1
|
Staeck S, Baumann J, Hönicke P, Wauschkuhn N, Spikermann F, Grötzsch D, Stiel H, Kanngießer B. Investigation of Ti nanostructures via laboratory scanning-free GEXRF. NANOSCALE 2025; 17:3411-3420. [PMID: 39704613 DOI: 10.1039/d4nr02445a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
The ability to characterize periodic nanostructures in the laboratory gains more attention as nanotechnology is widely utilized in a variety of application fields. Scanning-free grazing-emission X-ray fluorescence spectroscopy (GEXRF) is a promising candidate to allow non-destructive, element-sensitive characterization of sample structures down to the nanometer range for process engineering. Adopting a complementary metal-oxide semiconductor (CMOS) detector to work energy-dispersively via single-photon detection, the whole range of emission angles of interest can be recorded at once. In this work, a setup based on a Cr X-ray tube and a CMOS detector is used to investigate two TiO2 nanogratings and a TiO2 layer sample in the tender X-ray range. The measurement results are compared to simulations of sample models based on known sample parameters. The fluorescence emission is simulated using the finite-element method together with a Maxwell-solver. In addition, a reconstruction of the sample model based on the measurement data is conducted to illustrate the feasibility of laboratory scanning-free GEXRF as a technique to non-destructively characterize periodic nanostructures in the tender X-ray range.
Collapse
Affiliation(s)
- Steffen Staeck
- Technical University of Berlin, Hardenbergstraße 36, 10623 Berlin, Germany.
| | - Jonas Baumann
- Technical University of Berlin, Hardenbergstraße 36, 10623 Berlin, Germany.
| | - Philipp Hönicke
- Physikalisch-Technische Bundesanstalt, Abbestraße 2-12, 10587 Berlin, Germany
- Helmholtz-Zentrum Berlin, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
| | - Nils Wauschkuhn
- Physikalisch-Technische Bundesanstalt, Abbestraße 2-12, 10587 Berlin, Germany
| | | | - Daniel Grötzsch
- Technical University of Berlin, Hardenbergstraße 36, 10623 Berlin, Germany.
| | - Holger Stiel
- Max Born Institute, Max-Born-Straße 2A, 12489 Berlin, Germany
| | - Birgit Kanngießer
- Technical University of Berlin, Hardenbergstraße 36, 10623 Berlin, Germany.
| |
Collapse
|
2
|
Rafieerad A, Saleth LR, Khanahmadi S, Amiri A, Alagarsamy KN, Dhingra S. Periodic Table of Immunomodulatory Elements and Derived Two-Dimensional Biomaterials. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2406324. [PMID: 39754328 PMCID: PMC11809427 DOI: 10.1002/advs.202406324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 10/09/2024] [Indexed: 01/06/2025]
Abstract
Periodic table of chemical elements serves as the foundation of material chemistry, impacting human health in many different ways. It contributes to the creation, growth, and manipulation of functional metallic, ceramic, metalloid, polymeric, and carbon-based materials on and near an atomic scale. Recent nanotechnology advancements have revolutionized the field of biomedical engineering to tackle longstanding clinical challenges. The use of nano-biomaterials has gained traction in medicine, specifically in the areas of nano-immunoengineering to treat inflammatory and infectious diseases. Two-dimensional (2D) nanomaterials have been found to possess high bioactive surface area and compatibility with human and mammalian cells at controlled doses. Furthermore, these biomaterials have intrinsic immunomodulatory properties, which is crucial for their application in immuno-nanomedicine. While significant progress has been made in understanding their bioactivity and biocompatibility, the exact immunomodulatory responses and mechanisms of these materials are still being explored. Current work outlines an innovative "immunomodulatory periodic table of elements" beyond the periodic table of life, medicine, and microbial genomics and comprehensively reviews the role of each element in designing immunoengineered 2D biomaterials in a group-wise manner. It recapitulates the most recent advances in immunomodulatory nanomaterials, paving the way for the development of new mono, hybrid, composite, and hetero-structured biomaterials.
Collapse
Affiliation(s)
- Alireza Rafieerad
- Institute of Cardiovascular SciencesSt. Boniface Hospital Albrechtsen Research CentreBiomedical Engineering ProgramDepartment of Physiology and PathophysiologyRady Faculty of Health SciencesUniversity of ManitobaWinnipegManitobaR2H2A6Canada
| | - Leena Regi Saleth
- Institute of Cardiovascular SciencesSt. Boniface Hospital Albrechtsen Research CentreBiomedical Engineering ProgramDepartment of Physiology and PathophysiologyRady Faculty of Health SciencesUniversity of ManitobaWinnipegManitobaR2H2A6Canada
| | - Soofia Khanahmadi
- Institute for Molecular BiosciencesJohann Wolfgang Goethe Universität60438Frankfurt am MainGermany
| | - Ahmad Amiri
- Russell School of Chemical EngineeringThe University of TulsaTulsaOK74104USA
| | - Keshav Narayan Alagarsamy
- Institute of Cardiovascular SciencesSt. Boniface Hospital Albrechtsen Research CentreBiomedical Engineering ProgramDepartment of Physiology and PathophysiologyRady Faculty of Health SciencesUniversity of ManitobaWinnipegManitobaR2H2A6Canada
| | - Sanjiv Dhingra
- Institute of Cardiovascular SciencesSt. Boniface Hospital Albrechtsen Research CentreBiomedical Engineering ProgramDepartment of Physiology and PathophysiologyRady Faculty of Health SciencesUniversity of ManitobaWinnipegManitobaR2H2A6Canada
| |
Collapse
|
3
|
Zhang T, Wang D, Liu J. Periodic Single-Metal Site Catalysts: Creating Homogeneous and Ordered Atomic-Precision Structures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2408259. [PMID: 39149786 DOI: 10.1002/adma.202408259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/26/2024] [Indexed: 08/17/2024]
Abstract
Heterogeneous single-metal-site catalysts (SMSCs), often referred to as single-atom catalysts (SACs), demonstrate promising catalytic activity, selectivity, and stability across a wide spectrum of reactions due to their rationally designed microenvironments encompassing coordination geometry, binding ligands, and electronic configurations. However, the inherent disorderliness of SMSCs at both atomic scale and nanoscale poses challenges in deciphering working principles and establishing the correlations between microenvironments and the catalytic performances of SMSCs. The rearrangement of randomly dispersed single metals into homogeneous and atomic-precisely structured periodic single-metal site catalysts (PSMSCs) not only simplifies the chaos in SMSCs systems but also unveils new opportunities for manipulating catalytic performance and gaining profound insights into reaction mechanisms. Moreover, the synergistic effects of adjacent single metals and the integration effects of periodic single-metal arrangement further broaden the industrial application scope of SMSCs. This perspective offers a comprehensive overview of recent advancements and outlines prospective avenues for research in the design and characterizations of PSMSCs, while also acknowledging the formidable challenges encountered and the promising prospects that lie ahead.
Collapse
Affiliation(s)
- Tianyu Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Junfeng Liu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
4
|
Liu N, Lu Y, Li Z, Zhao H, Yu Q, Huang Y, Yang J, Huang L. Smart Wrinkled Interfaces: Patterning, Morphing, and Coding of Polymer Surfaces by Dynamic Anisotropic Wrinkling. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:18837-18856. [PMID: 39207273 DOI: 10.1021/acs.langmuir.4c02162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
In contrast to traditional static surfaces, smart patterned surfaces with periodical and reversible morphologies offer limitless opportunities for encoding surface functions and properties on demand, facilitating their widespread application as functional building blocks in various devices. Advances in intelligently controlling the macroscopic properties of these smart surfaces have been accomplished through various techniques (such as three-dimensional printing, imprint lithography and femtosecond laser) and responsive materials. In contrast to the sophisticated techniques above, dynamic anisotropic wrinkling, taking advantage of dynamic programmable manipulation of surface wrinkling and its orientation, offers a powerful alternative for fabricating dynamic periodical patterns due to its spontaneous formation, versatility, convenient scale-up fabrication, and sensitivity to various stimuli. This review comprehensively summarizes recent advances in smart patterned surfaces with dynamic oriented wrinkles, covering design principles, fabrication techniques, representative types of physical and chemical stimuli, as well as fine-tuning of wrinkle dimensions and orientation. Finally, advanced applications of these smart patterned surfaces are presented, along with a discussion of current challenges and future prospects in this rapidly evolving field. This review would offer some insights and guidelines for designing and engineering novel stimuli-responsive smart wrinkled surfaces, thereby facilitating their sustainable development and progressing toward commercialization.
Collapse
Affiliation(s)
- Ning Liu
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Yenie Lu
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Ziyue Li
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Hongyang Zhao
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Qingyue Yu
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Yaxin Huang
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Jiakuan Yang
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Liang Huang
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| |
Collapse
|
5
|
Ma M, Qian J, Jiang K, Wang L, Song Y, Zhang W. Molecular-level periodic arrays of long-chain poly(3-hexylthiophene-2,5-diyl) driven by an electric field. NANOSCALE 2024; 16:15995-16002. [PMID: 39045735 DOI: 10.1039/d4nr01900h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Two-dimensional (2D) periodic arrays of conductive polymers represent attractive platforms for wiring functional molecules into the integrated circuits of molecular electronics. However, the large-scale assembly of polymer periodic arrays at the molecular level faces challenges such as curling, twisting, and aggregation. Here, we assembled the periodic arrays of long-chain poly(3-hexylthiophene-2,5-diyl) (P3HT, Mw = 65 k) at the solid-liquid interface by applying an electric field, within which the charged chain segments were aligned. Atomic force microscopy (AFM) imaging revealed that individual P3HT chains assemble into monolayers featuring face-on orientation, extended chain conformation and isolated packing, which is thermodynamically more stable than folded chains in 2D polycrystals. The assembly process is initiated with the formation of disordered clusters and progresses through voltage-dependent nucleation and growth of extended-chain arrays, wherein continuous conformational adjustments along the nucleation pathway exhibit dependence on the cluster size.
Collapse
Affiliation(s)
- Mingze Ma
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China.
| | - Jingyi Qian
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China.
| | - Ke Jiang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China.
| | - Liyan Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China.
| | - Yu Song
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China.
| | - Wenke Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China.
| |
Collapse
|
6
|
Desmons S, Bonin J, Robert M, Bontemps S. Four-electron reduction of CO 2: from formaldehyde and acetal synthesis to complex transformations. Chem Sci 2024:d4sc02888k. [PMID: 39246334 PMCID: PMC11376136 DOI: 10.1039/d4sc02888k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 08/02/2024] [Indexed: 09/10/2024] Open
Abstract
The expansive and dynamic field of the CO2 Reduction Reaction (CO2RR) seeks to harness CO2 as a sustainable carbon source or energy carrier. While significant progress has been made in two, six, and eight-electron reductions of CO2, the four-electron reduction remains understudied. This review fills this gap, comprehensively exploring CO2 reduction into formaldehyde (HCHO) or acetal-type compounds (EOCH2OE, with E = [Si], [B], [Zr], [U], [Y], [Nb], [Ta] or -R) using various CO2RR systems. These encompass (photo)electro-, bio-, and thermal reduction processes with diverse reductants. Formaldehyde, a versatile C1 product, is challenging to synthesize and isolate from the CO2RR. The review also discusses acetal compounds, emphasizing their significance as pathways to formaldehyde with distinct reactivity. Providing an overview of the state of four-electron CO2 reduction, this review highlights achievements, challenges, and the potential of the produced compounds - formaldehyde and acetals - as sustainable sources for valuable product synthesis, including chiral compounds.
Collapse
Affiliation(s)
- Sarah Desmons
- LCC-CNRS, Université de Toulouse, CNRS 205 route de Narbonne 31077 Toulouse Cedex 04 France
| | - Julien Bonin
- Laboratoire d'Electrochimie Moléculaire, Université Paris Cité, CNRS F-75013 Paris France
- Institut Parisien de Chimie Moléculaire, Sorbonne Université, CNRS F-75005 Paris France
| | - Marc Robert
- Laboratoire d'Electrochimie Moléculaire, Université Paris Cité, CNRS F-75013 Paris France
- Institut Parisien de Chimie Moléculaire, Sorbonne Université, CNRS F-75005 Paris France
- Institut Universitaire de France (IUF) F-75005 Paris France
| | - Sébastien Bontemps
- LCC-CNRS, Université de Toulouse, CNRS 205 route de Narbonne 31077 Toulouse Cedex 04 France
| |
Collapse
|
7
|
Guo S, Ma M, Wang Y, Wang J, Jiang Y, Duan R, Lei Z, Wang S, He Y, Liu Z. Spatially Confined Microcells: A Path toward TMD Catalyst Design. Chem Rev 2024; 124:6952-7006. [PMID: 38748433 DOI: 10.1021/acs.chemrev.3c00711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
With the ability to maximize the exposure of nearly all active sites to reactions, two-dimensional transition metal dichalcogenide (TMD) has become a fascinating new class of materials for electrocatalysis. Recently, electrochemical microcells have been developed, and their unique spatial-confined capability enables understanding of catalytic behaviors at a single material level, significantly promoting this field. This Review provides an overview of the recent progress in microcell-based TMD electrocatalyst studies. We first introduced the structural characteristics of TMD materials and discussed their site engineering strategies for electrocatalysis. Later, we comprehensively described two distinct types of microcells: the window-confined on-chip electrochemical microcell (OCEM) and the droplet-confined scanning electrochemical cell microscopy (SECCM). Their setups, working principles, and instrumentation were elucidated in detail, respectively. Furthermore, we summarized recent advances of OCEM and SECCM obtained in TMD catalysts, such as active site identification and imaging, site monitoring, modulation of charge injection and transport, and electrostatic field gating. Finally, we discussed the current challenges and provided personal perspectives on electrochemical microcell research.
Collapse
Affiliation(s)
- Shasha Guo
- School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore
| | - Mingyu Ma
- School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 637616, Singapore
| | - Yuqing Wang
- School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore
| | - Jinbo Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Yubin Jiang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Ruihuan Duan
- School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore
- CINTRA CNRS/NTU/THALES, UMI 3288, Research Techno Plaza, 639798, Singapore
| | - Zhendong Lei
- School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore
| | - Shuangyin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Yongmin He
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Zheng Liu
- School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore
- CINTRA CNRS/NTU/THALES, UMI 3288, Research Techno Plaza, 639798, Singapore
- Institute for Functional Intelligent Materials, National University of Singapore, 117544, Singapore
| |
Collapse
|
8
|
Cao H, Yang E, Kim Y, Zhao Y, Ma W. Biomimetic Chiral Nanomaterials with Selective Catalysis Activity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306979. [PMID: 38561968 PMCID: PMC11187969 DOI: 10.1002/advs.202306979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 01/20/2024] [Indexed: 04/04/2024]
Abstract
Chiral nanomaterials with unique chiral configurations and biocompatible ligands have been booming over the past decade for their interesting chiroptical effect, unique catalytical activity, and related bioapplications. The catalytic activity and selectivity of chiral nanomaterials have emerged as important topics, that can be potentially controlled and optimized by the rational biochemical design of nanomaterials. In this review, chiral nanomaterials synthesis, composition, and catalytic performances of different biohybrid chiral nanomaterials are discussed. The construction of chiral nanomaterials with multiscale chiral geometries along with the underlying principles for enhancing chiroptical responses are highlighted. Various biochemical approaches to regulate the selectivity and catalytic activity of chiral nanomaterials for biocatalysis are also summarized. Furthermore, attention is paid to specific chiral ligands, materials compositions, structure characteristics, and so on for introducing selective catalytic activities of representative chiral nanomaterials, with emphasis on substrates including small molecules, biological macromolecule, and in-site catalysis in living systems. Promising progress has also been emphasized in chiral nanomaterials featuring structural versatility and improved chiral responses that gave rise to unprecedented chances to utilize light for biocatalytic applications. In summary, the challenges, future trends, and prospects associated with chiral nanomaterials for catalysis are comprehensively proposed.
Collapse
Affiliation(s)
- Honghui Cao
- School of Perfume and Aroma TechnologyShanghai Institute of TechnologyNo. 100 Haiquan RoadShanghai201418China
- School of Food Science and Technology, State Key Laboratory of Food Science and ResourcesJiangnan UniversityWuxiJiangsu214122China
| | - En Yang
- School of Food Science and Technology, State Key Laboratory of Food Science and ResourcesJiangnan UniversityWuxiJiangsu214122China
- Key Laboratory of Synthetic and Biological ColloidsMinistry of Education, School of Chemical and Material EngineeringJiangnan UniversityWuxiJiangsu214122China
| | - Yoonseob Kim
- Department of Chemical and Biological EngineeringThe Hong Kong University of Science and TechnologyClear Water BayHong Kong SAR999077China
| | - Yuan Zhao
- Key Laboratory of Synthetic and Biological ColloidsMinistry of Education, School of Chemical and Material EngineeringJiangnan UniversityWuxiJiangsu214122China
| | - Wei Ma
- School of Food Science and Technology, State Key Laboratory of Food Science and ResourcesJiangnan UniversityWuxiJiangsu214122China
| |
Collapse
|
9
|
Baig SM, Ishii S, Abe H. Sub-50 nm patterning of alloy thin films via nanophase separation for hydrogen gas sensing. NANOSCALE ADVANCES 2024; 6:2582-2585. [PMID: 38752141 PMCID: PMC11093267 DOI: 10.1039/d4na00071d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/10/2024] [Indexed: 05/18/2024]
Abstract
A novel patterning method achieves two-dimensional nano-patterning of metal nanofibers by depositing a platinum-cerium alloy film on a silicon wafer and inducing phase separation in an oxygen-carbon monoxide atmosphere. The resulting nano-patterned thin film, Pt#CeO2/Si, consists of platinum and cerium oxide with an average pattern width of 50 nm and exhibits potential as a hydrogen sensor with sensitive electrical responses to hydrogen ad/desorption. The patterning method introduced herein addresses the challenge of wavelength limitations in traditional optical lithography, offering a scalable approach for sub-50 nm patterns, which are crucial for advanced sensor and electronic applications.
Collapse
Affiliation(s)
- Sherjeel Mahmood Baig
- National Institute for Materials Science 1-1 Namiki 305-0044 Tsukuba Ibaraki Japan
- Graduate School of Science and Technology, Saitama University 255 Shimookubo Saitama 338-8570 Japan
| | - Satoshi Ishii
- National Institute for Materials Science 1-1 Namiki 305-0044 Tsukuba Ibaraki Japan
| | - Hideki Abe
- National Institute for Materials Science 1-1 Namiki 305-0044 Tsukuba Ibaraki Japan
- Graduate School of Science and Technology, Saitama University 255 Shimookubo Saitama 338-8570 Japan
| |
Collapse
|
10
|
Lu X, Li J, Zhang Y, Zhang L, Chen H, Zou Y, Zeng H. Template-Confined Oriented Perovskite Nanowire Arrays Enable Polarization Detection and Imaging. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38709639 DOI: 10.1021/acsami.4c04455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Polarized light detection can effectively identify the difference between the polarization information on the target and the background, which is of great significance for detection in complex natural environments and/or extreme weather. Generally, polarized light detection inevitably relies on anisotropic structures of photodetector devices, while organic-inorganic hybrid perovskites are ideal for anisotropic patterning due to their simple and efficient preparation by solution method. Compared to patterned thin films, patterned arrays of aligned one-dimensional (1D) perovskite nanowires (PNWAs) have fewer grain boundaries and lower defect densities, making them well suited for high-performance polarization-sensitive photodetectors. Here, we fabricated PNWAs crystallographically aligned with variable line widths and alignment densities employing CD-ROM and DVD-ROM grating pattern template-confined growth (TCG) methods. The photodetectors constructed from MAPbI3 PNWAs achieved responsivity of 35.01 A/W, detectivity of 6.85 × 1013 Jones, and fast response with a rise time of 172 μs and fall time of 114 μs. They were successfully applied to high-performance polarization detection with a polarization ratio of 1.81, potentially applicable in polarized light detection systems.
Collapse
Affiliation(s)
- Xingyu Lu
- Key Laboratory of Advanced Display Materials and Devices, Ministry of Industry and Information Technology, Institute of Optoelectronics & Nanomaterials, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Junyu Li
- Key Laboratory of Advanced Display Materials and Devices, Ministry of Industry and Information Technology, Institute of Optoelectronics & Nanomaterials, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yichi Zhang
- Key Laboratory of Advanced Display Materials and Devices, Ministry of Industry and Information Technology, Institute of Optoelectronics & Nanomaterials, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Li Zhang
- Key Laboratory of Advanced Display Materials and Devices, Ministry of Industry and Information Technology, Institute of Optoelectronics & Nanomaterials, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Huanyang Chen
- Key Laboratory of Advanced Display Materials and Devices, Ministry of Industry and Information Technology, Institute of Optoelectronics & Nanomaterials, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yousheng Zou
- Key Laboratory of Advanced Display Materials and Devices, Ministry of Industry and Information Technology, Institute of Optoelectronics & Nanomaterials, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Haibo Zeng
- Key Laboratory of Advanced Display Materials and Devices, Ministry of Industry and Information Technology, Institute of Optoelectronics & Nanomaterials, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| |
Collapse
|
11
|
Yin H, Sun Z, Liu K, Wibowo AA, Langley J, Zhang C, Saji SE, Kremer F, Golberg D, Nguyen HT, Cox N, Yin Z. Defect engineering enhances plasmonic-hot electrons exploitation for CO 2 reduction over polymeric catalysts. NANOSCALE HORIZONS 2023; 8:1695-1699. [PMID: 37698845 DOI: 10.1039/d3nh00348e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
Defect sites present on the surface of catalysts serve a crucial role in different catalytic processes. Herein, we have investigated defect engineering within a hybrid system composed of "soft" polymer catalysts and "hard" metal nanoparticles, employing the disparity in their thermal expansions. Electron paramagnetic resonance, X-ray photoelectron spectroscopy, and mechanistic studies together reveal the formation of new abundant defects and their synergistic integrability with plasmonic enhancement within the hybrid catalyst. These active defects, co-localized with plasmonic Ag nanoparticles, promote the utilization efficiency of hot electrons generated by local plasmons, thereby enhancing the CO2 photoreduction activity while maintaining the high catalytic selectivity.
Collapse
Affiliation(s)
- Hang Yin
- Research School of Chemistry, Australian National University, ACT 2601, Australia.
- Institute for Climate, Energy & Disaster Solutions, Australian National University, ACT 2601, Australia
| | - Zhehao Sun
- Research School of Chemistry, Australian National University, ACT 2601, Australia.
| | - Kaili Liu
- Research School of Chemistry, Australian National University, ACT 2601, Australia.
| | - Ary Anggara Wibowo
- School of Engineering, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Julien Langley
- Research School of Chemistry, Australian National University, ACT 2601, Australia.
| | - Chao Zhang
- Centre for Materials Science and School of Chemistry and Physics, Faculty of Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, Queensland 4000, Australia
| | - Sandra E Saji
- Research School of Chemistry, Australian National University, ACT 2601, Australia.
| | - Felipe Kremer
- Centre for Advanced Microscopy, Australian National University, Canberra, ACT 2601, Australia
| | - Dmitri Golberg
- Centre for Materials Science and School of Chemistry and Physics, Faculty of Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, Queensland 4000, Australia
| | - Hieu T Nguyen
- School of Engineering, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Nicholas Cox
- Research School of Chemistry, Australian National University, ACT 2601, Australia.
| | - Zongyou Yin
- Research School of Chemistry, Australian National University, ACT 2601, Australia.
- Institute for Climate, Energy & Disaster Solutions, Australian National University, ACT 2601, Australia
| |
Collapse
|
12
|
Wu D, Wang Y, Xiao J, Hu J, Zhao X, Gao Y, Yuan J, Wang W. Surface lattice resonances enhanced directional amplified spontaneous emission on plasmonic honeycomb nanocone array. Phys Chem Chem Phys 2023; 25:26847-26852. [PMID: 37782475 DOI: 10.1039/d3cp03718e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Plasmonic arrays have emerged as a promising platform for investigating light-matter interactions enhanced by surface lattice resonance (SLR) at the nanoscale, which exhibit superior properties in localized field enhancement, narrow linewidth, and effective radiation loss suppression. In this study, an Al nanocone array in a honeycomb arrangement served as an optical cavity with a tip effect to realize the directional and polarized amplified spontaneous emission (ASE) of R6G. Based on the optical feedback between the degenerated SLR mode of high local density of states (LDOS) and the emission of gain media, 140-fold enhanced ASE was observed at an emission angle of 25° under TM polarization when the pump power density exceeded the threshold of 197.8 W cm-2. Moreover, polarization-resolved iso-frequency images indicated that a specific polarization dependence of ASE was modulated by the SLR mode. This study clarifies the interaction between the gain media and plasmonic system, which is beneficial for the generation of nanolasing with directional emission and lays a foundation for the plasmonic device.
Collapse
Affiliation(s)
- Dongda Wu
- College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin 150001, China.
- Qingdao Innovation and Development Center of Harbin Engineering University, Harbin Engineering University, Qingdao 266500, China
| | - Yi Wang
- College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin 150001, China.
- Qingdao Innovation and Development Center of Harbin Engineering University, Harbin Engineering University, Qingdao 266500, China
| | - Jiamin Xiao
- Qingdao Innovation and Development Center of Harbin Engineering University, Harbin Engineering University, Qingdao 266500, China
| | - Jiang Hu
- Qingdao Innovation and Development Center of Harbin Engineering University, Harbin Engineering University, Qingdao 266500, China
| | - Xuchao Zhao
- Qingdao Innovation and Development Center of Harbin Engineering University, Harbin Engineering University, Qingdao 266500, China
| | - Yuhao Gao
- Qingdao Innovation and Development Center of Harbin Engineering University, Harbin Engineering University, Qingdao 266500, China
| | - Jiazhi Yuan
- Qingdao Innovation and Development Center of Harbin Engineering University, Harbin Engineering University, Qingdao 266500, China
| | - Wenxin Wang
- College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin 150001, China.
- Qingdao Innovation and Development Center of Harbin Engineering University, Harbin Engineering University, Qingdao 266500, China
| |
Collapse
|
13
|
Gorshkov VN, Stretovych MO, Semeniuk VF, Kruglenko MP, Semeniuk NI, Styopkin VI, Gabovich AM, Boiger GK. Hierarchical Structuring of Black Silicon Wafers by Ion-Flow-Stimulated Roughening Transition: Fundamentals and Applications for Photovoltaics. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2715. [PMID: 37836356 PMCID: PMC10574651 DOI: 10.3390/nano13192715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/27/2023] [Accepted: 10/02/2023] [Indexed: 10/15/2023]
Abstract
Ion-flow-stimulated roughening transition is a phenomenon that may prove useful in the hierarchical structuring of nanostructures. In this work, we have investigated theoretically and experimentally the surface texturing of single-crystal and multi-crystalline silicon wafers irradiated using ion-beam flows. In contrast to previous studies, ions had relatively low energies, whereas flow densities were high enough to induce a quasi-liquid state in the upper silicon layers. The resulting surface modifications reduced the wafer light reflectance to values characteristic of black silicon, widely used in solar energetics. Features of nanostructures on different faces of silicon single crystals were studied numerically based on the mesoscopic Monte Carlo model. We established that the formation of nano-pyramids, ridges, and twisting dune-like structures is due to the stimulated roughening transition effect. The aforementioned variety of modified surface morphologies arises due to the fact that the effects of stimulated surface diffusion of atoms and re-deposition of free atoms on the wafer surface from the near-surface region are manifested to different degrees on different Si faces. It is these two factors that determine the selection of the allowable "trajectories" (evolution paths) of the thermodynamic system along which its Helmholtz free energy, F, decreases, concomitant with an increase in the surface area of the wafer and the corresponding changes in its internal energy, U (dU>0), and entropy, S (dS>0), so that dF=dU - TdS<0, where T is the absolute temperature. The basic theoretical concepts developed were confirmed in experimental studies, the results of which showed that our method could produce, abundantly, black silicon wafers in an environmentally friendly manner compared to traditional chemical etching.
Collapse
Affiliation(s)
- Vyacheslav N. Gorshkov
- Igor Sikorsky Kyiv Polytechnic Institute, National Technical University of Ukraine, Prospect Beresteiskyi, 37, 03056 Kyiv, Ukraine;
- G.V. Kurdyumov Institute for Metal Physics, National Academy of Sciences of Ukraine, 36 Academician Vernadsky Boulevard, 03142 Kyiv, Ukraine
- Department of Mechanical and Aerospace Engineering, University of Liverpool, Liverpool L69 3GH, UK
| | - Mykola O. Stretovych
- Igor Sikorsky Kyiv Polytechnic Institute, National Technical University of Ukraine, Prospect Beresteiskyi, 37, 03056 Kyiv, Ukraine;
| | - Valerii F. Semeniuk
- Institute of Physics of the Ukrainian National Academy of Sciences, Nauka Avenue, 46, 03028 Kyiv, Ukraine; (V.F.S.); (M.P.K.); (V.I.S.); (A.M.G.)
- GreSem Innovation LLC, Vyzvolyteliv Avenue, 13, 02660 Kyiv, Ukraine;
| | - Mikhail P. Kruglenko
- Institute of Physics of the Ukrainian National Academy of Sciences, Nauka Avenue, 46, 03028 Kyiv, Ukraine; (V.F.S.); (M.P.K.); (V.I.S.); (A.M.G.)
- GreSem Innovation LLC, Vyzvolyteliv Avenue, 13, 02660 Kyiv, Ukraine;
| | | | - Victor I. Styopkin
- Institute of Physics of the Ukrainian National Academy of Sciences, Nauka Avenue, 46, 03028 Kyiv, Ukraine; (V.F.S.); (M.P.K.); (V.I.S.); (A.M.G.)
| | - Alexander M. Gabovich
- Institute of Physics of the Ukrainian National Academy of Sciences, Nauka Avenue, 46, 03028 Kyiv, Ukraine; (V.F.S.); (M.P.K.); (V.I.S.); (A.M.G.)
| | - Gernot K. Boiger
- ICP Institute of Computational Physics, ZHAW Zürich University of Applied Sciences, Wildbachstrasse 21, CH-8401 Winterthur, Switzerland
| |
Collapse
|
14
|
Yang F, Hu P, Yang FF, Chen B, Yin F, Hao K, Sun R, Gao L, Sun Z, Wang K, Yin Z. CNTs Bridged Basal-Plane-Active 2H-MoS 2 Nanosheets for Efficient Robust Electrocatalysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301468. [PMID: 37140080 DOI: 10.1002/smll.202301468] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/10/2023] [Indexed: 05/05/2023]
Abstract
2D 2H-phase MoS2 is promising for electrocatalytic applications because of its stable phase, rich edge sites, and large surface area. However, the pristine low-conductive 2H-MoS2 suffers from limited electron transfer and surface activity, which become worse after their highly likely aggregation/stacking and self-curling during applications. In this work, these issues are overcome by conformally attaching the intercalation-detonation-exfoliated, surface S-vacancy-rich 2H-MoS2 onto robust conductive carbon nanotubes (CNTs), which electrically bridge bulk electrode and local MoS2 catalysts. The optimized MoS2 /CNTs nanojunctions exhibit outstanding stable electroactivity (close to commercial Pt/C): a polarization overpotential of 79 mV at the current density of 10 mA cm-2 and the Tafel slope of 33.5 mV dec-1 . Theoretical calculations unveil the metalized interfacial electronic structure of MoS2 /CNTs nanojunctions, enhancing defective-MoS2 surface activity and local conductivity. This work provides guidance on rational design for advanced multifaceted 2D catalysts combined with robust bridging conductors to accelerate energy technology development.
Collapse
Affiliation(s)
- Fan Yang
- State Local Joint Engineering Research Center for Functional Materials Processing, School of Metallurgy Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi, 710055, P. R. China
| | - Ping Hu
- State Local Joint Engineering Research Center for Functional Materials Processing, School of Metallurgy Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi, 710055, P. R. China
| | - Fairy Fan Yang
- State Local Joint Engineering Research Center for Functional Materials Processing, School of Metallurgy Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi, 710055, P. R. China
| | - Bo Chen
- State Local Joint Engineering Research Center for Functional Materials Processing, School of Metallurgy Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi, 710055, P. R. China
| | - Fei Yin
- State Local Joint Engineering Research Center for Functional Materials Processing, School of Metallurgy Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi, 710055, P. R. China
| | - Ke Hao
- State Local Joint Engineering Research Center for Functional Materials Processing, School of Metallurgy Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi, 710055, P. R. China
| | - Ruiyan Sun
- State Local Joint Engineering Research Center for Functional Materials Processing, School of Metallurgy Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi, 710055, P. R. China
| | - Lili Gao
- State Local Joint Engineering Research Center for Functional Materials Processing, School of Metallurgy Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi, 710055, P. R. China
| | - Zhehao Sun
- Research School of Chemistry, The Australian National University, Canberra, ACT, 2601, Australia
| | - Kuaishe Wang
- State Local Joint Engineering Research Center for Functional Materials Processing, School of Metallurgy Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi, 710055, P. R. China
| | - Zongyou Yin
- Research School of Chemistry, The Australian National University, Canberra, ACT, 2601, Australia
| |
Collapse
|
15
|
Liu N, Sun Q, Yang Z, Shan L, Wang Z, Li H. Wrinkled Interfaces: Taking Advantage of Anisotropic Wrinkling to Periodically Pattern Polymer Surfaces. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207210. [PMID: 36775851 PMCID: PMC10131883 DOI: 10.1002/advs.202207210] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Indexed: 06/18/2023]
Abstract
Periodically patterned surfaces can cause special surface properties and are employed as functional building blocks in many devices, yet remaining challenges in fabrication. Advancements in fabricating structured polymer surfaces for obtaining periodic patterns are accomplished by adopting "top-down" strategies based on self-assembly or physico-chemical growth of atoms, molecules, or particles or "bottom-up" strategies ranging from traditional micromolding (embossing) or micro/nanoimprinting to novel laser-induced periodic surface structure, soft lithography, or direct laser interference patterning among others. Thus, technological advances directly promote higher resolution capabilities. Contrasted with the above techniques requiring highly sophisticated tools, surface instabilities taking advantage of the intrinsic properties of polymers induce surface wrinkling in order to fabricate periodically oriented wrinkled patterns. Such abundant and elaborate patterns are obtained as a result of self-organizing processes that are rather difficult if not impossible to fabricate through conventional patterning techniques. Focusing on oriented wrinkles, this review thoroughly describes the formation mechanisms and fabrication approaches for oriented wrinkles, as well as their fine-tuning in the wavelength, amplitude, and orientation control. Finally, the major applications in which oriented wrinkled interfaces are already in use or may be prospective in the near future are overviewed.
Collapse
Affiliation(s)
- Ning Liu
- National‐Local Joint Engineering Laboratory for Energy Conservation of Chemical Process Integration and Resources UtilizationSchool of Chemical Engineering and TechnologyHebei University of TechnologyTianjin300130China
| | - Qichao Sun
- National‐Local Joint Engineering Laboratory for Energy Conservation of Chemical Process Integration and Resources UtilizationSchool of Chemical Engineering and TechnologyHebei University of TechnologyTianjin300130China
| | - Zhensheng Yang
- National‐Local Joint Engineering Laboratory for Energy Conservation of Chemical Process Integration and Resources UtilizationSchool of Chemical Engineering and TechnologyHebei University of TechnologyTianjin300130China
| | - Linna Shan
- National‐Local Joint Engineering Laboratory for Energy Conservation of Chemical Process Integration and Resources UtilizationSchool of Chemical Engineering and TechnologyHebei University of TechnologyTianjin300130China
| | - Zhiying Wang
- National‐Local Joint Engineering Laboratory for Energy Conservation of Chemical Process Integration and Resources UtilizationSchool of Chemical Engineering and TechnologyHebei University of TechnologyTianjin300130China
| | - Hao Li
- National‐Local Joint Engineering Laboratory for Energy Conservation of Chemical Process Integration and Resources UtilizationSchool of Chemical Engineering and TechnologyHebei University of TechnologyTianjin300130China
| |
Collapse
|
16
|
Wu D, Wang Y, Liu Y, La J, He S, Lv F, Wang W. Bloch-Surface Plasmon Polariton Enhanced Amplified and Directional Spontaneous Emission from Plasmonic Hexagonal Nanohole Array. ACS APPLIED MATERIALS & INTERFACES 2023; 15:16198-16203. [PMID: 36920178 DOI: 10.1021/acsami.2c22139] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The light-matter interactions at nanoscale can be enhanced by Bloch-surface plasmon polariton (Bloch-SPP) on the plasmonic lattice. An Ag nanohole array in hexagonal arrangement served as an optical cavity to realize the directional and polarized amplified spontaneous emission (ASE) of R6G. A 100-fold enhanced ASE was observed at 15° emission angle under TM polarization when the pump power density exceeded the threshold of 198 W/cm2 based on the degenerated high state density modes. Moreover, a specific polarization dependence of ASE was modulated by the Bloch-SPP modes, and the degree of polarization was enhanced from 1.3 to 2.1 when the pump power density exceeded the threshold of ASE. This work clarifies the interaction between the gain media and plasmonic systems, which lays a foundation for the plasmonic device designing.
Collapse
Affiliation(s)
- Dongda Wu
- College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin 150001, P. R. China
- Qingdao Innovation and Development Center of Harbin Engineering University, Harbin Engineering University, 266500 Qingdao, P. R. China
| | - Yi Wang
- College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin 150001, P. R. China
- Qingdao Innovation and Development Center of Harbin Engineering University, Harbin Engineering University, 266500 Qingdao, P. R. China
| | - Yujun Liu
- College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin 150001, P. R. China
| | - Junqiao La
- College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin 150001, P. R. China
- Qingdao Innovation and Development Center of Harbin Engineering University, Harbin Engineering University, 266500 Qingdao, P. R. China
| | - Shijia He
- College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin 150001, P. R. China
- Qingdao Innovation and Development Center of Harbin Engineering University, Harbin Engineering University, 266500 Qingdao, P. R. China
| | - Fanzhou Lv
- College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin 150001, P. R. China
| | - Wenxin Wang
- College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin 150001, P. R. China
- Qingdao Innovation and Development Center of Harbin Engineering University, Harbin Engineering University, 266500 Qingdao, P. R. China
| |
Collapse
|
17
|
Xing F, Ji G, Li Z, Zhong W, Wang F, Liu Z, Xin W, Tian J. Preparation, properties and applications of two-dimensional superlattices. MATERIALS HORIZONS 2023; 10:722-744. [PMID: 36562255 DOI: 10.1039/d2mh01206e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
As a combination concept of a 2D material and a superlattice, two-dimensional superlattices (2DSs) have attracted increasing attention recently. The natural advantages of 2D materials in their properties, dimension, diversity and compatibility, and their gradually improved technologies for preparation and device fabrication serve as solid foundations for the development of 2DSs. Compared with the existing 2D materials and even their heterostructures, 2DSs relate to more materials and elaborate architectures, leading to novel systems with more degrees of freedom to modulate material properties at the nanoscale. Here, three typical types of 2DSs, including the component, strain-induced and moiré superlattices, are reviewed. The preparation methods, properties and state-of-the-art applications of each type are summarized. An outlook of the challenges and future developments is also presented. We hope that this work can provide a reference for the development of 2DS-related research.
Collapse
Affiliation(s)
- Fei Xing
- School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo, 255049, China
| | - Guangmin Ji
- School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo, 255049, China
| | - Zongwen Li
- School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo, 255049, China
| | - Weiheng Zhong
- Key Laboratory of UV-Emitting Materials and Technology, Ministry of Education, Northeast Normal University, Changchun, 130024, China.
| | - Feiyue Wang
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Zhibo Liu
- Key Laboratory of Weak Light Nonlinear Photonics, Ministry of Education, Teda Applied Physics Institute and School of Physics, Nankai University, Tianjin, 300071, China.
| | - Wei Xin
- Key Laboratory of UV-Emitting Materials and Technology, Ministry of Education, Northeast Normal University, Changchun, 130024, China.
| | - Jianguo Tian
- Key Laboratory of Weak Light Nonlinear Photonics, Ministry of Education, Teda Applied Physics Institute and School of Physics, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
18
|
Zhang Z, Liu P, Song Y, Hou Y, Xu B, Liao T, Zhang H, Guo J, Sun Z. Heterostructure Engineering of 2D Superlattice Materials for Electrocatalysis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2204297. [PMID: 36266983 PMCID: PMC9762311 DOI: 10.1002/advs.202204297] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Exploring low-cost and high-efficient electrocatalyst is an exigent task in developing novel sustainable energy conversion systems, such as fuel cells and electrocatalytic fuel generations. 2D materials, specifically 2D superlattice materials focused here, featured highly accessible active areas, high density of active sites, and high compatibility with property-complementary materials to form heterostructures with desired synergetic effects, have demonstrated to be promising electrocatalysts for boosting the performance of sustainable energy conversion and storage devices. Nevertheless, the reaction kinetics, and in particular, the functional mechanisms of the 2D superlattice-based catalysts yet remain ambiguous. In this review, based on the recent progress of 2D superlattice materials in electrocatalysis applications, the rational design and fabrication of 2D superlattices are first summarized and the application of 2D superlattices in electrocatalysis is then specifically discussed. Finally, perspectives on the current challenges and the strategies for the future design of 2D superlattice materials are outlined. This review attempts to establish an intrinsic correlation between the 2D superlattice heterostructures and the catalytic properties, so as to provide some insights into developing high-performance electrocatalysts for next-generation sustainable energy conversion and storage.
Collapse
Affiliation(s)
- Zhen Zhang
- Key Laboratory of Interface Science and Engineering in Advanced MaterialsMinistry of EducationTaiyuan University of TechnologyTaiyuan030024P. R. China
| | - Peizhi Liu
- Key Laboratory of Interface Science and Engineering in Advanced MaterialsMinistry of EducationTaiyuan University of TechnologyTaiyuan030024P. R. China
| | - Yanhui Song
- Key Laboratory of Interface Science and Engineering in Advanced MaterialsMinistry of EducationTaiyuan University of TechnologyTaiyuan030024P. R. China
| | - Ying Hou
- Key Laboratory of Interface Science and Engineering in Advanced MaterialsMinistry of EducationTaiyuan University of TechnologyTaiyuan030024P. R. China
| | - Bingshe Xu
- Key Laboratory of Interface Science and Engineering in Advanced MaterialsMinistry of EducationTaiyuan University of TechnologyTaiyuan030024P. R. China
- Materials Institute of Atomic and Molecular ScienceShaanxi University of Science & TechnologyXi'an710021P. R. China
| | - Ting Liao
- School of MechanicalMedical and Process EngineeringQueensland University of TechnologyBrisbaneQLD4000Australia
| | - Haixia Zhang
- Key Laboratory of Interface Science and Engineering in Advanced MaterialsMinistry of EducationTaiyuan University of TechnologyTaiyuan030024P. R. China
| | - Junjie Guo
- Key Laboratory of Interface Science and Engineering in Advanced MaterialsMinistry of EducationTaiyuan University of TechnologyTaiyuan030024P. R. China
| | - Ziqi Sun
- School of Chemistry and PhysicsQueensland University of TechnologyBrisbaneQLD4000Australia
| |
Collapse
|
19
|
Sharma S, Kumari P, Thakur P, Brar GS, Bouqellah NA, Hesham AEL. Synthesis and characterization of Ni 0.5Al 0.5Fe 2O 4 nanoparticles for potent antifungal activity against dry rot of ginger (Fusarium oxysporum). Sci Rep 2022; 12:20092. [PMID: 36418392 PMCID: PMC9684562 DOI: 10.1038/s41598-022-22620-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 10/17/2022] [Indexed: 11/24/2022] Open
Abstract
Current study signifies the use of nanoparticles as alternative in plant disease management to avoid harmful effect of pesticide and fungicide residue. Synthesis of nanoparticles (Ni0.5Al0.5Fe2O4) by hydrothermal method and studied their X-ray diffraction analysis (XRD), Raman spectra, and UV spectra and further successfully evaluated for antifungal activity against a soil and seed borne pathogenic fungus (Fusarium oxysporum).Among various pests, fungal pathogens are the main cause of crop destruction and we developed nanoparticles (Ni0.5Al0.5Fe2O4) which is successfully evaluated for antimycotic activity against dry rot (F. oxysporum) of ginger which causes 50-70% losses in the ginger plant. In vitro and in vivo analysis designated that the nanoparticles (Ni0.5Al0.5Fe2O4) has shown an excellent antifungal activity against F. oxysporum at 0.5 mg/ml concentration. Similarly, no disease incidence was recorded when Ni0.5Al0.5Fe2O4 nanoparticles used at 0.5 mg/ml concentration under in vivo conditions. In plants various environmental stresses (biotic and abiotic) leads to excessive production of reactive oxygen species (ROS) causing progressive oxidative damage and ultimately leads to cell death. The role of ROS in nanoparticles (Ni0.5Al0.5Fe2O4) represents by reduction in the growth inhibition of F. oxysporum. We speculated in light of these results that the cytotoxic effect of Ni0.5Al0.5Fe2O4 nanoparticles on F. oxysporum may be mediated through ROS. We can suggest the role of nanoparticles (Ni0.5Al0.5Fe2O4) gives a promising result as a fungicidal activity and could be a novel family of future new generation fungicide.
Collapse
Affiliation(s)
- Sushma Sharma
- Dr Khem Singh Gill Akal College of Agriculture, Eternal University, H.P., Baru Sahib, Sirmour, India
| | - Poonam Kumari
- Akal College of Basic Science, Eternal University, H.P., Baru Sahib, Sirmour, India.
| | - Priyanka Thakur
- Dr Khem Singh Gill Akal College of Agriculture, Eternal University, H.P., Baru Sahib, Sirmour, India
| | - Gaganpreet Singh Brar
- Dr Yashwant, Singh Parmar University of Horticulture and Forestry, H.P., Nauni, Solan, India
| | - Nahla A Bouqellah
- Science College, Biology Department, Taibah University, Al-Madinah Al-Munawarh, 42317-8599, Saudi Arabia
| | - Abd El-Latif Hesham
- Department of Genetics, Faculty of Agriculture, Beni-Suef University, 62521, Beni-Suef, Egypt.
| |
Collapse
|
20
|
Wang L, Saji SE, Wu L, Wang Z, Chen Z, Du Y, Yu XF, Zhao H, Yin Z. Emerging Synthesis Strategies of 2D MOFs for Electrical Devices and Integrated Circuits. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2201642. [PMID: 35843870 DOI: 10.1002/smll.202201642] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Indexed: 06/15/2023]
Abstract
The development of advanced electronic devices is boosting many aspects of modern technology and industry. The ever-increasing demand for advanced electrical devices and integrated circuits calls for the design of novel materials, with superior properties for the improvement of working performance. In this review, a detailed overview of the synthesis strategies of 2D metal organic frameworks (MOFs) acquiring growing attention is presented, as a basis for expansion of novel key materials in electrical devices and integrated circuits. A framework of controllable synthesis routes to be implanted in the synthesis strategies of 2D materials and MOFs is described. In short, the synthesis methods of 2D MOFs are summarized and discussed in depth followed by the illustrations of promising applications relating to various electrical devices and integrated circuits. It is concluded by outlining how 2D MOFs can be synthesized in a simpler, highly efficient, low-cost, and more environmentally friendly way which can open up their applicable opportunities as key materials in advanced electrical devices and integrated circuits, enabling their use in broad aspects of the society.
Collapse
Affiliation(s)
- Linjuan Wang
- Materials Interfaces Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, P. R. China
| | - Sandra Elizabeth Saji
- Research School of Chemistry, Australian National University, Acton, ACT, 2601, Australia
| | - Lingjun Wu
- Materials Interfaces Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, P. R. China
| | - Zixuan Wang
- Materials Interfaces Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, P. R. China
| | - Zijian Chen
- Materials Interfaces Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, P. R. China
| | - Yaping Du
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin, 300350, P. R. China
| | - Xue-Feng Yu
- Materials Interfaces Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, P. R. China
| | - Haitao Zhao
- Materials Interfaces Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, P. R. China
| | - Zongyou Yin
- Research School of Chemistry, Australian National University, Acton, ACT, 2601, Australia
| |
Collapse
|
21
|
Shao D, Moorthy S, Peng P, Tang WJ, Shi L, Wang ZJ, Wei XQ, Singh SK. A Single‐Ion Magnet Tape with Five‐Coordinate Cobalt(II) Centers. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202200354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Dong Shao
- Huanggang Normal University chemistry Xianggang Road 147 438000 Huanggang CHINA
| | - Shruti Moorthy
- Indian Institute of Technology Hyderabad Chemistry INDIA
| | - Peng Peng
- Huanggang Normal University Chemistry CHINA
| | | | - Le Shi
- Jagiellonian University in Krakow: Uniwersytet Jagiellonski w Krakowie Chemistry POLAND
| | | | | | | |
Collapse
|
22
|
Kirubasankar B, Won YS, Adofo LA, Choi SH, Kim SM, Kim KK. Atomic and structural modifications of two-dimensional transition metal dichalcogenides for various advanced applications. Chem Sci 2022; 13:7707-7738. [PMID: 35865881 PMCID: PMC9258346 DOI: 10.1039/d2sc01398c] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/18/2022] [Indexed: 12/14/2022] Open
Abstract
Two-dimensional (2D) transition metal dichalcogenides (TMDs) and their heterostructures have attracted significant interest in both academia and industry because of their unusual physical and chemical properties. They offer numerous applications, such as electronic, optoelectronic, and spintronic devices, in addition to energy storage and conversion. Atomic and structural modifications of van der Waals layered materials are required to achieve unique and versatile properties for advanced applications. This review presents a discussion on the atomic-scale and structural modifications of 2D TMDs and their heterostructures via post-treatment. Atomic-scale modifications such as vacancy generation, substitutional doping, functionalization and repair of 2D TMDs and structural modifications including phase transitions and construction of heterostructures are discussed. Such modifications on the physical and chemical properties of 2D TMDs enable the development of various advanced applications including electronic and optoelectronic devices, sensing, catalysis, nanogenerators, and memory and neuromorphic devices. Finally, the challenges and prospects of various post-treatment techniques and related future advanced applications are addressed.
Collapse
Affiliation(s)
- Balakrishnan Kirubasankar
- Department of Energy Science, Sungkyunkwan University Suwon 16419 South Korea
- Department of Chemistry, Sookmyung Women's University Seoul 14072 South Korea
| | - Yo Seob Won
- Department of Energy Science, Sungkyunkwan University Suwon 16419 South Korea
- Center for Integrated Nanostructure Physics (CINAP), Institute for Basic Science (IBS), Sungkyunkwan University Suwon 16419 South Korea
| | - Laud Anim Adofo
- Department of Energy Science, Sungkyunkwan University Suwon 16419 South Korea
- Center for Integrated Nanostructure Physics (CINAP), Institute for Basic Science (IBS), Sungkyunkwan University Suwon 16419 South Korea
| | - Soo Ho Choi
- Center for Integrated Nanostructure Physics (CINAP), Institute for Basic Science (IBS), Sungkyunkwan University Suwon 16419 South Korea
| | - Soo Min Kim
- Department of Chemistry, Sookmyung Women's University Seoul 14072 South Korea
| | - Ki Kang Kim
- Department of Energy Science, Sungkyunkwan University Suwon 16419 South Korea
- Center for Integrated Nanostructure Physics (CINAP), Institute for Basic Science (IBS), Sungkyunkwan University Suwon 16419 South Korea
| |
Collapse
|
23
|
He Z, Wang JL, Chen SM, Liu JW, Yu SH. Self-Assembly of Nanowires: From Dynamic Monitoring to Precision Control. Acc Chem Res 2022; 55:1480-1491. [PMID: 35578915 DOI: 10.1021/acs.accounts.2c00052] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
ConspectusNatural biomaterials often show ordered nanowire structures (ONWS) which display unique structural color or superior mechanical performance. Meanwhile, plenty of modern nanodevices with ONWS have flourished with activities focused on both basic and applied research. Manipulating synthetic nanowire (NW) from a disordered state to a hierarchically ordered structure via various assembly strategies brings about intriguing and exotic chemical/physical properties. In the past decades, many methods have been developed to assemble NWs and fabricate organized architectures, such as Langmuir-Blodgett interfacial assembly, spin-coating assembly, fluid-flow-induced assembly, and ice-template assembly. Nevertheless, for practical applications, large-scale and high-efficiency assembly strategies toward precise controlled architectures are largely limited by the lack understanding of assembly mechanisms. Especially, the manipulation principles and driving forces behind the state-of-art assembly strategies are still unclear. Besides, the lesser research attention on dynamic kinetics also impedes the revelation of the NW self-assembly mechanism. With the emergence of advanced in situ techniques, such as synchrotron-based X-ray techniques and in situ transmission electron microscopy (TEM), the dynamic monitoring of NW behavior in many practical environments becomes possible. In addition, the alignment direction and the stacking manner of NW film are of significance to the final performance. There is a lack of connection between the properties of one-dimensional nanoscale building blocks and the functionalities of the macro-assembly structures. To this end, dynamic monitoring is highly desired, which enables the precision modulation of NW assembly structure, leading to the discovery or prediction of new structures, novel properties, and performance optimization.In this Account, we aim to uncover the underlying kinetics of NW assembly or local reaction and mass transportation processes, as well as to build a solid connection from individual NWs to NW assembly structures with enhanced properties and eventually to macroscopic materials application. We first review the recent progress in state-of-art NW assembly strategies for diverse aligned structures according to the manipulation principle and the driving forces. To systematically review the NW self-assembly strategies, we categorize these strategies into three states: NWs on the liquid interface via surface tension, NW assembly in liquid via solution-shearing flow field, and NW assembly at the solid interval via physical repulsive force. Then, we introduce the existing advanced characterization techniques, including synchrotron-based X-ray scattering and in situ TEM, to dynamically monitor the intermediate states of the NW assembly and transport processes. The comprehensive understanding of this thermodynamic and kinetic mechanism facilitates the rational design, large scale, and high-efficiency fabrication of NW assemblies, thus promoting their applications in tailored optical-electrical electronics, smart electrochromic devices, electrocatalysis, structural materials, and chiral photonic crystals.
Collapse
Affiliation(s)
- Zhen He
- Institute of Innovative Materials (I2M), Department of Materials Science and Engineering, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
- Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jin-Long Wang
- Institute of Innovative Materials (I2M), Department of Materials Science and Engineering, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
- Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Si-Ming Chen
- Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jian-Wei Liu
- Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Shu-Hong Yu
- Institute of Innovative Materials (I2M), Department of Materials Science and Engineering, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
- Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
24
|
Liu Z, Nie K, Qu X, Li X, Li B, Yuan Y, Chong S, Liu P, Li Y, Yin Z, Huang W. General Bottom-Up Colloidal Synthesis of Nano-Monolayer Transition-Metal Dichalcogenides with High 1T'-Phase Purity. J Am Chem Soc 2022; 144:4863-4873. [PMID: 35258958 DOI: 10.1021/jacs.1c12379] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Phase engineering of nanomaterials provides a promising way to explore the phase-dependent physicochemical properties and various applications of nanomaterials. A general bottom-up synthesis method under mild conditions has always been challenging globally for the preparation of the semimetallic phase-transition-metal dichalcogenide (1T'-TMD) monolayers, which are pursued owing to their unique electrochemical property, unavailable in their semiconducting 2H phases. Here, we report the general scalable colloidal synthesis of nanosized 1T'-TMD monolayers, including 1T'-MoS2, 1T'-MoSe2, 1T'-WS2, and 1T'-WSe2, which are revealed to be of high phase purity. Moreover, the surfactant-reliant stacking-hinderable growth mechanism of 1T'-TMD nano-monolayers was unveiled through systematic experiments and theoretical calculations. As a proof-of-concept application, the 1T'-TMD nano-monolayers are used for electrocatalytic hydrogen production in an acidic medium. The 1T'-MoS2 nano-monolayers possess abundant in-plane electrocatalytic active sites and high conductivity, coupled with the contribution of the lattice strain, thus exhibiting excellent performance. Importantly, the catalyst shows impressive endurability in electroactivity. Our developed general scalable strategy could pave the way to extend the synthesis of other broad metastable semimetallic-phase TMDs, which offer great potential to explore novel crystal phase-dependent properties with wide application development for catalysis and beyond.
Collapse
Affiliation(s)
- Zhengqing Liu
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering, Northwestern Polytechnical University, Xi'an 710129, China
| | - Kunkun Nie
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering, Northwestern Polytechnical University, Xi'an 710129, China
| | - Xiaoyan Qu
- Frontier Institute of Science and Technology, State Key Laboratory for Manufacturing Systems Engineering, Xian Jiaotong University, Xian 710049, China
| | - Xinghua Li
- School of Physics, Northwest University, Xi'an 710127, China
| | - Binjie Li
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering, Northwestern Polytechnical University, Xi'an 710129, China
| | - Yanling Yuan
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering, Northwestern Polytechnical University, Xi'an 710129, China
| | - Shaokun Chong
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering, Northwestern Polytechnical University, Xi'an 710129, China
| | - Pei Liu
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Yunguo Li
- CAS Key Laboratory of Crust-Mantle Materials and Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China.,CAS Center for Excellence in Comparative Planetology, USTC, Hefei, Anhui 230026, China
| | - Zongyou Yin
- Research School of Chemistry, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering, Northwestern Polytechnical University, Xi'an 710129, China
| |
Collapse
|
25
|
Jergens E, Winter JO. Nanoparticles caged with DNA nanostructures. Curr Opin Biotechnol 2022; 74:278-284. [PMID: 35026622 DOI: 10.1016/j.copbio.2021.12.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 12/09/2021] [Accepted: 12/19/2021] [Indexed: 12/19/2022]
Abstract
Nanoparticles (NPs) offer many benefits in biotechnology because of their small size and unique properties. However, many applications require precise positioning of the NPs or biological targeting molecules on their surfaces. DNA cages constructed from DNA tile, origami, or wireframe nanostructures offer a promising path forward because of their simplicity and programmability that can be used to generate complex, dynamic 2D and 3D geometries. Such materials can be used to pattern DNA on NP surfaces and organize NPs into specific supramolecular structures. DNA-caged NPs can be implemented in biosensing and drug delivery applications with cavities precisely designed to encapsulate-specific biomolecules. Ultimately, such approaches provide a springboard for future DNA robot designs that will enable controlled interactions with biological systems.
Collapse
Affiliation(s)
- Elizabeth Jergens
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 W Woodruff Ave., Columbus, OH 43210, USA
| | - Jessica O Winter
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 W Woodruff Ave., Columbus, OH 43210, USA; Department of Biomedical Engineering, The Ohio State University, 140 W. 19th Ave., Columbus, OH 43210, USA.
| |
Collapse
|
26
|
Chen C, Zheng S, Song H. Photon management to reduce energy loss in perovskite solar cells. Chem Soc Rev 2021; 50:7250-7329. [PMID: 33977928 DOI: 10.1039/d0cs01488e] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Despite the rapid development of perovskite solar cells (PSCs) over the past few years, the conversion of solar energy into electricity is not efficient enough or cost-competitive yet. The principal energy loss in the conversion of solar energy to electricity fundamentally originates from the non-absorption of low-energy photons ascribed to Shockley-Queisser limits and thermalization losses of high-energy photons. Enhancing the light-harvesting efficiency of the perovskite photoactive layer by developing efficient photo management strategies with functional materials and arrays remains a long-standing challenge. Here, we briefly review the historical research trials and future research trends to overcome the fundamental loss mechanisms in PSCs, including upconversion, downconversion, scattering, tandem/graded structures, texturing, anti-reflection, and luminescent solar concentrators. We will deeply emphasize the availability and analyze the importance of a fine device structure, fluorescence efficiency, material proportion, and integration position for performance improvement. The unique energy level structure arising from the 4fn inner shell configuration of the trivalent rare-earth ions gives multifarious options for efficient light-harvesting by upconversion and downconversion. Tandem or graded PSCs by combining a series of subcells with varying bandgaps seek to rectify the spectral mismatch. Plasmonic nanostructures function as a secondary light source to augment the light-trapping within the perovskite layer and carrier transporting layer, enabling enhanced carrier generation. Texturing the interior using controllable micro/nanoarrays can realize light-matter interactions. Anti-reflective coatings on the top glass cover of the PSCs bring about better transmission and glare reduction. Photon concentration through perovskite-based luminescent solar concentrators offers a path to increase efficiency at reduced cost and plays a role in building-integrated photovoltaics. Distinct from other published reviews, we here systematically and hierarchically present all of the photon management strategies in PSCs by presenting the theoretical possibilities and summarizing the experimental results, expecting to inspire future research in the field of photovoltaics, phototransistors, photoelectrochemical sensors, photocatalysis, and especially light-emitting diodes. We further assess the overall possibilities of the strategies based on ultimate efficiency prospects, material requirements, and developmental outlook.
Collapse
Affiliation(s)
- Cong Chen
- School of Material Science and Engineering, State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Dingzigu Road 1, Tianjin 300130, People's Republic of China. and State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012, People's Republic of China.
| | - Shijian Zheng
- School of Material Science and Engineering, State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Dingzigu Road 1, Tianjin 300130, People's Republic of China.
| | - Hongwei Song
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012, People's Republic of China.
| |
Collapse
|