CNR-IMM), Via Monteroni, Campus Unisalento, 73100 Lecce, Italy
- Center for
Biomolecular Nanotechnologies @UNILE, Istituto
Italiano di Tecnologia, Via Barsanti, 73010 Arnesano, Italy
| | - Daniil A. Fedotov
- DTU
Chemistry, Department of Chemistry, Technical
University of Denmark, Kemitorvet Building 207, DK-2800 Kongens Lyngby, Denmark
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Susanne Fürst
- Institut
für Chemie, Theoretische Chemie/Quantenchemie, Sekr. C7, Technische Universität Berlin, Straße des 17 Juni 135, 10623, Berlin, Germany
| | - Sebastian Gillhuber
- Institute
of Inorganic Chemistry, Karlsruhe Institute
of Technology (KIT), Engesserstr. 15, 76131 Karlsruhe, Germany
| | - Robin Grotjahn
- Department
of Chemistry, University of California,
Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025, United States
| | - Martin Kaupp
- Institut
für Chemie, Theoretische Chemie/Quantenchemie, Sekr. C7, Technische Universität Berlin, Straße des 17 Juni 135, 10623, Berlin, Germany
| | - Max Kehry
- Institute
of Physical Chemistry, Karlsruhe Institute
of Technology (KIT), Fritz-Haber-Weg 2, 76131 Karlsruhe, Germany
| | - Marjan Krstić
- Institute
of Theoretical Solid State Physics, Karlsruhe
Institute of Technology (KIT), Wolfgang-Gaede-Str. 1, 76131 Karlsruhe, Germany
| | - Fabian Mack
- Institute
of Physical Chemistry, Karlsruhe Institute
of Technology (KIT), Fritz-Haber-Weg 2, 76131 Karlsruhe, Germany
| | - Sourav Majumdar
- Department
of Chemistry, University of California,
Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025, United States
| | - Brian D. Nguyen
- Department
of Chemistry, University of California,
Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025, United States
| | - Shane M. Parker
- Department
of Chemistry, Case Western Reserve University, 10900 Euclid Ave, Cleveland, Ohio 44106 United States
| | - Fabian Pauly
- Institute
of Physics, University of Augsburg, Universitätsstr. 1, 86159 Augsburg, Germany
| | - Ansgar Pausch
- Institute
of Physical Chemistry, Karlsruhe Institute
of Technology (KIT), Fritz-Haber-Weg 2, 76131 Karlsruhe, Germany
| | - Eva Perlt
- Otto-Schott-Institut
für Materialforschung, Friedrich-Schiller-Universität
Jena, Löbdergraben
32, 07743 Jena, Germany
| | - Gabriel S. Phun
- Department
of Chemistry, University of California,
Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025, United States
| | - Ahmadreza Rajabi
- Department
of Chemistry, University of California,
Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025, United States
| | - Dmitrij Rappoport
- Department
of Chemistry, University of California,
Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025, United States
| | - Bibek Samal
- Department
of Chemical Sciences, Tata Institute of
Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005, India
| | - Tim Schrader
- Otto-Schott-Institut
für Materialforschung, Friedrich-Schiller-Universität
Jena, Löbdergraben
32, 07743 Jena, Germany
| | - Manas Sharma
- Otto-Schott-Institut
für Materialforschung, Friedrich-Schiller-Universität
Jena, Löbdergraben
32, 07743 Jena, Germany
| | - Enrico Tapavicza
- Department
of Chemistry and Biochemistry, California
State University, Long Beach, 1250 Bellflower Boulevard, Long
Beach, California 90840-9507, United States
| | - Robert S. Treß
- Lehrstuhl
für Theoretische Chemie, Ruhr-Universität
Bochum, 44801 Bochum, Germany
| | - Vamsee Voora
- Department
of Chemical Sciences, Tata Institute of
Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005, India
| | - Artur Wodyński
- Institut
für Chemie, Theoretische Chemie/Quantenchemie, Sekr. C7, Technische Universität Berlin, Straße des 17 Juni 135, 10623, Berlin, Germany
| | - Jason M. Yu
- Department
of Chemistry, University of California,
Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025, United States
| | - Benedikt Zerulla
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology (KIT), Hermann-von-Helmholtz-Platz
1, 76344 Eggenstein-Leopoldshafen Germany
| | - Filipp Furche
- Department
of Chemistry, University of California,
Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025, United States
| | - Christof Hättig
- Lehrstuhl
für Theoretische Chemie, Ruhr-Universität
Bochum, 44801 Bochum, Germany
| | - Marek Sierka
- Otto-Schott-Institut
für Materialforschung, Friedrich-Schiller-Universität
Jena, Löbdergraben
32, 07743 Jena, Germany
| | - David P. Tew
- Physical
and Theoretical Chemistry Laboratory, University
of Oxford, South Parks
Road, Oxford OX1 3QZ, United Kingdom
| | - Florian Weigend
- Fachbereich
Chemie, Philipps-Universität Marburg, Hans-Meerwein-Str. 4, 35032 Marburg, Germany
| |
Collapse
|
31
|
Yan W, Yan Y, Wang Z, Li QH, Zhang J. Enhancing the photocatalytic efficiency of two-dimensional aluminum nitride materials through strategic rare earth doping. Phys Chem Chem Phys 2023; 25:25442-25449. [PMID: 37712214 DOI: 10.1039/d3cp03661h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
Two-dimensional (2D) materials demonstrate promising potential as high-efficiency photocatalysts. However, the intrinsic limitations of aluminum nitride (AlN), such as inadequate oxidation capacity, a high carrier recombination rate, and limited absorption of visible light, pose considerable challenges. In this paper, we introduce a novel co-doping technique with dysprosium (Dy) and carbon (C) on a 2D AlN monolayer, aiming to enhance its photocatalytic properties. Our first-principles calculations reveal a reduction in the bandgap and a significant enhancement in the visible light absorption rate of the co-doped Al24N22DyC2 structure. Notably, the distribution of the highest occupied molecular orbital and the lowest unoccupied molecular in proximity to Dy atoms demonstrates favorable conditions for carrier separation. Theoretical assessments of the hydrogen evolution reaction and oxygen evolution reaction activities further corroborate the potential of Al24N22DyC2 as a competent catalyst for photocatalytic reactions. These findings provide valuable theoretical insights for the experimental design and fabrication of novel, high-efficiency AlN semiconductor photocatalysts.
Collapse
Affiliation(s)
- Weiyin Yan
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
- Fujian College, University of Chinese Academy of Sciences, Fuzhou 350002, China
| | - Yayu Yan
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
- Fujian College, University of Chinese Academy of Sciences, Fuzhou 350002, China
| | - Zirui Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.
- School of Physical Science and Technology, Shanghai Tech University, Shanghai 201210, China
- Fujian College, University of Chinese Academy of Sciences, Fuzhou 350002, China
| | - Qiao-Hong Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.
- Fujian College, University of Chinese Academy of Sciences, Fuzhou 350002, China
| | - Jian Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.
- Fujian College, University of Chinese Academy of Sciences, Fuzhou 350002, China
| |
Collapse
|
32
|
Tang F, Chen Y, Ge XL, Meng WZ, Han ZD, Qian B, Zhao W, Jiang XF, Fang Y, Ju S. Anisotropic magnetoresistance and electronic features of the candidate topological compound praseodymium monobismuthide. Phys Chem Chem Phys 2023; 25:25573-25580. [PMID: 37721039 DOI: 10.1039/d3cp03480a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
PrBi, a sister member of the rare-earth monopnictide family, is an excellent candidate for studying extreme magnetoresistance and nontrivial topological electronic states. In this study, we perform angular magnetoresistance measurements as well as bulk and surface band structure calculations on this compound. PrBi's magnetoresistance is revealed to be significantly angle-dependent and shows a fourfold symmetry as always observed in the nonmagnetic isostructural counterparts, including LaSb, LaBi, and LuBi. Its angular magnetoresistance can be reproduced well using the semiclassical two-band model. The deduced parameters suggest that PrBi hosts an elongated electron pocket with a mobility anisotropy of ∼3.13 and is slightly uncompensated in its carrier concentration. Our bulk and surface band structure calculations confirm the anisotropic electronic features. Moreover, we reveal that a nodal-line-shaped surface state appears at the X̄ point, and is associated with the quadratic dispersion along the -X̄ direction, and the linear type-I Dirac dispersion along the X̄-M̄ direction. Owing to the type-I Dirac dispersion feature, PrBi could serve as a promising material platform for studying many unexpected physical properties, such as the highly anisotropic transport and valley polarization of electrons.
Collapse
Affiliation(s)
- F Tang
- Jiangsu Key Laboratory of Thin Films, School of Physical Science and Technology, Soochow University, Suzhou 215006, China.
- Jiangsu Laboratory of Advanced Functional Materials, School of Electronic and Information Engineering, Changshu Institute of Technology, Changshu 215500, China.
| | - Y Chen
- Jiangsu Key Laboratory of Thin Films, School of Physical Science and Technology, Soochow University, Suzhou 215006, China.
- Jiangsu Laboratory of Advanced Functional Materials, School of Electronic and Information Engineering, Changshu Institute of Technology, Changshu 215500, China.
| | - X-L Ge
- Jiangsu Laboratory of Advanced Functional Materials, School of Electronic and Information Engineering, Changshu Institute of Technology, Changshu 215500, China.
| | - W-Z Meng
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Z-D Han
- Jiangsu Laboratory of Advanced Functional Materials, School of Electronic and Information Engineering, Changshu Institute of Technology, Changshu 215500, China.
| | - B Qian
- Jiangsu Laboratory of Advanced Functional Materials, School of Electronic and Information Engineering, Changshu Institute of Technology, Changshu 215500, China.
| | - W Zhao
- Department of Materials Science and Engineering, Monash University, Clayton, VIC 3800, Australia
| | - X-F Jiang
- Jiangsu Laboratory of Advanced Functional Materials, School of Electronic and Information Engineering, Changshu Institute of Technology, Changshu 215500, China.
| | - Y Fang
- Jiangsu Laboratory of Advanced Functional Materials, School of Electronic and Information Engineering, Changshu Institute of Technology, Changshu 215500, China.
| | - S Ju
- Jiangsu Key Laboratory of Thin Films, School of Physical Science and Technology, Soochow University, Suzhou 215006, China.
| |
Collapse
|
33
|
Fitzhugh HC, Furness JW, Pederson MR, Peralta JE, Sun J. Comparative Density Functional Theory Study of Magnetic Exchange Couplings in Dinuclear Transition-Metal Complexes. J Chem Theory Comput 2023; 19:5760-5772. [PMID: 37582098 PMCID: PMC10500985 DOI: 10.1021/acs.jctc.3c00336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Indexed: 08/17/2023]
Abstract
Multicenter transition-metal complexes (MCTMs) with magnetically interacting ions have been proposed as components for information-processing devices and storage units. For any practical application of MCTMs as magnetic units, it is crucial to characterize their magnetic behavior, and in particular, the isotropic magnetic exchange coupling, J, between its magnetic centers. Due to the large size of typical MCTMs, density functional theory is the only practical electronic structure method for evaluating the J coupling. Here, we assess the accuracy of different density functional approximations for predicting the magnetic couplings of eight dinuclear transition-metal complexes, including five dimanganese, two dicopper, and one divanadium with known reliable experimental J couplings spanning from ferromagnetic to strong antiferromagnetic. The density functionals considered include global hybrid functionals which mix semilocal density functional approximations and exact exchange with a fixed admixing parameter, six local hybrid functionals where the admixing parameters are extended to be spatially dependent, the SCAN and r2SCAN meta-generalized gradient approximations (GGAs), and two widely used GGAs. We found that global hybrids tested in this work have a tendency to over-correct the error in magnetic coupling parameters from the Perdew-Burke-Ernzerhof (PBE) GGA as seen for manganese complexes. The performance of local hybrid density functionals shows no improvement in terms of bias and is scattered without a clear trend, suggesting that more efforts are needed for the extension from global to local hybrid density functionals for this particular property. The SCAN and r2SCAN meta-GGAs are found to perform as well as benchmark global hybrids on most tested complexes. We further analyze the charge density redistribution of meta-GGAs as well as global and local hybrid density functionals with respect to that of PBE, in connection to the self-interaction error or delocalization error.
Collapse
Affiliation(s)
- Henry C. Fitzhugh
- Department
of Physics and Engineering Physics, Tulane
University, New Orleans, Louisiana 70118, United States
| | - James W. Furness
- Department
of Physics and Engineering Physics, Tulane
University, New Orleans, Louisiana 70118, United States
| | - Mark R. Pederson
- Department
of Physics, The University of Texas at El
Paso, El Paso, Texas 79968, United States
| | - Juan E. Peralta
- Department
of Physics and Science of Advanced Materials, Central Michigan University, Mount Pleasant, Michigan 48859, United States
| | - Jianwei Sun
- Department
of Physics and Engineering Physics, Tulane
University, New Orleans, Louisiana 70118, United States
| |
Collapse
|
34
|
Khengar SJ, Parmar PR, Modi N, Thakor PB. A computational study of 2D group-III ternary chalcogenide monolayer compounds MNTe 2(M, N = In, Ga, Al). JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2023; 35:475702. [PMID: 37536323 DOI: 10.1088/1361-648x/aced2f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/03/2023] [Indexed: 08/05/2023]
Abstract
First principle calculations of novel two-dimensional (2D) group-III ternary chalcogenide monolayer (G3TCM) compounds have been carried out using density functional theory. The 2D hexagonal structure has a honeycomb-like appearance from both the top and bottom views. Both pristine and G3TCM compounds are energetically favourable and have been found to be dynamically stable via phonon calculations. Theab-initiomolecular dynamics calculations show the thermodynamical stability of the G3TCM compounds. The G3TCM compounds exhibit semiconductor behaviour with a decreased indirect bandgap compared to the pristine monolayers. Chalcogen atoms contribute mainly to the valence bands, while group-III atoms have a major contribution to the conduction band. A red shift has been observed in the absorption of light, mainly in the visible and ultraviolet regions, and the refractive index is increased compared to the pristine material. Both pristine and G3TCM compounds have been found to be more active in the ultraviolet region, and low reflection has been observed. In the 6-8 eV range of the ultraviolet region, zero reflection and the highest absorption are observed. The monolayer has shown potential applications in optoelectronics devices as an ultraviolet and visible light detector, absorber, coating material, and more. The band alignment of the 2D G3TCM monolayer is calculated to observe its photo-catalyst behaviour.
Collapse
Affiliation(s)
- S J Khengar
- Department of Physics, Veer Narmad South Gujarat University, Surat 395007, Gujarat, India
| | - P R Parmar
- Department of Physics, Veer Narmad South Gujarat University, Surat 395007, Gujarat, India
| | - Nidhi Modi
- Department of Physics, Sir P.T. Sarvajanik College of Science, Surat 395001, Gujarat, India
| | - P B Thakor
- Department of Physics, Veer Narmad South Gujarat University, Surat 395007, Gujarat, India
| |
Collapse
|
35
|
Xiong J, Peng YH, Lin JY, Cen YJ, Yang XB, Zhao YJ. High Concentration Intrinsic Defects in MnSb 2Te 4. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5496. [PMID: 37570198 PMCID: PMC10420118 DOI: 10.3390/ma16155496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/20/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023]
Abstract
MnSb2Te4 has a similar structure to an emerging material, MnBi2Te4. According to earlier theoretical studies, the formation energy of Mn antisite defects in MnSb2Te4 is negative, suggesting its inherent instability. This is clearly in contrast to the successful synthesis of experimental samples of MnSb2Te4. Here, the growth environment of MnSb2Te4 and the intrinsic defects are correspondingly investigated. We find that the Mn antisite defect is the most stable defect in the system, and a Mn-rich growth environment favors its formation. The thermodynamic equilibrium concentrations of the Mn antisite defects could be as high as 15% under Mn-poor conditions and 31% under Mn-rich conditions. It is also found that Mn antisite defects prefer a uniform distribution. In addition, the Mn antisite defects can modulate the interlayer magnetic coupling in MnSb2Te4, leading to a transition from the ideal antiferromagnetic ground state to a ferromagnetic state. The ferromagnetic coupling effect can be further enhanced by controlling the defect concentration.
Collapse
Affiliation(s)
| | | | | | | | | | - Yu-Jun Zhao
- Department of Physics, South China University of Technology, Guangzhou 510640, China; (J.X.); (Y.-H.P.); (J.-Y.L.); (Y.-J.C.); (X.-B.Y.)
| |
Collapse
|
36
|
Wang X, Zhang C, Li D, Sun Y, Ren J, Sun J, Yang D. Theoretical study of local S coordination environment on Fe single atoms for peroxymonosulfate-based advanced oxidation processes. JOURNAL OF HAZARDOUS MATERIALS 2023; 454:131469. [PMID: 37116331 DOI: 10.1016/j.jhazmat.2023.131469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/15/2023] [Accepted: 04/20/2023] [Indexed: 05/19/2023]
Abstract
Tuning the electronic structure of single atom catalysts (SACs) is an effective strategy to promote the catalytic activity in peroxymonosulfate (PMS)-based advanced oxidation processes (AOPs). Herein, a series of Fe-based SACs with S1/2/3/4-coordination numbers on graphene were designed to regulate the electronic structural of SACs at molecular level, and their effects on PMS activation were investigated via density function theory (DFT). The calculation results demonstrate that the electron structure of the active center can be adjusted by coordination environment, which further affects the activation of PMS. Among the studied Fe-SX-C4-X catalysts, with the increase of the S coordination number, the electron density of the Fe-SX-C4-X active center was optimized. The active center of the Fe-S4-C0 catalyst has a largest positive charge density, exhibiting the highest number of electron transfer. It also has a lower kinetic energy barrier (0.28 eV) for PMS dissociation. Organic pollutant such as bisphenol A (BPA) can achieve stable adsorption on Fe-SX-C4-X catalysts, which is conducive to subsequent oxidation by radicals. The dual index ∆f(r) indicates that the para-carbon atom of the hydroxyl group on the benzene ring of BPA is vulnerable to radical attack. This study highlights a theoretical support and a certain guide for designing efficient SACs to activate PMS.
Collapse
Affiliation(s)
- Xiaoxia Wang
- School of Environmental Science and Engineering, State Key Laboratory of Bio-fibers and Eco-textiles, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Qingdao University, Qingdao 266071, China
| | - Congyun Zhang
- School of Environmental Science and Engineering, State Key Laboratory of Bio-fibers and Eco-textiles, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Qingdao University, Qingdao 266071, China.
| | - Daohao Li
- School of Environmental Science and Engineering, State Key Laboratory of Bio-fibers and Eco-textiles, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Qingdao University, Qingdao 266071, China
| | - Yuanyuan Sun
- School of Environmental Science and Engineering, State Key Laboratory of Bio-fibers and Eco-textiles, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Qingdao University, Qingdao 266071, China
| | - Jun Ren
- School of Chemical Engineering and Technology, Shanxi Key Laboratory of High Performance Battery Materials and Devices, North University of China, Taiyuan 030051, China
| | - Jin Sun
- School of Environmental Science and Engineering, State Key Laboratory of Bio-fibers and Eco-textiles, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Qingdao University, Qingdao 266071, China.
| | - Dongjiang Yang
- School of Environmental Science and Engineering, State Key Laboratory of Bio-fibers and Eco-textiles, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Qingdao University, Qingdao 266071, China; Queensland Micro, and Nanotechnology Centre (QMNC), Griffith University, Nathan Campus, Brisbane, Queensland, 4111, Australia.
| |
Collapse
|
37
|
Janesko BG. Core-Projected Hybrids Fix Systematic Errors in Time-Dependent Density Functional Theory Predicted Core-Electron Excitations. J Chem Theory Comput 2023. [PMID: 37437304 DOI: 10.1021/acs.jctc.3c00312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Linear response time-dependent density functional theory (TDDFT) is widely applied to valence, Rydberg, and charge-transfer excitations but, in its current form, makes large errors for core-electron excitations. This work demonstrates that the admixture of nonlocal exact exchange in atomic core regions significantly improves TDDFT-predicted core excitations. Exact exchange admixture is accomplished using projected hybrid density functional theory [ J. Chem. Theory Comput. 2023, 19, 837-847]. Scalar relativistic TDDFT calculations using core-projected B3LYP accurately model core excitations of second-period elements C-F and third-period elements Si-Cl, without sacrificing performance for the relative shifts of core excitation energies. Predicted K-edge X-ray near absorption edge structure (XANES) of a series of sulfur standards highlight the value of this approach. Core-projected hybrids appear to be a practical solution to TDDFT's limitations for core excitations, in the way that long-range-corrected hybrids are a practical solution to TDDFT's limitations for Rydberg and charge-transfer excitations.
Collapse
Affiliation(s)
- Benjamin G Janesko
- Department of Chemistry & Biochemistry, Texas Christian University, Fort Worth, Texas 76129, United States
| |
Collapse
|
38
|
Rizo L, Janesko BG. Reimagining the Wave Function in Density Functional Theory: Exploring Strongly Correlated States in Pancake-Bonded Radical Dimers. J Phys Chem A 2023; 127:3684-3691. [PMID: 37053451 DOI: 10.1021/acs.jpca.2c08616] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Pancake bonding between π-conjugated radicals challenges conventional electronic structure approximations, due to the presence of both dispersion (van der Waals) interactions and "strong" electron correlation. Here we use a reimagined wave function-in-density functional theory (DFT) approach to model pancake bonds. Our generalized self-interaction correction extends DFT's reference system of noninteracting electrons, by introducing electron-electron interactions within an active space. We show that a small variation on our previous derivation recovers a DFT-corrected complete active space method proposed by Pijeau and Hohenstein. Comparison of the two approaches shows that the latter provides reasonable dissociation curves for single bonds and pancake bonds, including excited states inaccessible to conventional linear response time-dependent DFT. The results motivate broader adoption of wavefunction-in-DFT approaches for modeling pancake bonds.
Collapse
Affiliation(s)
- Luis Rizo
- Intense Laser Physics Theory Unit, Illinois State University, Normal, Illinois 61790, United States
| | - Benjamin G Janesko
- Department of Chemistry & Biochemistry, Texas Christian University, 2800 S. University Drive, Fort Worth, Texas 75039, United States
| |
Collapse
|
39
|
Wang S, Wang M, Zhang Y, Wang H, Fei H, Liu R, Kong H, Gao R, Zhao S, Liu T, Wang Y, Ni M, Ciucci F, Wang J. Metal Oxide-Supported Metal Catalysts for Electrocatalytic Oxygen Reduction Reaction: Characterization Methods, Modulation Strategies, and Recent Progress. SMALL METHODS 2023:e2201714. [PMID: 37029582 DOI: 10.1002/smtd.202201714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/25/2023] [Indexed: 06/19/2023]
Abstract
The sluggish kinetics of the oxygen reduction reaction (ORR) with complex multielectron transfer steps significantly limits the large-scale application of electrochemical energy devices, including metal-air batteries and fuel cells. Recent years witnessed the development of metal oxide-supported metal catalysts (MOSMCs), covering single atoms, clusters, and nanoparticles. As alternatives to conventional carbon-dispersed metal catalysts, MOSMCs are gaining increasing interest due to their unique electronic configuration and potentially high corrosion resistance. By engineering the metal oxide substrate, supported metal, and their interactions, MOSMCs can be facilely modulated. Significant progress has been made in advancing MOSMCs for ORR, and their further development warrants advanced characterization methods to better understand MOSMCs and precise modulation strategies to boost their functionalities. In this regard, a comprehensive review of MOSMCs for ORR is still lacking despite this fast-developing field. To eliminate this gap, advanced characterization methods are introduced for clarifying MOSMCs experimentally and theoretically, discuss critical methods of boosting their intrinsic activities and number of active sites, and systematically overview the status of MOSMCs based on different metal oxide substrates for ORR. By conveying methods, research status, critical challenges, and perspectives, this review will rationally promote the design of MOSMCs for electrochemical energy devices.
Collapse
Affiliation(s)
- Siyuan Wang
- School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Miao Wang
- School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Yunze Zhang
- School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Hongsheng Wang
- School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Hao Fei
- School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, P. R. China
- School of Materials Science and Engineering, Central South University, Changsha, 410083, P. R. China
| | - Ruoqi Liu
- School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, P. R. China
- School of Materials Science and Engineering, Central South University, Changsha, 410083, P. R. China
| | - Hui Kong
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Ruijie Gao
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan, 430074, P. R. China
| | - Siyuan Zhao
- Department of Building and Real Estate, Research Institute for Sustainable Urban Development (RISUD) & Research Institute for Smart Energy (RISE), The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Tong Liu
- Department of Building and Real Estate, Research Institute for Sustainable Urban Development (RISUD) & Research Institute for Smart Energy (RISE), The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Yuhao Wang
- Department of Mechanical and Aerospace Engineering, HKUST, New Territories, Hong Kong SAR, 999077, P. R. China
| | - Meng Ni
- Department of Building and Real Estate, Research Institute for Sustainable Urban Development (RISUD) & Research Institute for Smart Energy (RISE), The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Francesco Ciucci
- Department of Mechanical and Aerospace Engineering, HKUST, New Territories, Hong Kong SAR, 999077, P. R. China
- HKUST Shenzhen-Hong Kong Collaborative Innovation Research Institute, Futian, Shenzhen, 518048, P. R. China
| | - Jian Wang
- School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, P. R. China
| |
Collapse
|
40
|
Cytter Y, Nandy A, Duan C, Kulik HJ. Insights into the deviation from piecewise linearity in transition metal complexes from supervised machine learning models. Phys Chem Chem Phys 2023; 25:8103-8116. [PMID: 36876903 DOI: 10.1039/d3cp00258f] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Virtual high-throughput screening (VHTS) and machine learning (ML) with density functional theory (DFT) suffer from inaccuracies from the underlying density functional approximation (DFA). Many of these inaccuracies can be traced to the lack of derivative discontinuity that leads to a curvature in the energy with electron addition or removal. Over a dataset of nearly one thousand transition metal complexes typical of VHTS applications, we computed and analyzed the average curvature (i.e., deviation from piecewise linearity) for 23 density functional approximations spanning multiple rungs of "Jacob's ladder". While we observe the expected dependence of the curvatures on Hartree-Fock exchange, we note limited correlation of curvature values between different rungs of "Jacob's ladder". We train ML models (i.e., artificial neural networks or ANNs) to predict the curvature and the associated frontier orbital energies for each of these 23 functionals and then interpret differences in curvature among the different DFAs through analysis of the ML models. Notably, we observe spin to play a much more important role in determining the curvature of range-separated and double hybrids in comparison to semi-local functionals, explaining why curvature values are weakly correlated between these and other families of functionals. Over a space of 187.2k hypothetical compounds, we use our ANNs to pinpoint DFAs for which representative transition metal complexes have near-zero curvature with low uncertainty, demonstrating an approach to accelerate screening of complexes with targeted optical gaps.
Collapse
Affiliation(s)
- Yael Cytter
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Aditya Nandy
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Chenru Duan
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Heather J Kulik
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
41
|
Shi R, Long R, Fang WH, Prezhdo OV. Rapid Interlayer Charge Separation and Extended Carrier Lifetimes due to Spontaneous Symmetry Breaking in Organic and Mixed Organic-Inorganic Dion-Jacobson Perovskites. J Am Chem Soc 2023; 145:5297-5309. [PMID: 36826471 DOI: 10.1021/jacs.2c12903] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Promising alternatives to three-dimensional perovskites, two-dimensional (2D) layered metal halide perovskites have proven their potential in optoelectronic applications due to improved photo- and chemical stability. Nevertheless, photovoltaic devices based on 2D perovskites suffer from poor efficiency owing to unfavorable charge carrier dynamics and energy losses. Focusing on the 2D Dion-Jacobson perovskite phase that is rapidly rising in popularity, we demonstrate that doping of complementary cations into the 3-(aminomethyl)piperidinium perovskite accelerates spontaneous charge separation and slows down charge recombination, both factors improving the photovoltaic performance. Employing ab initio nonadiabatic (NA) molecular dynamics combined with time-dependent density functional theory, we demonstrate that cesium doping broadens the bandgap by 0.4 eV and breaks structural symmetry. Assisted by thermal fluctuations, the symmetry breaking helps to localize electrons and holes in different layers and activates additional vibrational modes. As a result, the charge separation is accelerated. Simultaneously, the charge carrier lifetime grows due to shortened coherence time between the ground and excited states. The established relationships between perovskite composition and charge carrier dynamics provide guidelines toward future material discovery and design of perovskite solar cells.
Collapse
Affiliation(s)
- Ran Shi
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Run Long
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Wei-Hai Fang
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Oleg V Prezhdo
- Departments of Chemistry, and Physics and Astronomy, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
42
|
Roy PO, Cuierrier E, Ernzerhof M. Generating Exchange-Correlation Functionals with a Simplified, Self-Consistent Correlation Factor Model. J Phys Chem A 2023; 127:2026-2033. [PMID: 36802604 DOI: 10.1021/acs.jpca.2c08397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
We focus on the spherically averaged exchange-correlation hole ρXC(r, u) of density functional theory, which describes the reduction in the electron density at a distance u due to the reference electron localized at position r. The correlation factor (CF) approach, where the model exchange hole ρXmodel(r, u) is multiplied by a CF (fC(r, u)) to yield an approximation to the exchange-correlation hole ρXC(r, u) = fC(r, u) ρXmodel(r, u), has proven to be a powerful tool for the development of new approximations. One of the remaining challenges within the CF approach is the self-consistent implementation of the resulting functionals. To address this issue, here we propose a simplification of the previously developed CFs such that self-consistent implementations become feasible. As an illustration of the simplified CF model, we develop a new meta-GGA functional, and using only a minimum of empiricism, we provide an easy derivation of an approximation that is of an accuracy similar to more involved meta-GGA functionals.
Collapse
Affiliation(s)
- Pierre-Olivier Roy
- Département de Chimie, Université de Montréal, C.P. 6128 Succursale A, Montréal, Québec H3C 3J7, Canada
| | - Etienne Cuierrier
- Département de Chimie, Université de Montréal, C.P. 6128 Succursale A, Montréal, Québec H3C 3J7, Canada
| | - Matthias Ernzerhof
- Département de Chimie, Université de Montréal, C.P. 6128 Succursale A, Montréal, Québec H3C 3J7, Canada
| |
Collapse
|
43
|
Duan C, Nandy A, Terrones GG, Kastner DW, Kulik HJ. Active Learning Exploration of Transition-Metal Complexes to Discover Method-Insensitive and Synthetically Accessible Chromophores. JACS AU 2023; 3:391-401. [PMID: 36873700 PMCID: PMC9976347 DOI: 10.1021/jacsau.2c00547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 06/18/2023]
Abstract
Transition-metal chromophores with earth-abundant transition metals are an important design target for their applications in lighting and nontoxic bioimaging, but their design is challenged by the scarcity of complexes that simultaneously have well-defined ground states and optimal target absorption energies in the visible region. Machine learning (ML) accelerated discovery could overcome such challenges by enabling the screening of a larger space but is limited by the fidelity of the data used in ML model training, which is typically from a single approximate density functional. To address this limitation, we search for consensus in predictions among 23 density functional approximations across multiple rungs of "Jacob's ladder". To accelerate the discovery of complexes with absorption energies in the visible region while minimizing the effect of low-lying excited states, we use two-dimensional (2D)efficient global optimization to sample candidate low-spin chromophores from multimillion complex spaces. Despite the scarcity (i.e., ∼0.01%) of potential chromophores in this large chemical space, we identify candidates with high likelihood (i.e., >10%) of computational validation as the ML models improve during active learning, representing a 1000-fold acceleration in discovery. Absorption spectra of promising chromophores from time-dependent density functional theory verify that 2/3 of candidates have the desired excited-state properties. The observation that constituent ligands from our leads have demonstrated interesting optical properties in the literature exemplifies the effectiveness of our construction of a realistic design space and active learning approach.
Collapse
Affiliation(s)
- Chenru Duan
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
- Department
of Chemistry, Massachusetts Institute of
Technology, Cambridge, Massachusetts 02139, United States
| | - Aditya Nandy
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
- Department
of Chemistry, Massachusetts Institute of
Technology, Cambridge, Massachusetts 02139, United States
| | - Gianmarco G. Terrones
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - David W. Kastner
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
- Department
of Biological Engineering, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Heather J. Kulik
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
- Department
of Chemistry, Massachusetts Institute of
Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
44
|
Janesko BG. Projected Hybrid Density Functionals: Method and Application to Core Electron Ionization. J Chem Theory Comput 2023; 19:837-847. [PMID: 36656811 DOI: 10.1021/acs.jctc.2c01023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
This work introduces a new class of hybrid density functional theory (DFT) approximations, which incorporate different fractions of nonlocal exact exchange in predefined states such as core atomic orbitals (AOs). These projected hybrid density functionals are related to range-separated hybrid functionals, which incorporate different fractions of nonlocal exchange at different electron-electron separations. This work derives projected hybrids using the Adiabatic Projection formalism. One projects the electron-electron interaction operator onto the chosen predefined states, introduces the projected operator into the noninteracting Kohn-Sham reference system, and employs a formally exact density functional to model the remaining electron-electron interactions. Projected hybrids, like range-separated hybrids, approximate the partially interacting reference system's ground-state wave function as a single Slater determinant. Projected hybrids are readily implemented into existing density functional codes, requiring only a projection of the one-particle density matrices and exchange operators entering existing routines. This work also presents an application to core electron ionization. Projecting onto core atomic orbitals allows us to introduce additional nonlocal exchange into atomic core regions. This reduces the impact of self-interaction error on computed core electron properties. Benchmark studies are reported for PBE0c70, a core-projected variant of the Perdew-Burke-Ernzerhof global hybrid PBE0, in which the fraction of nonlocal exchange is increased from 25% to 70% in atomic core regions. PBE0c70-predicted core orbital energies accurately recover nonrelativistic core-electron binding energies of second-period elements Li-Ne and third-period elements Na-Ar, without degrading the good performance of PBE0 for atomization energies and valence ionization potentials.
Collapse
Affiliation(s)
- Benjamin G Janesko
- Department of Chemistry & Biochemistry, Texas Christian University, Fort Worth, Texas76129, United States
| |
Collapse
|
45
|
Yamamoto Y, Baruah T, Chang PH, Romero S, Zope RR. Self-consistent implementation of locally scaled self-interaction-correction method. J Chem Phys 2023; 158:064114. [PMID: 36792502 DOI: 10.1063/5.0130436] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Recently proposed local self-interaction correction (LSIC) method [Zope et al., J. Chem. Phys. 151, 214108 (2019)] is a one-electron self-interaction-correction (SIC) method that uses an iso-orbital indicator to apply the SIC at each point in space by scaling the exchange-correlation and Coulomb energy densities. The LSIC method is exact for the one-electron densities, also recovers the uniform electron gas limit of the uncorrected density functional approximation, and reduces to the well-known Perdew-Zunger SIC (PZSIC) method as a special case. This article presents the self-consistent implementation of the LSIC method using the ratio of Weizsäcker and Kohn-Sham kinetic energy densities as an iso-orbital indicator. The atomic forces as well as the forces on the Fermi-Löwdin orbitals are also implemented for the LSIC energy functional. Results show that LSIC with the simplest local spin density functional predicts atomization energies of the AE6 dataset better than some of the most widely used generalized-gradient-approximation (GGA) functional [e.g., Perdew-Burke-Ernzerhof (PBE)] and barrier heights of the BH6 database better than some of the most widely used hybrid functionals (e.g., PBE0 and B3LYP). The LSIC method [a mean absolute error (MAE) of 0.008 Å] predicts bond lengths of a small set of molecules better than the PZSIC-LSDA (MAE 0.042 Å) and LSDA (0.011 Å). This work shows that accurate results can be obtained from the simplest density functional by removing the self-interaction-errors using an appropriately designed SIC method.
Collapse
Affiliation(s)
- Yoh Yamamoto
- Department of Physics, University of Texas at El Paso, El Paso, Texas 79968, USA
| | - Tunna Baruah
- Department of Physics, University of Texas at El Paso, El Paso, Texas 79968, USA
| | - Po-Hao Chang
- Department of Physics, University of Texas at El Paso, El Paso, Texas 79968, USA
| | - Selim Romero
- Department of Physics, University of Texas at El Paso, El Paso, Texas 79968, USA
| | - Rajendra R Zope
- Department of Physics, University of Texas at El Paso, El Paso, Texas 79968, USA
| |
Collapse
|
46
|
Romero S, Baruah T, Zope RR. Spin-state gaps and self-interaction-corrected density functional approximations: Octahedral Fe(II) complexes as case study. J Chem Phys 2023; 158:054305. [PMID: 36754787 DOI: 10.1063/5.0133999] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Accurate prediction of a spin-state energy difference is crucial for understanding the spin crossover phenomena and is very challenging for density functional approximations, especially for local and semi-local approximations due to delocalization errors. Here, we investigate the effect of the self-interaction error removal from the local spin density approximation (LSDA) and Perdew-Burke-Ernzerhof generalized gradient approximation on the spin-state gaps of Fe(II) complexes with various ligands using recently developed locally scaled self-interaction correction (LSIC) by Zope et al. [J. Chem. Phys. 151, 214108 (2019)]. The LSIC method is exact for one-electron density, recovers the uniform electron gas limit of the underlying functional, and approaches the well-known Perdew-Zunger self-interaction correction (PZSIC) as a particular case when the scaling factor is set to unity. Our results, when compared with reference diffusion Monte Carlo results, show that the PZSIC method significantly overestimates spin-state gaps favoring low spin states for all ligands and does not improve upon density functional approximations. The perturbative LSIC-LSDA using PZSIC densities significantly improves the gaps with a mean absolute error of 0.51 eV but slightly overcorrects for the stronger CO ligands. The quasi-self-consistent LSIC-LSDA, such as coupled-cluster single double and perturbative triple [CCSD(T)], gives a correct sign of spin-state gaps for all ligands with a mean absolute error of 0.56 eV, comparable to that of CCSD(T) (0.49 eV).
Collapse
Affiliation(s)
- Selim Romero
- Computational Science Program, The University of Texas at El Paso, El Paso, Texas 79968, USA
| | - Tunna Baruah
- Department of Physics, University of Texas at El Paso, El Paso, Texas 79968, USA
| | - Rajendra R Zope
- Department of Physics, University of Texas at El Paso, El Paso, Texas 79968, USA
| |
Collapse
|
47
|
First-principles calculations of hematite (α-Fe 2O 3) by self-consistent DFT+U+V. iScience 2023; 26:106033. [PMID: 36824287 PMCID: PMC9941207 DOI: 10.1016/j.isci.2023.106033] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/22/2022] [Accepted: 01/18/2023] [Indexed: 01/25/2023] Open
Abstract
Owing to the confined Fe-3d orbitals and self-interaction error of exchange-correlation functionals, approximate DFT fails to describe iron oxides electronic structure and magnetic properties accurately. Hybrid DFT or DFT + U can solve these problems, but the former is expensive, and the latter only considers on-site interactions. Here, we used DFT + U + V, a DFT + U extension including inter-site interactions, to simulate the structural, magnetic, and electronic properties, along with Fe and O K-edge XAS spectra of α-Fe2O3. Two types of atomic orbital projectors were studied, orthogonalized and non-orthogonalized. DFT + U + V improves the description of the structural, magnetic, and electronic properties of α-Fe2O3 compared to approximate DFT. The accuracy of the correction depends on the orbital projector used. DFT + U + V with orthogonalized projectors achieves the best experimental agreement at a fraction of hybrid DFT cost. This work emphasizes the importance of inter-site interactions and the type of atomic orbital projectors used in the theoretical research of α-Fe2O3.
Collapse
|
48
|
Cuierrier E, Roy PO, Wang R, Ernzerhof M. The fourth-order expansion of the exchange hole and neural networks to construct exchange–correlation functionals. J Chem Phys 2022; 157:171103. [DOI: 10.1063/5.0122761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The curvature Q σ of spherically averaged exchange (X) holes ρX, σ(r, u) is one of the crucial variables for the construction of approximations to the exchange–correlation energy of Kohn–Sham theory, the most prominent example being the Becke–Roussel model [A. D. Becke and M. R. Roussel, Phys. Rev. A 39, 3761 (1989)]. Here, we consider the next higher nonzero derivative of the spherically averaged X hole, the fourth-order term T σ. This variable contains information about the nonlocality of the X hole and we employ it to approximate hybrid functionals, eliminating the sometimes demanding calculation of the exact X energy. The new functional is constructed using machine learning; having identified a physical correlation between T σ and the nonlocality of the X hole, we employ a neural network to express this relation. While we only modify the X functional of the Perdew–Burke–Ernzerhof functional [Perdew et al., Phys. Rev. Lett. 77, 3865 (1996)], a significant improvement over this method is achieved.
Collapse
Affiliation(s)
- Etienne Cuierrier
- Département de Chimie, Université de Montréal, C.P. 6128 Succursale A, Montréal, Québec H3C 3J7, Canada
| | - Pierre-Olivier Roy
- Département de Chimie, Université de Montréal, C.P. 6128 Succursale A, Montréal, Québec H3C 3J7, Canada
| | - Rodrigo Wang
- Good Chemistry Company, Vancouver, British Columbia V6E 4B1, Canada
| | - Matthias Ernzerhof
- Département de Chimie, Université de Montréal, C.P. 6128 Succursale A, Montréal, Québec H3C 3J7, Canada
| |
Collapse
|
49
|
Janesko BG. Unification of Perdew-Zunger self-interaction correction, DFT+U, and Rung 3.5 density functionals. J Chem Phys 2022; 157:151101. [PMID: 36272781 DOI: 10.1063/5.0109338] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
This Communication presents a unified derivation of three different approximations used in density functional theory (DFT): the Perdew-Zunger self-interaction correction (PZSIC), the Hubbard correction DFT+U, and the Rung 3.5 density functionals. All three approximations can be derived by introducing electron self-interaction into the Kohn-Sham (KS) reference system of noninteracting electrons. The derivation uses the Adiabatic Projection formalism: one projects the electron-electron interaction operator onto certain states, introduces the projected operator into the reference system, and defines a density functional for the remainder. Projecting onto individual localized KS orbitals recovers our previous derivation of the PZSIC [B. G. Janesko, J. Phys. Chem. Lett. 13, 5698-5702 (2022)]. Projecting onto localized atom-centered orbitals recovers a variant of DFT+U. Projecting onto localized states at each point in space recovers Rung 3.5 approaches. New results include an "atomic state PZSIC" that does not require localizing the KS orbitals, a demonstration that typical Hubbard U parameters reproduce a scaled-down PZSIC, and a Rung 3.5 variant of DFT+U that does not require choosing atom-dependent states.
Collapse
Affiliation(s)
- Benjamin G Janesko
- Department of Chemistry and Biochemistry, Texas Christian University, 2800 S. University Dr., Fort Worth, Texas 76109, USA
| |
Collapse
|
50
|
Grotjahn R, Furche F, Kaupp M. Importance of imposing gauge invariance in time-dependent density functional theory calculations with meta-generalized gradient approximations. J Chem Phys 2022; 157:111102. [PMID: 36137777 DOI: 10.1063/5.0113083] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
It has been known for more than a decade that the gauge variance of the kinetic energy density τ leads to additional terms in the magnetic orbital rotation Hessian used in linear-response time-dependent density functional theory (TDDFT), affecting excitation energies obtained with τ-dependent exchange-correlation functionals. While previous investigations found that a correction scheme based on the paramagnetic current density has a small effect on benchmark results, we report more pronounced effects here, in particular, for the popular M06-2X functional and for some other meta-generalized gradient approximations (mGGAs). In the first part of this communication, this is shown by a reassessment of a set of five Ni(II) complexes for which a previous benchmark study that did not impose gauge invariance has found surprisingly large errors for excitation energies obtained with M06-2X. These errors are more than halved by restoring gauge invariance. The variable importance of imposing gauge invariance for different mGGA-based functionals can be rationalized by the derivative of the mGGA exchange energy integrand with respect to τ. In the second part, a large set of valence excitations in small main-group molecules is analyzed. For M06-2X, several selected n → π* and π→π⊥ * excitations are heavily gauge-dependent with average changes of -0.17 and -0.28 eV, respectively, while π→π‖ * excitations are marginally affected (-0.04 eV). Similar patterns, but of the opposite signs, are found for SCAN0. The results suggest that reevaluation of previous gauge variant TDDFT results based on M06-2X and other mGGA functionals is warranted.
Collapse
Affiliation(s)
- Robin Grotjahn
- Technische Universität Berlin, Institut für Chemie, Theoretische Chemie/Quantenchemie, Sekr. C7, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Filipp Furche
- Department of Chemistry, University of California, Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025, USA
| | - Martin Kaupp
- Technische Universität Berlin, Institut für Chemie, Theoretische Chemie/Quantenchemie, Sekr. C7, Straße des 17. Juni 135, 10623 Berlin, Germany
| |
Collapse
|