1
|
Jiang X, Ding T, Quan J, Wang R, Li W, Li M, Lan C, Ma W, Zhu M. Confined Hydrothermal Assembly of Hierarchical Porous MXene/RGO Composite Fibers with Enhanced Oxidation Resistance for High-Performance Wearable Supercapacitors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2412378. [PMID: 40012272 DOI: 10.1002/smll.202412378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/17/2025] [Indexed: 02/28/2025]
Abstract
MXene fibers have emerged as a promising material for energy storage applications due to their exceptional electrical conductivity and surface chemistry. However, the inherent challenges of oxidation instability and severe restacking of MXene nanosheets significantly limit their practical applications in flexible energy storage devices. Here, an innovative confined hydrothermal strategy combined with chemical crosslinking to construct 3D hierarchical porous MXene/reduced graphene oxide (RGO) composite fibers is reported. This rationally designed architecture effectively prevents MXene stacking while creating efficient ion transport channels. Notably, thiourea serves dual roles as both a chemical cross-linker and selective reducing agent, while RGO nanosheets act as physical barriers, synergistically enhancing the composite's oxidation resistance. The optimized composite fiber exhibits outstanding electrical conductivity (862.2 S cm-1), mechanical strength (93.1 MPa), and remarkable oxidation resistance (90.5% conductivity retention after 60 days). The assembled solid-state supercapacitor achieves excellent mechanical flexibility, superior cycling stability, and impressive energy density (13.5 mWh cm-3) and power density (1.9 W cm-3). This work provides a novel and effective strategy for developing high-performance flexible wearable energy storage devices.
Collapse
Affiliation(s)
- Xupu Jiang
- College of Textile and Garment, Nantong University, Nantong, 226019, China
| | - Ting Ding
- College of Textile and Garment, Nantong University, Nantong, 226019, China
| | - Jiaxin Quan
- College of Textile and Garment, Nantong University, Nantong, 226019, China
| | - Rui Wang
- College of Textile and Garment, Nantong University, Nantong, 226019, China
| | - Wanfei Li
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Min Li
- College of Textile and Garment, Nantong University, Nantong, 226019, China
| | - Chuntao Lan
- College of Textile and Garment, Nantong University, Nantong, 226019, China
| | - Wujun Ma
- College of Textile and Garment, Nantong University, Nantong, 226019, China
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai, 201620, China
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai, 201620, China
| |
Collapse
|
2
|
Zhang W, Ren S, Zhang Y, An C, Liu Y, Zhu X, Man Z, Liang X, Yang C, Lu W, Wu G. Bamboo-Inspired Hierarchically Hollow Aerogel MXene Fibers with Ultrafast Ionic Channels and Multiple Electromagnetic Wave Attenuation Routes Toward High-Performance Supercapacitors and Microwave Absorption. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2412272. [PMID: 39806824 DOI: 10.1002/smll.202412272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/05/2025] [Indexed: 01/16/2025]
Abstract
2D materials feature large specific surface areas and abundant active sites, showing great potential in energy storage and conversion. However, the dense, stacked structure severely restricts its practical application. Inspired by the structure of bamboo in nature, hollow interior and porous exterior wall, hollow MXene aerogel fiber (HA-Ti3C2TX fiber) is proposed. Owing to continuous porous microstructure and optimized hollow cavity, this fiber possesses large accessible area to ions and abundant structural defects, leading to a fast charge transfer kinetics and high faradic activity. Consequently, the HA-Ti3C2TX fiber exhibits exceptional gravimetric capacitance of 355 F g-1. Besides, the solid-state asymmetric fiber-shaped supercapacitors (FSCs) display a high capacitance of 276 F g-1 and energy density of 9.58 Wh kg-1. Additionally, the HA-Ti3C2TX fiber delivers outstanding electromagnetic wave (EMW) absorption performance with a minimum reflection loss of -52.39 dB and the effective absorption bandwidth up to 4.6 GHz, which is attributed to multiple reflection paths, strong dielectric loss from this hollow and porous structure. This novel design of hollow fiber provides a new reference for the construction of advanced fibers for energy storage and EMW absorption materials.
Collapse
Affiliation(s)
- Wenhui Zhang
- National Engineering Lab for Textile Fiber Materials & Processing Technology, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
- Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing, 312000, P. R. China
| | - Shouyu Ren
- Hangzhou Dianzi University, Hangzhou, 310018, P. R. China
| | - Yongzhe Zhang
- National Engineering Lab for Textile Fiber Materials & Processing Technology, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
| | - Chengzhi An
- National Engineering Lab for Textile Fiber Materials & Processing Technology, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
- Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing, 312000, P. R. China
| | - Yunchuan Liu
- National Engineering Lab for Textile Fiber Materials & Processing Technology, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
- Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing, 312000, P. R. China
| | - Xiaolin Zhu
- National Engineering Lab for Textile Fiber Materials & Processing Technology, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
- Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing, 312000, P. R. China
| | - Zengming Man
- National Engineering Lab for Textile Fiber Materials & Processing Technology, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
- Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing, 312000, P. R. China
| | - Xiaohui Liang
- Hangzhou Dianzi University, Hangzhou, 310018, P. R. China
| | - Chao Yang
- National Engineering Lab for Textile Fiber Materials & Processing Technology, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
- Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing, 312000, P. R. China
| | - Wangyang Lu
- National Engineering Lab for Textile Fiber Materials & Processing Technology, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
- Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing, 312000, P. R. China
| | - Guan Wu
- National Engineering Lab for Textile Fiber Materials & Processing Technology, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
- Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing, 312000, P. R. China
| |
Collapse
|
3
|
Liu Y, Chen L, Li W, Pu J, Wang Z, He B, Yuan S, Xin J, Huang L, Luo Z, Xu J, Zhou X, Zhang H, Zhang Q, Wei L. Scalable Production of Functional Fibers with Nanoscale Features for Smart Textiles. ACS NANO 2024; 18:29394-29420. [PMID: 39428715 DOI: 10.1021/acsnano.4c10111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Functional fibers, retaining nanoscale characteristics or nanomaterial properties, represent a significant advance in nanotechnology. Notably, the combination of scalable manufacturing with cutting-edge nanotechnology further expands their utility across numerous disciplines. Manufacturing kilometer-scale functional fibers with nanoscale properties are critical to the evolution of smart textiles, wearable electronics, and beyond. This review discusses their design principles, manufacturing technologies, and key advancements in the mass production of such fibers. In addition, it summarizes the current applications and state of progress in scalable fiber technologies and provides guidance for future advances in multifunctional smart textiles, by highlighting the upcoming impending demands for evolving nanotechnology. Challenges and directions requiring sustained effort are also discussed, including material selection, device design, large-scale manufacturing, and multifunctional integration. With advances in functional fibers and nanotechnology in large-scale production, wearable electronics, and smart textiles could potentially enhance human-machine interaction and healthcare applications.
Collapse
Affiliation(s)
- Yanting Liu
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798
| | - Long Chen
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798
| | - Wulong Li
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798
| | - Jie Pu
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798
| | - Zhixun Wang
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798
| | - Bing He
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798
| | - Shixing Yuan
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798
| | - Jiwu Xin
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798
| | - Lei Huang
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798
| | - Ziwang Luo
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798
| | - Jiaming Xu
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798
| | - Xuhui Zhou
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798
| | - Haozhe Zhang
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798
| | - Qichong Zhang
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Lei Wei
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798
| |
Collapse
|
4
|
Xu J, Pi X, Qi K, Zhang S, Wang Y, Man Z, Yang C, Tang Q, An C, Zhang Y, Sun B, Zhang Y, Wu G. Chitosan derived nitrogen and oxygen dual-doped hierarchical porous carbon/Ti 3C 2T x MXene fiber for flexible cable shaped lithium-selenium battery. Int J Biol Macromol 2024; 282:136836. [PMID: 39471934 DOI: 10.1016/j.ijbiomac.2024.136836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 09/26/2024] [Accepted: 10/21/2024] [Indexed: 11/01/2024]
Abstract
Pursuing flexible, matchable and miniaturized power supply with high capacitance is necessary for portable electronics as long-term period of energy source in wearable system. Here, a hierarchical Se/chitosan derived nitrogen and oxygen dual-doped porous carbon/Ti3C2Tx (Se-NOCT) fiber is proposed via microfluidic spinning method prior to co-heating process for the fiber cathode of cable-shaped lithium‑selenium (LiSe) battery. Due to the interconnected structure, consecutive conductive frameworks and good synergistic effect, the fabricated Se-NOCT fibrous electrode shows excellent ions diffusion kinetics, fast electron migration rate and strong polyselenide adsorption ability proving by density functional theory (DFT) calculations. As a result, an admired specific capacitance (866 mAh g-1 at 0.1 A g-1), favorable rate performance (256 mAh g-1 at 2 A g-1) and long-term cycling property (226 mAh g-1 after 500 cycling) can be achieved for the Se-NOCT electrode. More importantly, after assembling to the fibrous LiSe battery, the energy storage device not only presents stable operation at bending to 180o, 97.3 % capacitance retention after 100 times bending and impressive launderability, but also weave into the garment and support various electronics. Thus, customized flexible electrode provides a bright future for the progress of fiber shaped LiSe battery in smart wearable system.
Collapse
Affiliation(s)
- Jian Xu
- National Engineering Lab for Textile Fiber Materials & Processing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Xiangxiang Pi
- National Engineering Lab for Textile Fiber Materials & Processing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Kangxin Qi
- National Engineering Lab for Textile Fiber Materials & Processing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Shenao Zhang
- National Engineering Lab for Textile Fiber Materials & Processing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Yusen Wang
- National Engineering Lab for Textile Fiber Materials & Processing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Zengming Man
- National Engineering Lab for Textile Fiber Materials & Processing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, PR China; Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing 312000, PR China
| | - Chao Yang
- National Engineering Lab for Textile Fiber Materials & Processing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Qingqing Tang
- National Engineering Lab for Textile Fiber Materials & Processing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Chengzhi An
- National Engineering Lab for Textile Fiber Materials & Processing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Yu Zhang
- National Engineering Lab for Textile Fiber Materials & Processing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Bin Sun
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, PR China
| | - Yang Zhang
- National Engineering Lab for Textile Fiber Materials & Processing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, PR China; Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing 312000, PR China.
| | - Guan Wu
- National Engineering Lab for Textile Fiber Materials & Processing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, PR China; Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing 312000, PR China.
| |
Collapse
|
5
|
Ma R, Li D, Xu C, Yang J, Huang J, Guo Z. Fabricated advanced textile for personal thermal management, intelligent health monitoring and energy harvesting. Adv Colloid Interface Sci 2024; 332:103252. [PMID: 39053159 DOI: 10.1016/j.cis.2024.103252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/15/2024] [Accepted: 07/16/2024] [Indexed: 07/27/2024]
Abstract
Fabrics are soft against the skin, flexible, easily accessible and able to wick away perspiration, to some extent for local private thermal management. In this review, we classify smart fabrics as passive thermal management fabrics and active thermal management fabrics based on the availability of outside energy consumption in the manipulation of heat generation and dissipation from the human body. The mechanism and research status of various thermal management fabrics are introduced in detail, and the article also analyses the advantages and disadvantages of various smart thermal management fabrics, achieving a better and more comprehensive comprehension of the current state of research on smart thermal management fabrics, which is quite an important reference guide for our future research. In addition, with the progress of science and technology, the social demand for fabrics has shifted from keeping warm to improving health and quality of life. E-textiles have potential value in areas such as remote health monitoring and life signal detection. New e-textiles are designed to mimic the skin, sense biological data and transmit information. At the same time, the ultra-moisturizing properties of the fabric's thermal management allow for applications beyond just the human body to energy. E-textiles hold great promise for energy harvesting and storage. The article also introduces the application of smart fabrics in life forms and energy harvesting. By combining electronic technology with textiles, e-textiles can be manufactured to promote human well-being and quality of life. Although smart textiles are equipped with more intelligent features, wearing comfort must be the first thing to be ensured in the multi-directional application of textiles. Eventually, we discuss the dares and prospects of smart thermal management fabric research.
Collapse
Affiliation(s)
- Rong Ma
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Deke Li
- School of materials engineering, Lanzhou Institute of Technology, Lanzhou 730050, People's Republic of China; State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China.
| | - Chenggong Xu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Juan Yang
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China.
| | - Jinxia Huang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China
| | - Zhiguang Guo
- Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials and Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, People's Republic of China; State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China
| |
Collapse
|
6
|
Shao Y, Xia Z, Xu L, Zhang X, Yang D, Yang Z, Luo J, Xiao G, Yang Y, Su Y, Lu G, Sun J, Cheng T, Shao Y. Crystalline Texture Reengineering of Zinc Powder-Based Fibrous Anode for Remarkable Mechano-Electrochemical Stability. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2407143. [PMID: 39189530 DOI: 10.1002/adma.202407143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/25/2024] [Indexed: 08/28/2024]
Abstract
The challenge of inadequate mechano-electrochemical stability in rechargeable fibrous Zn-ion batteries (FZIBs) has emerged as a critical challenge for their broad applications. Traditional rigid Zn wires struggle to maintain a stable electrochemical interface when subjected to external mechanical stress. To address this issue, a wet-spinning technique has been developed to fabricate Zn powder based fibrous anode, while carbon nanotubes (CNTs) introduced to enhance the spinnability of Zn powder dispersion. The followed annealing treatment has been conducted to reengineer the Zn crystalline texture with CNTs assisted surface tension regulation to redirect (002) crystallographic textural formation. The thus-derived annealed Zn@CNTs fiber demonstrates great mechano-electrochemical stability after a long-term bending and electrochemical process. The fabricated FZIB demonstrates a remarkable durability, surpassing 800 h at 1 mA cm-2 and 1 mAh cm-2, with a marginal voltage hysteresis increase of 21.7 mV even after 100 twisting cycles under 180 degree twisting angle. The assembled FZIB full cell displays an 88.6% capacity retention even after a long cycle of a series of bending, knotting, and straightening deformation. It has been also woven into a 200 cm2 size textile to demonstrate its capability to integrate into smart textiles.
Collapse
Affiliation(s)
- Yanyan Shao
- College of Energy Soochow Institute for Energy and Materials Innovations (SIEMIS), Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, 215006, P. R. China
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Zhou Xia
- College of Energy Soochow Institute for Energy and Materials Innovations (SIEMIS), Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, 215006, P. R. China
| | - Liang Xu
- Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, P. R. China
| | - Xinyu Zhang
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, P. R. China
| | - Dongzi Yang
- College of Energy Soochow Institute for Energy and Materials Innovations (SIEMIS), Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, 215006, P. R. China
| | - Zhicheng Yang
- School of Materials Science and Engineering, Shanghai University of Engineering Science, Shanghai, 201620, P. R. China
| | - Jinrong Luo
- College of Energy Soochow Institute for Energy and Materials Innovations (SIEMIS), Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, 215006, P. R. China
| | - Gang Xiao
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Yinan Yang
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Yiwen Su
- College of Energy Soochow Institute for Energy and Materials Innovations (SIEMIS), Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, 215006, P. R. China
| | - Guoqing Lu
- School of Materials Science and Engineering, Shanghai University of Engineering Science, Shanghai, 201620, P. R. China
| | - Jingyu Sun
- College of Energy Soochow Institute for Energy and Materials Innovations (SIEMIS), Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, 215006, P. R. China
| | - Tao Cheng
- Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, P. R. China
| | - Yuanlong Shao
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| |
Collapse
|
7
|
Ge C, Xu D, Feng X, Yang X, Song Z, Song Y, Chen J, Liu Y, Gao C, Du Y, Sun Z, Xu W, Fang J. Recent Advances in Fibrous Materials for Hydroelectricity Generation. NANO-MICRO LETTERS 2024; 17:29. [PMID: 39347862 PMCID: PMC11444048 DOI: 10.1007/s40820-024-01537-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/12/2024] [Indexed: 10/01/2024]
Abstract
Depleting fossil energy sources and conventional polluting power generation pose a threat to sustainable development. Hydroelectricity generation from ubiquitous and spontaneous phase transitions between liquid and gaseous water has been considered a promising strategy for mitigating the energy crisis. Fibrous materials with unique flexibility, processability, multifunctionality, and practicability have been widely applied for fibrous materials-based hydroelectricity generation (FHG). In this review, the power generation mechanisms, design principles, and electricity enhancement factors of FHG are first introduced. Then, the fabrication strategies and characteristics of varied constructions including 1D fiber, 1D yarn, 2D fabric, 2D membrane, 3D fibrous framework, and 3D fibrous gel are demonstrated. Afterward, the advanced functions of FHG during water harvesting, proton dissociation, ion separation, and charge accumulation processes are analyzed in detail. Moreover, the potential applications including power supply, energy storage, electrical sensor, and information expression are also discussed. Finally, some existing challenges are considered and prospects for future development are sincerely proposed.
Collapse
Affiliation(s)
- Can Ge
- College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, People's Republic of China
- National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, 215123, People's Republic of China
| | - Duo Xu
- College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, People's Republic of China
- National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, 215123, People's Republic of China
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan, 430200, People's Republic of China
| | - Xiao Feng
- College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, People's Republic of China
- National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, 215123, People's Republic of China
| | - Xing Yang
- College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, People's Republic of China
- National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, 215123, People's Republic of China
| | - Zheheng Song
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, People's Republic of China
| | - Yuhang Song
- Department of Electrical and Computer Engineering, University of Massachusetts, Amherst, MA, 01003, USA
| | - Jingyu Chen
- Department of Materials, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Yingcun Liu
- College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, People's Republic of China
- National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, 215123, People's Republic of China
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan, 430200, People's Republic of China
| | - Chong Gao
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan, 430200, People's Republic of China
- College of Textile Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, People's Republic of China
| | - Yong Du
- School of Materials Science and Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, People's Republic of China
| | - Zhe Sun
- College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, People's Republic of China.
- National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, 215123, People's Republic of China.
| | - Weilin Xu
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan, 430200, People's Republic of China.
| | - Jian Fang
- College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, People's Republic of China.
- National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, 215123, People's Republic of China.
| |
Collapse
|
8
|
Dang C, Wang Z, Hughes-Riley T, Dias T, Qian S, Wang Z, Wang X, Liu M, Yu S, Liu R, Xu D, Wei L, Yan W, Zhu M. Fibres-threads of intelligence-enable a new generation of wearable systems. Chem Soc Rev 2024; 53:8790-8846. [PMID: 39087714 DOI: 10.1039/d4cs00286e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Fabrics represent a unique platform for seamlessly integrating electronics into everyday experiences. The advancements in functionalizing fabrics at both the single fibre level and within constructed fabrics have fundamentally altered their utility. The revolution in materials, structures, and functionality at the fibre level enables intimate and imperceptible integration, rapidly transforming fibres and fabrics into next-generation wearable devices and systems. In this review, we explore recent scientific and technological breakthroughs in smart fibre-enabled fabrics. We examine common challenges and bottlenecks in fibre materials, physics, chemistry, fabrication strategies, and applications that shape the future of wearable electronics. We propose a closed-loop smart fibre-enabled fabric ecosystem encompassing proactive sensing, interactive communication, data storage and processing, real-time feedback, and energy storage and harvesting, intended to tackle significant challenges in wearable technology. Finally, we envision computing fabrics as sophisticated wearable platforms with system-level attributes for data management, machine learning, artificial intelligence, and closed-loop intelligent networks.
Collapse
Affiliation(s)
- Chao Dang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
- School of Electrical and Electronic Engineering, Nanyang Technological University, 639798, Singapore.
| | - Zhixun Wang
- School of Electrical and Electronic Engineering, Nanyang Technological University, 639798, Singapore.
| | - Theodore Hughes-Riley
- Nottingham School of Art and Design, Nottingham Trent University, Dryden Street, Nottingham, NG1 4GG, UK.
| | - Tilak Dias
- Nottingham School of Art and Design, Nottingham Trent University, Dryden Street, Nottingham, NG1 4GG, UK.
| | - Shengtai Qian
- School of Electrical and Electronic Engineering, Nanyang Technological University, 639798, Singapore.
| | - Zhe Wang
- School of Electrical and Electronic Engineering, Nanyang Technological University, 639798, Singapore.
| | - Xingbei Wang
- School of Electrical and Electronic Engineering, Nanyang Technological University, 639798, Singapore.
| | - Mingyang Liu
- School of Electrical and Electronic Engineering, Nanyang Technological University, 639798, Singapore.
| | - Senlong Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Rongkun Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Dewen Xu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Lei Wei
- School of Electrical and Electronic Engineering, Nanyang Technological University, 639798, Singapore.
| | - Wei Yan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| |
Collapse
|
9
|
Liu Q, Liu X, Yu X, Zhang X, Zhu M, Cheng Y. Circularly Polarized Room Temperature Phosphorescence through Twisting-Induced Helical Structures from Polyvinyl Alcohol-Based Fibers Containing Hydrogen-Bonded Dyes. Angew Chem Int Ed Engl 2024; 63:e202403391. [PMID: 38717757 DOI: 10.1002/anie.202403391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Indexed: 06/16/2024]
Abstract
Room temperature phosphorescence (RTP) materials have garnered significant attention owing to its distinctive optical characteristics and broad range of potential applications. However, the challenge remains in producing RTP materials with more simplicity, versatility, and practicality on a large scale, particularly in achieving chiral signals within a single system. Herein, we show that a straightforward and effective combination of wet spinning and twisting technique enables continuously fabricating RTP fibers with twisting-induced helical chirality. By leveraging the hydrogen bonding interactions between polyvinyl alcohol (PVA) and quinoline derivatives, along with the rigid microenvironment provided by PVA chains, typically, Q-NH2@PVA fiber demonstrates outstanding phosphorescent characteristics with RTP lifetime of 1.08 s and phosphorescence quantum yield of 24.6 %, and the improved tensile strength being 1.7 times than pure PVA fiber (172±5.82 vs 100±5.65 MPa). Impressively, the transformation from RTP to circularly polarized room temperature phosphorescence (CP-RTP) is readily achieved by imparting left- or right-hand helical structure through simply twisting, enabling large-scale production of chiral Q-NH2@PVA fiber with dissymmetry factor of 10-2. Besides, an array of displays and encryption patterns are crafted by weaving or seaming to exemplify the promising applications of these PVA-based fibers with outstanding adaptivity in cutting-edge anti-counterfeiting technology.
Collapse
Affiliation(s)
- Qin Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Xiaoqing Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Xiaoxiao Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Xinhai Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Yanhua Cheng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| |
Collapse
|
10
|
Bai J, Wu M, He Q, Wang H, Liao Y, Chen L, Chen S. Emerging Doped Metal-Organic Frameworks: Recent Progress in Synthesis, Applications, and First-Principles Calculations. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306616. [PMID: 38342672 DOI: 10.1002/smll.202306616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 01/14/2024] [Indexed: 02/13/2024]
Abstract
Metal-organic frameworks (MOFs) are crystalline porous materials with a long-range ordered structure and excellent specific surface area and have found a wide range of applications in diverse fields, such as catalysis, energy storage, sensing, and biomedicine. However, their poor electrical conductivity and chemical stability, low capacity, and weak adhesion to substrates have greatly limited their performance. Doping has emerged as a unique strategy to mitigate the issues. In this review, the concept, classification, and characterization methods of doped MOFs are first introduced, and recent progress in the synthesis and applications of doped MOFs, as well as the rapid advancements and applications of first-principles calculations based on the density functional theory (DFT) in unraveling the mechanistic origin of the enhanced performance are summarized. Finally, a perspective is included to highlight the key challenges in doping MOF materials and an outlook is provided on future research directions.
Collapse
Affiliation(s)
- Jie Bai
- Department of Applied Chemistry, School of Chemical and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China
| | - Mengcheng Wu
- Department of Applied Chemistry, School of Chemical and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China
| | - Qingqing He
- Department of Applied Chemistry, School of Chemical and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China
| | - Huayu Wang
- Department of Applied Chemistry, School of Chemical and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China
| | - Yanxin Liao
- Department of Applied Chemistry, School of Chemical and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China
| | - Lingyun Chen
- Department of Applied Chemistry, School of Chemical and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China
| | - Shaowei Chen
- Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, CA, 95060, United States
| |
Collapse
|
11
|
Li Y, Wang Y, Liu Y, Yan F, Zhu Z, Chen X, Qiu J, Zhang H, Cao G. Polymer Engineering Enables High Linear Capacity Fiber Electrodes by Microenvironment Regulation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309461. [PMID: 38671588 PMCID: PMC11267365 DOI: 10.1002/advs.202309461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Indexed: 04/28/2024]
Abstract
Unlike bulky and rigid traditional power systems, 1D fiber batteries possess appealing features such as flexibility and adaptability, which are promising for use in wearable electronic devices. However, the performance and energy density fiber batteries are limited by the contradiction between ionic transfer and robust structure of fiber electrodes. Herein, these problems are addressed via polymer engineering to regulate the microenvironment in electrodes, realizing high-linear-capacity thick fiber electrodes with excellent cycling performance. The porosity of the electrodes is regulated using polymer crosslink networks designed with various components, and lithium-ion transfer is optimized through ether-abundant polymer chains. Furthermore, reinforced covalent bonding with carbon nanotube networks is established based on the modified functional groups of polymer networks. The multiscale optimizations of the porous structure, ionic transportation, and covalent bonding network enhance the lithium-ion dynamics property and structural stability. Therefore, ultrahigh linear-capacity fiber electrodes (17.8 mAh m-1) can be fabricated on a large scale and exhibit excellent stability (92.8% after 800 cycles), demonstrating obvious superiority among the reported fiber electrodes. Moreover, this study highlights the high effectiveness of polymer regulation in fiber electrodes and offers new avenues for designing next-generation wearable energy-storage systems.
Collapse
Affiliation(s)
- Yuan Li
- Research Institute of Chemical DefenseBeijing100191China
| | - Yibo Wang
- Research Institute of Chemical DefenseBeijing100191China
| | - Yan Liu
- Research Institute of Chemical DefenseBeijing100191China
| | - Fang Yan
- School of Chemistry and Biological EngineeringInstitute for Advanced Materials and TechnologyUniversity of Science and Technology BeijingBeijing100083China
| | - Zhenwei Zhu
- Research Institute of Chemical DefenseBeijing100191China
| | - Xibang Chen
- Research Institute of Chemical DefenseBeijing100191China
| | - Jingyi Qiu
- Research Institute of Chemical DefenseBeijing100191China
| | - Hao Zhang
- Research Institute of Chemical DefenseBeijing100191China
| | - Gaoping Cao
- Research Institute of Chemical DefenseBeijing100191China
| |
Collapse
|
12
|
Qi M, Liu Y, Wang Z, Yuan S, Li K, Zhang Q, Chen M, Wei L. Self-Healable Multifunctional Fibers via Thermal Drawing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400785. [PMID: 38682447 PMCID: PMC11200011 DOI: 10.1002/advs.202400785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/08/2024] [Indexed: 05/01/2024]
Abstract
The development of soft electronics and soft fiber devices has significantly advanced flexible and wearable technology. However, they still face the risk of damage when exposed to sharp objects in real-life applications. Taking inspiration from nature, self-healable materials that can restore their physical properties after external damage offer a solution to this problem. Nevertheless, large-scale production of self-healable fibers is currently constrained. To address this limitation, this study leverages the thermal drawing technique to create elastic and stretchable self-healable thermoplastic polyurethane (STPU) fibers, enabling cost-effective mass production of such functional fibers. Furthermore, despite substantial research into the mechanisms of self-healable materials, quantifying their healing speed and time poses a persistent challenge. Thus, transmission spectra are employed as a monitoring tool to observe the real-time self-healing process, facilitating an in-depth investigation into the healing kinetics and efficiency. The versatility of the fabricated self-healable fiber extends to its ability to be doped with a wide range of functional materials, including dye molecules and magnetic microparticles, which enables modular assembly to develop distributed strain sensors and soft actuators. These achievements highlight the potential applications of self-healable fibers that seamlessly integrate with daily lives and open up new possibilities in various industries.
Collapse
Affiliation(s)
- Miao Qi
- College of Biomedical Engineering & Instrument ScienceKey Laboratory for Biomedical Engineering of Ministry of EducationZhejiang UniversityHangzhou310027China
- Zhejiang LabHangzhou311100China
| | - Yanting Liu
- School of Electrical and Electronic EngineeringNanyang Technological University50 Nanyang AvenueSingapore639798Singapore
| | - Zhe Wang
- Key Laboratory of Bionic Engineering of Ministry of EducationJilin UniversityChangchun130022China
| | - Shixing Yuan
- School of Electrical and Electronic EngineeringNanyang Technological University50 Nanyang AvenueSingapore639798Singapore
| | - Kaiwei Li
- Key Laboratory of Bionic Engineering of Ministry of EducationJilin UniversityChangchun130022China
| | - Qichong Zhang
- Suzhou Institute of Nano‐Tech and Nano‐BionicsChinese Academy of SciencesSuzhou215123China
| | - Mengxiao Chen
- College of Biomedical Engineering & Instrument ScienceKey Laboratory for Biomedical Engineering of Ministry of EducationZhejiang UniversityHangzhou310027China
- Zhejiang LabHangzhou311100China
| | - Lei Wei
- School of Electrical and Electronic EngineeringNanyang Technological University50 Nanyang AvenueSingapore639798Singapore
| |
Collapse
|
13
|
Yu R, Wang C, Du X, Bai X, Tong Y, Chen H, Sun X, Yang J, Matsuhisa N, Peng H, Zhu M, Pan S. In-situ forming ultra-mechanically sensitive materials for high-sensitivity stretchable fiber strain sensors. Natl Sci Rev 2024; 11:nwae158. [PMID: 38881574 PMCID: PMC11177883 DOI: 10.1093/nsr/nwae158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/09/2024] [Accepted: 04/28/2024] [Indexed: 06/18/2024] Open
Abstract
Fiber electronics with flexible and weavable features can be easily integrated into textiles for wearable applications. However, due to small sizes and curved surfaces of fiber materials, it remains challenging to load robust active layers, thus hindering production of high-sensitivity fiber strain sensors. Herein, functional sensing materials are firmly anchored on the fiber surface in-situ through a hydrolytic condensation process. The anchoring sensing layer with robust interfacial adhesion is ultra-mechanically sensitive, which significantly improves the sensitivity of strain sensors due to the easy generation of microcracks during stretching. The resulting stretchable fiber sensors simultaneously possess an ultra-low strain detection limit of 0.05%, a high stretchability of 100%, and a high gauge factor of 433.6, giving 254-folds enhancement in sensitivity. Additionally, these fiber sensors are soft and lightweight, enabling them to be attached onto skin or woven into clothes for recording physiological signals, e.g. pulse wave velocity has been effectively obtained by them. As a demonstration, a fiber sensor-based wearable smart healthcare system is designed to monitor and transmit health status for timely intervention. This work presents an effective strategy for developing high-performance fiber strain sensors as well as other stretchable electronic devices.
Collapse
Affiliation(s)
- Rouhui Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Changxian Wang
- MOE Key Lab of Disaster Forecast and Control in Engineering, School of Mechanics and Construction Engineering, Jinan University, Guangzhou 510632, China
| | - Xiangheng Du
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Xiaowen Bai
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yongzhong Tong
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Huifang Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Xuemei Sun
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Institute of Fiber Materials and Devices, Fudan University, Shanghai 200438, China
| | - Jing Yang
- Department of Cardiology, Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Fudan University, Shanghai 200031, China
| | - Naoji Matsuhisa
- Research Center for Advanced Science and Technology, and Institute of Industrial Science, The University of Tokyo, Tokyo 153-8505, Japan
| | - Huisheng Peng
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Institute of Fiber Materials and Devices, Fudan University, Shanghai 200438, China
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Shaowu Pan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| |
Collapse
|
14
|
Song J, Shen Q, Shao H, Deng X. Anti-Environmental Aging Passive Daytime Radiative Cooling. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305664. [PMID: 38148594 PMCID: PMC10933639 DOI: 10.1002/advs.202305664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/30/2023] [Indexed: 12/28/2023]
Abstract
Passive daytime radiative cooling technology presents a sustainable solution for combating global warming and accompanying extreme weather, with great potential for diverse applications. The key characteristics of this cooling technology are the ability to reflect most sunlight and radiate heat through the atmospheric transparency window. However, the required high solar reflectance is easily affected by environmental aging, rendering the cooling ineffective. In recent years, significant advancements have been made in understanding the failure mechanisms, design strategies, and manufacturing technologies of daytime radiative cooling. Herein, a critical review on anti-environmental aging passive daytime radiative cooling with the goal of advancing their commercial applications is presented. It is first introduced the optical mechanisms and optimization principles of radiative cooling, which serve as a basis for further endowing environmental durability. Then the environmental aging conditions of passive daytime radiative cooling, mainly focusing on UV exposure, thermal aging, surface contamination and chemical corrosion are discussed. Furthermore, the developments of anti-environmental aging passive daytime radiative cooling materials, including design strategies, fabrication techniques, structures, and performances, are reviewed and classified for the first time. Last but not the least, the remaining open challenges and the insights are presented for the further promotion of the commercialization progress.
Collapse
Affiliation(s)
- Jianing Song
- Institute of Fundamental and Frontier SciencesUniversity of Electronic Science and Technology of ChinaChengdu610054China
| | - Qingchen Shen
- Bio‐inspired Photonics GroupYusuf Hamied Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| | - Huijuan Shao
- Institute of Fundamental and Frontier SciencesUniversity of Electronic Science and Technology of ChinaChengdu610054China
| | - Xu Deng
- Institute of Fundamental and Frontier SciencesUniversity of Electronic Science and Technology of ChinaChengdu610054China
| |
Collapse
|
15
|
Wang Z, Wang Z, Li D, Yang C, Zhang Q, Chen M, Gao H, Wei L. High-quality semiconductor fibres via mechanical design. Nature 2024; 626:72-78. [PMID: 38297173 PMCID: PMC10830409 DOI: 10.1038/s41586-023-06946-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 12/06/2023] [Indexed: 02/02/2024]
Abstract
Recent breakthroughs in fibre technology have enabled the assembly of functional materials with intimate interfaces into a single fibre with specific geometries1-11, delivering diverse functionalities over a large area, for example, serving as sensors, actuators, energy harvesting and storage, display, and healthcare apparatus12-17. As semiconductors are the critical component that governs device performance, the selection, control and engineering of semiconductors inside fibres are the key pathways to enabling high-performance functional fibres. However, owing to stress development and capillary instability in the high-yield fibre thermal drawing, both cracks and deformations in the semiconductor cores considerably affect the performance of these fibres. Here we report a mechanical design to achieve ultralong, fracture-free and perturbation-free semiconductor fibres, guided by a study on stress development and capillary instability at three stages of the fibre formation: the viscous flow, the core crystallization and the subsequent cooling stage. Then, the exposed semiconductor wires can be integrated into a single flexible fibre with well-defined interfaces with metal electrodes, thereby achieving optoelectronic fibres and large-scale optoelectronic fabrics. This work provides fundamental insights into extreme mechanics and fluid dynamics with geometries that are inaccessible in traditional platforms, essentially addressing the increasing demand for flexible and wearable optoelectronics.
Collapse
Affiliation(s)
- Zhixun Wang
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, Singapore
| | - Zhe Wang
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, Singapore
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun, China
| | - Dong Li
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, Singapore
| | - Chunlei Yang
- University of Chinese Academy of Sciences, Beijing, China
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Qichong Zhang
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, China.
| | - Ming Chen
- University of Chinese Academy of Sciences, Beijing, China.
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| | - Huajian Gao
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, Singapore.
- Institute of High-Performance Computing, Agency for Science, Technology and Research, Singapore, Singapore.
| | - Lei Wei
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, Singapore.
- Institute for Digital Molecular Analytics and Science (IDMxS), Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
16
|
Hu P, Wu F, Ma B, Luo J, Zhang P, Tian Z, Wang J, Sun Z. Robust and Flame-Retardant Zylon Aerogel Fibers for Wearable Thermal Insulation and Sensing in Harsh Environment. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310023. [PMID: 38029344 DOI: 10.1002/adma.202310023] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/28/2023] [Indexed: 12/01/2023]
Abstract
The exceptional lightweight, highly porous, and insulating properties of aerogel fibers make them ideal for thermal insulation. However, current aerogel fibers face limitations due to their low resistance to harsh environments and a lack of intelligent responses. Herein, a universal strategy for creating polymer aerogel fibers using crosslinked nanofiber building blocks is proposed. This approach combines controlled proton absorption gelation spinning with a heat-induced crosslinking process. As a proof-of-concept, Zylon aerogel fibers that exhibited robust thermal stability (up to 650 °C), high flame retardancy (limiting oxygen index of 54.2%), and extreme chemical resistance are designed and synthesized. These fibers possess high porosity (98.6%), high breaking strength (8.6 MPa), and low thermal conductivity (0.036 W m-1 K-1 ). These aerogel fibers can be knotted or woven into textiles, utilized in harsh environments (-196-400 °C), and demonstrate sensitive self-powered sensing capabilities. This method of developing aerogel fibers expands the applications of high-performance polymer fibers and holds great potential for future applications in wearable smart protective fabrics.
Collapse
Affiliation(s)
- Peiying Hu
- Key Laboratory of Advanced Metallic Materials of Jiangsu Province, School of Materials Science and Engineering, Southeast University, Nanjing, 211189, P. R. China
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, P. R. China
| | - Fushuo Wu
- Key Laboratory of Advanced Metallic Materials of Jiangsu Province, School of Materials Science and Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Bingjie Ma
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, P. R. China
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Jie Luo
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, P. R. China
| | - Peigen Zhang
- Key Laboratory of Advanced Metallic Materials of Jiangsu Province, School of Materials Science and Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Zhihua Tian
- Key Laboratory of Advanced Metallic Materials of Jiangsu Province, School of Materials Science and Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Jin Wang
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, P. R. China
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - ZhengMing Sun
- Key Laboratory of Advanced Metallic Materials of Jiangsu Province, School of Materials Science and Engineering, Southeast University, Nanjing, 211189, P. R. China
| |
Collapse
|
17
|
|
18
|
Li M, Luo Z, Quan J, Ding T, Xu B, Li W, Mao Q, Ma W, Xiang H, Zhu M. Oxygen defect enriched hematite nanorods @ reduced graphene oxide core-sheath fiber for superior flexible asymmetric supercapacitor. J Colloid Interface Sci 2024; 653:77-84. [PMID: 37708734 DOI: 10.1016/j.jcis.2023.09.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/06/2023] [Accepted: 09/08/2023] [Indexed: 09/16/2023]
Abstract
The development of flexible asymmetric supercapacitors with high operating potential, superior energy density, and exceptional rate performance holds significant implications for the advancement of flexible electronics. Herein, oxygen-deficient hematite nanorods @ reduced graphene oxide (Fe2O3-x@RGO) core-sheath fiber was rationally designed and fabricated. The introduction of oxygen defects can simultaneously enhance the conductivity, create a mesoporous crystalline structure, increase active surface area and sites. This leads to a significantly improved electrochemical performance, exhibiting a high specific capacitance of 525.2F cm-3 at 5 mV s-1 and remarkable rate capability (53.7 % retention from 5 to 100 mV s-1). Additionally, a flexible asymmetric supercapacitor was assembled employing Fe2O3-x@RGO fibers as anode and MnO2/RGO fibers as cathode. This design achieved a maximum operating voltage of 2.35 V, high energy density of 71.4 mWh cm-3, and outstanding cycling stability with 97.1 % retention after 5000 cycles. This study proposes a straightforward and efficient strategy to substantially enhance the electrochemical performances of transition metal oxide anodes, thereby promoting their practical application in asymmetric supercapacitors.
Collapse
Affiliation(s)
- Min Li
- College of Textile and Garment, Nantong University, Nantong 226019, China
| | - Zhengxin Luo
- College of Textile and Garment, Nantong University, Nantong 226019, China
| | - Jiaxin Quan
- College of Textile and Garment, Nantong University, Nantong 226019, China
| | - Ting Ding
- College of Textile and Garment, Nantong University, Nantong 226019, China
| | - Bilin Xu
- College of Textile and Garment, Nantong University, Nantong 226019, China
| | - Wanfei Li
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Qinghui Mao
- College of Textile and Garment, Nantong University, Nantong 226019, China
| | - Wujun Ma
- College of Textile and Garment, Nantong University, Nantong 226019, China; State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620, China.
| | - Hengxue Xiang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620, China.
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620, China
| |
Collapse
|
19
|
Sun Z, Hu Y, Wei W, Li Y, Zhang Q, Li K, Wang H, Hou C. Hyperstable Eutectic Core-Spun Fiber Enabled Wearable Energy Harvesting and Personal Thermal Management Fabric. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310102. [PMID: 37865832 DOI: 10.1002/adma.202310102] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Indexed: 10/23/2023]
Abstract
Electronic textiles have gradually evolved into one of the most important mainstays of flexible electronics owing to their good wearability. However, textile multifunctionality is generally achieved by stacking functional modules, which is not conducive to wearability. Integrating these modules into a single fiber provides a better solution. In this work, a core-spun functional fiber (CSF) constructed from hyper-environmentally stable Zn-based eutectogel as the core layer and polytetrafluoroethylene as the sheath is designed. The CSF achieves a synergistic output effect of piezoelectricity-enhanced triboelectricity, as well as reliable hydrophobicity, and high mid-infrared emissivity and visible light reflectivity. A monolayer functionalized integrated textile is woven from the CSF to enable effective energy (mechanical and droplet energy) harvesting and personal thermal management functions. Furthermore, scenarios for the energy supply, motion detection, and outdoor use of electronic fabrics for electronics applications are demonstrated, opening new avenues for the functional integration of electronic textiles.
Collapse
Affiliation(s)
- Zhouquan Sun
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Yunhao Hu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Wei Wei
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Yaogang Li
- Engineering Research Center of Advanced Glasses Manufacturing Technology, Ministry of Education, Donghua University, Shanghai, 201620, P. R. China
| | - Qinghong Zhang
- Engineering Research Center of Advanced Glasses Manufacturing Technology, Ministry of Education, Donghua University, Shanghai, 201620, P. R. China
| | - Kerui Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Hongzhi Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Chengyi Hou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| |
Collapse
|
20
|
Wu M, Shao Z, Zhao N, Zhang R, Yuan G, Tian L, Zhang Z, Gao W, Bai H. Biomimetic, knittable aerogel fiber for thermal insulation textile. Science 2023; 382:1379-1383. [PMID: 38127754 DOI: 10.1126/science.adj8013] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 11/06/2023] [Indexed: 12/23/2023]
Abstract
Aerogels have been considered as an ideal material for thermal insulation. Unfortunately, their application in textiles is greatly limited by their fragility and poor processability. We overcame these issues by encapsulating the aerogel fiber with a stretchable layer, mimicking the core-shell structure of polar bear hair. Despite its high internal porosity over 90%, our fiber is stretchable up to 1000% strain, which is greatly improved compared with that of traditional aerogel fibers (~2% strain). In addition to its washability and dyeability, our fiber is mechanically robust, retaining its stable thermal insulation property after 10,000 stretching cycles (100% strain). A sweater knitted with our fiber was only one-fifth as thick as down, with similar performance. Our strategy for this fiber provides rich possibilities for developing multifunctional aerogel fibers and textiles.
Collapse
Affiliation(s)
- Mingrui Wu
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Ziyu Shao
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Nifang Zhao
- Institute of Zhejiang University-Quzhou, Quzhou 324000, China
| | - Rongzhen Zhang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Guodong Yuan
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Lulu Tian
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Zibei Zhang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Weiwei Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
| | - Hao Bai
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Institute of Zhejiang University-Quzhou, Quzhou 324000, China
| |
Collapse
|
21
|
Yang S, Zhao S, Chen S. Recent advances in electrospinning nanofiber materials for aqueous zinc ion batteries. Chem Sci 2023; 14:13346-13366. [PMID: 38033908 PMCID: PMC10685289 DOI: 10.1039/d3sc05283d] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 11/02/2023] [Indexed: 12/02/2023] Open
Abstract
Aqueous zinc ion batteries (AZIBs) are regarded as one of the most promising large-scale energy storage systems because of their considerable energy density and intrinsic safety. Nonetheless, the severe dendrite growth of the Zn anode, the serious degradation of the cathode, and the boundedness of separators restrict the application of AZIBs. Fortunately, electrospinning nanofibers demonstrate huge potential and bright prospects in constructing AZIBs with excellent electrochemical performance due to their controllable nanostructure, high conductivity, and large specific surface area (SSA). In this review, we first briefly introduce the principles and processing of the electrospinning technique and the structure design of electrospun fibers in AZIBs. Then, we summarize the recent advances of electrospinning nanofibers in AZIBs, including the cathodes, anodes, and separators, highlighting the nanofibers' working mechanism and the correlations between electrode structure and performance. Finally, based on insightful understanding, the prospects of electrospun fibers for high-performance AZIBs are also presented.
Collapse
Affiliation(s)
- Sinian Yang
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology of Materials, Beijing University of Chemical Technology Beijing 10029 China
| | - Shunshun Zhao
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology of Materials, Beijing University of Chemical Technology Beijing 10029 China
| | - Shimou Chen
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology of Materials, Beijing University of Chemical Technology Beijing 10029 China
| |
Collapse
|
22
|
Qi X, Liu Y, Yu L, Yu Z, Chen L, Li X, Xia Y. Versatile Liquid Metal/Alginate Composite Fibers with Enhanced Flame Retardancy and Triboelectric Performance for Smart Wearable Textiles. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303406. [PMID: 37551040 PMCID: PMC10582420 DOI: 10.1002/advs.202303406] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/19/2023] [Indexed: 08/09/2023]
Abstract
Liquid metal (LM) shows the superiority in smart wearable devices due to its biocompatibility and electromagnetic interference (EMI) shielding. However, LM based fibers that can achieve multifunctional integrated applications with biodegradability remain a daunting challenge. Herein, versatile LM based fibers are fabricated first by sonication in alginate solution to obtain LM micro/nano droplets and then wet-spinning into LM/alginate composite fibers. By mixing with high-concentration alginate solution (4-6 wt.%), the LM micro/nano droplets stability (colloidal stability for > 30 d and chemical stability for > 45 d) are not only improved, but also facilitate its spinning into fibers through bimetallic ions (e.g., Ga3+ and Ca2+ ) chelation strategy. These resultant fibers can be woven into smart textiles with excellent flexibility, air permeability, water/salt resistance, and high temperature tolerance (-196-150 °C). In addition, inhibition of smoldering result from the LM droplets and bimetallic ions is achieved to enhance flame retardancy. Furthermore, these fibers combine the exceptional properties of LM droplets (e.g., photo-thermal effect and EMI shielding) and alginate fibers (e.g., biocompatibility and biodegradability), applicable in wearable heating devices, wireless communication, and triboelectric nanogenerator, making it a promising candidate for flexible smart textiles.
Collapse
Affiliation(s)
- Xiulei Qi
- State Key Laboratory of Bio‐Fibers and Eco‐TextilesCollaborative Innovation Center for Marine Biomass FibersMaterials and Textiles of Shandong ProvinceCollege of Materials Science and EngineeringInstitute of Marine Biobased MaterialsQingdao UniversityNingxia Road 308Qingdao266071P. R. China
| | - Yide Liu
- State Key Laboratory of Bio‐Fibers and Eco‐TextilesCollaborative Innovation Center for Marine Biomass FibersMaterials and Textiles of Shandong ProvinceCollege of Materials Science and EngineeringInstitute of Marine Biobased MaterialsQingdao UniversityNingxia Road 308Qingdao266071P. R. China
| | - Lei Yu
- State Key Laboratory of Bio‐Fibers and Eco‐TextilesCollaborative Innovation Center for Marine Biomass FibersMaterials and Textiles of Shandong ProvinceCollege of Materials Science and EngineeringInstitute of Marine Biobased MaterialsQingdao UniversityNingxia Road 308Qingdao266071P. R. China
| | - Zhenchuan Yu
- State Key Laboratory of Bio‐Fibers and Eco‐TextilesCollaborative Innovation Center for Marine Biomass FibersMaterials and Textiles of Shandong ProvinceCollege of Materials Science and EngineeringInstitute of Marine Biobased MaterialsQingdao UniversityNingxia Road 308Qingdao266071P. R. China
| | - Long Chen
- State Key Laboratory of Bio‐Fibers and Eco‐TextilesCollaborative Innovation Center for Marine Biomass FibersMaterials and Textiles of Shandong ProvinceCollege of Materials Science and EngineeringInstitute of Marine Biobased MaterialsQingdao UniversityNingxia Road 308Qingdao266071P. R. China
| | - Xiankai Li
- State Key Laboratory of Bio‐Fibers and Eco‐TextilesCollaborative Innovation Center for Marine Biomass FibersMaterials and Textiles of Shandong ProvinceCollege of Materials Science and EngineeringInstitute of Marine Biobased MaterialsQingdao UniversityNingxia Road 308Qingdao266071P. R. China
| | - Yanzhi Xia
- State Key Laboratory of Bio‐Fibers and Eco‐TextilesCollaborative Innovation Center for Marine Biomass FibersMaterials and Textiles of Shandong ProvinceCollege of Materials Science and EngineeringInstitute of Marine Biobased MaterialsQingdao UniversityNingxia Road 308Qingdao266071P. R. China
| |
Collapse
|
23
|
Bai Z, Zhang H, Zhu H, Jiang J, Zhang D, Yu Y, Quan F. PVA/sodium alginate multi-network aerogel fibers, incorporated with PEG and ZnO, exhibit enhanced temperature regulation, antibacterial, thermal conductivity, and thermal stability. Carbohydr Polym 2023; 317:121037. [PMID: 37364965 DOI: 10.1016/j.carbpol.2023.121037] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 06/28/2023]
Abstract
This paper presents a novel approach for the fabrication of polyvinyl alcohol (PVA)/sodium alginate (SA) aerogel fibers with a multilayered network structure using wet spinning and freeze-thaw cycling techniques. The multiple cross-linking networks regulate the pore structure, leading to the formation of stable and tunable multilevel pore architectures. PEG and nano-ZnO were successfully loaded onto the PVA/SA modified aerogel fibers (MAFs) using vacuum impregnation. MAFs exhibited excellent thermal stability at 70 °C without leakage after 24 h of heating. Furthermore, MAFs demonstrated excellent temperature regulation performance, with a latent heat of 121.4 J/g, which accounts for approximately 83 % of PEG. After modification, the thermal conductivity of MAFs was significantly improved, and they exhibited excellent antibacterial properties. Therefore, MAFs are expected to be widely used in intelligent temperature-regulating textiles.
Collapse
Affiliation(s)
- Zijian Bai
- College of Textile and Material Engineering, Dalian Polytechnic University, Dalian, Liaoning 116034, China
| | - Hong Zhang
- College of Textile and Material Engineering, Dalian Polytechnic University, Dalian, Liaoning 116034, China.
| | - Haotong Zhu
- College of Textile and Material Engineering, Dalian Polytechnic University, Dalian, Liaoning 116034, China
| | - Jianyu Jiang
- College of Textile and Material Engineering, Dalian Polytechnic University, Dalian, Liaoning 116034, China
| | - Dongnan Zhang
- College of Textile and Material Engineering, Dalian Polytechnic University, Dalian, Liaoning 116034, China
| | - Yue Yu
- College of Textile and Material Engineering, Dalian Polytechnic University, Dalian, Liaoning 116034, China.
| | - Fengyu Quan
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao, Shandong 266071, PR China.
| |
Collapse
|
24
|
Nayak B, Mondal R, Ottakam Thotiyl M. Electrostatically driven unidirectional molecular flux for high performance alkaline flow batteries. NANOSCALE 2023; 15:14468-14475. [PMID: 37602479 DOI: 10.1039/d3nr02727a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
To mitigate the mismatch between energy availability and energy demand due to day/night shifts and seasonal variations, intensive efforts have been dedicated to storing renewable energy in various energy storage modules. Redox flow batteries have an upper hand over conventional batteries as energy storage modules due to their capability of decoupling energy and power. However, interfacial events, such as mass transport and electron transfer, play pivotal roles in flow batteries' energy storage and conversion mechanisms. We show that by activating electrostatic forces at the interface, unidirectional molecular flux can be achieved to and from the driving electrode surface, thereby generating a parallel or antiparallel electrostatic current along with a diffusion current. This approach of triggering electrostatic forces in flow batteries enhances their volumetric energy density and amplifies the energy efficiency to values as high as ∼92% without altering the solubility limit of the redox active species.
Collapse
Affiliation(s)
- Bhojkumar Nayak
- Department of Chemistry, Indian Institute of Science Education and Research (IISER)-Pune, Dr. Homi Bhabha Road, Pashan, Pune 411008, Maharashtra, India.
| | - Ritwik Mondal
- Department of Chemistry, Indian Institute of Science Education and Research (IISER)-Pune, Dr. Homi Bhabha Road, Pashan, Pune 411008, Maharashtra, India.
| | - Musthafa Ottakam Thotiyl
- Department of Chemistry, Indian Institute of Science Education and Research (IISER)-Pune, Dr. Homi Bhabha Road, Pashan, Pune 411008, Maharashtra, India.
| |
Collapse
|
25
|
Sun J, Liao W, Yang Z. Additive Manufacturing of Liquid Crystal Elastomer Actuators Based on Knitting Technology. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2302706. [PMID: 37278691 DOI: 10.1002/adma.202302706] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/12/2023] [Indexed: 06/07/2023]
Abstract
Liquid crystal elastomer (LCE) exhibits large and reversible deformability originating from the alignment of liquid crystal mesogens. Additive manufacturing provides high controllability in the alignment and shaping process of LCE actuators. However, it still remains a challenge to customize LCE actuators with both diverse 3D deformability and recyclability. In this study, a new strategy is developed to exploit knitting technique to additively manufacture LCE actuators. The obtained LCE actuators are fabric-structured with designed geometry and deformability. By accurately adjusting the parameters of the knitting patterns as modules, diverse geometry is pixel-wise designed, and complex 3D deformations including bending, twisting, and folding are quantitatively controlled. In addition, the fabric-structured LCE actuators can be threaded, stitched, and reknitted to achieve advanced geometry, integrated multi-functions and efficient recyclability. This approach allows the fabrication of versatile LCE actuators with potential applications in smart textiles and soft robots.
Collapse
Affiliation(s)
- Jiahao Sun
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Wei Liao
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Zhongqiang Yang
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
- Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
26
|
Xiao G, Ju J, Li M, Wu H, Jian Y, Sun W, Wang W, Li CM, Qiao Y, Lu Z. Weavable yarn-shaped supercapacitor in sweat-activated self-charging power textile for wireless sweat biosensing. Biosens Bioelectron 2023; 235:115389. [PMID: 37216843 DOI: 10.1016/j.bios.2023.115389] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/29/2023] [Accepted: 05/12/2023] [Indexed: 05/24/2023]
Abstract
The yarn-based sweat-activated battery (SAB) is a promising energy source for textile electronics due to its excellent skin compatibility, great weavability, and stable electric output. However, its power density is too low to support real-time monitoring and wireless data transmission. Here, we developed a scalable, high-performance sweat-based yarn biosupercapacitor (SYBSC) with two symmetrically aligned electrodes made by wrapping hydrophilic cotton fibers on polypyrrole/poly (3,4-ethylenedioxythiophene):poly (styrenesulfonate)-modified stainless steel yarns. Once activated with artificial sweat, the SYBSC could offer a high areal capacitance of 343.1 mF cm-2 at 0.5 mA cm-2. After 10,000 times of bending under continuous charge-discharge cycles and 25 cycles of machine washing, the device could retain the capacitance at rates of 68% and 73%, respectively. The SYBSCs were integrated with yarn-shaped SABs to produce hybrid self-charging power units. The hybrid units, pH sensing fibers, and a mini-analyzer were woven into a sweat-activated all-in-one sensing textile, in which the hybrid, self-charging units could power the analyzer for real-time data collection and wireless transmission. The all-in-one electronic textile could be successfully employed to real-time monitor the pH values of the volunteers' sweat during exercise. This work can promote the development of self-charging electronic textiles for monitoring human healthcare and exercise intensity.
Collapse
Affiliation(s)
- Gang Xiao
- Institute for Clean Energy & Advanced Materials, School of Materials & Energy, Southwest University, Chongqing, 400715, PR China; Sino-Singapore Joint Laboratory of Materials and Technologies for Proactive Health Monitoring, School of Materials & Energy, Southwest University, Chongqing, 400715, PR China; Experimental Center for Virtual Simulation of Sports and Health, Southwest University, Chongqing, 400715, PR China
| | - Jun Ju
- Institute for Clean Energy & Advanced Materials, School of Materials & Energy, Southwest University, Chongqing, 400715, PR China; Sino-Singapore Joint Laboratory of Materials and Technologies for Proactive Health Monitoring, School of Materials & Energy, Southwest University, Chongqing, 400715, PR China; Experimental Center for Virtual Simulation of Sports and Health, Southwest University, Chongqing, 400715, PR China
| | - Min Li
- Institute for Clean Energy & Advanced Materials, School of Materials & Energy, Southwest University, Chongqing, 400715, PR China; Sino-Singapore Joint Laboratory of Materials and Technologies for Proactive Health Monitoring, School of Materials & Energy, Southwest University, Chongqing, 400715, PR China; Experimental Center for Virtual Simulation of Sports and Health, Southwest University, Chongqing, 400715, PR China
| | - Huajun Wu
- Institute for Clean Energy & Advanced Materials, School of Materials & Energy, Southwest University, Chongqing, 400715, PR China; Sino-Singapore Joint Laboratory of Materials and Technologies for Proactive Health Monitoring, School of Materials & Energy, Southwest University, Chongqing, 400715, PR China; Experimental Center for Virtual Simulation of Sports and Health, Southwest University, Chongqing, 400715, PR China
| | - Yihao Jian
- Institute for Clean Energy & Advanced Materials, School of Materials & Energy, Southwest University, Chongqing, 400715, PR China; Sino-Singapore Joint Laboratory of Materials and Technologies for Proactive Health Monitoring, School of Materials & Energy, Southwest University, Chongqing, 400715, PR China; Experimental Center for Virtual Simulation of Sports and Health, Southwest University, Chongqing, 400715, PR China
| | - Wei Sun
- Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, 571158, PR China
| | - Wei Wang
- Singapore Institute of Manufacturing Technology, 138669, Singapore
| | - Chang Ming Li
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215011, PR China
| | - Yan Qiao
- Institute for Clean Energy & Advanced Materials, School of Materials & Energy, Southwest University, Chongqing, 400715, PR China; Sino-Singapore Joint Laboratory of Materials and Technologies for Proactive Health Monitoring, School of Materials & Energy, Southwest University, Chongqing, 400715, PR China; Experimental Center for Virtual Simulation of Sports and Health, Southwest University, Chongqing, 400715, PR China.
| | - Zhisong Lu
- Institute for Clean Energy & Advanced Materials, School of Materials & Energy, Southwest University, Chongqing, 400715, PR China; Sino-Singapore Joint Laboratory of Materials and Technologies for Proactive Health Monitoring, School of Materials & Energy, Southwest University, Chongqing, 400715, PR China; Experimental Center for Virtual Simulation of Sports and Health, Southwest University, Chongqing, 400715, PR China.
| |
Collapse
|
27
|
Tan H, Zhang L, Ma X, Sun L, Yu D, You Z. Adaptable covalently cross-linked fibers. Nat Commun 2023; 14:2218. [PMID: 37072415 PMCID: PMC10113382 DOI: 10.1038/s41467-023-37850-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 04/03/2023] [Indexed: 04/20/2023] Open
Abstract
Fibers, with over 100 million tons produced each year, have been widely used in various areas. Recent efforts have focused on improving mechanical properties and chemical resistance of fibers via covalent cross-linking. However, the covalently cross-linked polymers are usually insoluble and infusible, and thus fiber fabrication is difficult. Those reported require complex multiple-step preparation processes. Herein, we present a facile and effective strategy to prepare adaptable covalently cross-linked fibers by direct melt spinning of covalent adaptable networks (CANs). At processing temperature, dynamic covalent bonds are reversibly dissociated/associated and the CANs are temporarily disconnected to enable melt spinning; at the service temperature, the dynamic covalent bonds are frozen, and the CANs exhibit favorable structural stability. We demonstrate the efficiency of this strategy via dynamic oxime-urethane based CANs, and successfully prepare adaptable covalently cross-linked fibers with robust mechanical properties (maximum elongation of 2639%, tensile strength of 87.68 MPa, almost complete recovery from an elongation of 800%) and solvent resistance. Application of this technology is demonstrated by an organic solvent resistant and stretchable conductive fiber.
Collapse
Affiliation(s)
- Hui Tan
- Respiratory Department, Shenzhen Children's Hospital, 518038, Shenzhen, China
| | - Luzhi Zhang
- Respiratory Department, Shenzhen Children's Hospital, 518038, Shenzhen, China
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Institute of Functional Materials, Research Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society), Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, 201620, Shanghai, China
| | - Xiaopeng Ma
- Respiratory Department, Shenzhen Children's Hospital, 518038, Shenzhen, China
| | - Lijie Sun
- Respiratory Department, Shenzhen Children's Hospital, 518038, Shenzhen, China
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Institute of Functional Materials, Research Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society), Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, 201620, Shanghai, China
| | - Dingle Yu
- Respiratory Department, Shenzhen Children's Hospital, 518038, Shenzhen, China
| | - Zhengwei You
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Institute of Functional Materials, Research Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society), Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, 201620, Shanghai, China.
| |
Collapse
|
28
|
Liu Y, Li K, Yao J, Li X, Xia Y. Copper-Coordinated Cellulose Fibers for Electric Devices with Motion Sensitivity and Flame Retardance. ACS APPLIED MATERIALS & INTERFACES 2023; 15:18272-18280. [PMID: 36999640 DOI: 10.1021/acsami.2c21821] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Nanocomposite conductive fibers are of great significance in applications of wearable devices, smart textiles, and flexible electronics. Integration of conductive nanomaterials into flexible bio-based fibers with multifunctionality remains challenging due to interface failure, poor flexibility, and inflammability. Although having broader applications in textiles, regenerated cellulose fibers (RCFs) cannot meet the requirements of wearable electronics owing to their intrinsic insulation. In this study, we constructed conductive RCFs fabricated by coordinating copper ions with cellulose and reducing them into stable Cu nanoparticles coated on their surface. The Cu sheath offered excellent electrical conductivity (4.6 × 105 S m-1), electromagnetic interference shielding, and enhanced flame retardance. Inspired by plant tendrils, the conductive RCF was wrapped around an elastic rod to develop wearable sensors for human health and motion monitoring. The resultant fibers not only form stable conductive nanocomposites on the fiber surface by chemical bonds but also exhibit a huge potential for wearable devices, smart sensors, and flame-retardant circuits.
Collapse
Affiliation(s)
- Yide Liu
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center for Marine Biomass Fibers, Materials and Textiles of Shandong Province, College of Materials Science and Engineering, Insititute of Marine Biobased Materials, Qingdao University, Ningxia Road 308, Qingdao 266071, P. R. China
| | - Kai Li
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center for Marine Biomass Fibers, Materials and Textiles of Shandong Province, College of Materials Science and Engineering, Insititute of Marine Biobased Materials, Qingdao University, Ningxia Road 308, Qingdao 266071, P. R. China
| | - Jiuyong Yao
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center for Marine Biomass Fibers, Materials and Textiles of Shandong Province, College of Materials Science and Engineering, Insititute of Marine Biobased Materials, Qingdao University, Ningxia Road 308, Qingdao 266071, P. R. China
| | - Xiankai Li
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center for Marine Biomass Fibers, Materials and Textiles of Shandong Province, College of Materials Science and Engineering, Insititute of Marine Biobased Materials, Qingdao University, Ningxia Road 308, Qingdao 266071, P. R. China
| | - Yanzhi Xia
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center for Marine Biomass Fibers, Materials and Textiles of Shandong Province, College of Materials Science and Engineering, Insititute of Marine Biobased Materials, Qingdao University, Ningxia Road 308, Qingdao 266071, P. R. China
| |
Collapse
|
29
|
Tomer VK, Malik R, Tjong J, Sain M. State and future implementation perspectives of porous carbon-based hybridized matrices for lithium sulfur battery. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
30
|
Chu X, Yang W, Li H. Recent advances in polyaniline-based micro-supercapacitors. MATERIALS HORIZONS 2023; 10:670-697. [PMID: 36598367 DOI: 10.1039/d2mh01345b] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The rapid development of the Internet of Things (IoTs) and proliferation of wearable electronics have significantly stimulated the pursuit of distributed power supply systems that are small and light. Accordingly, micro-supercapacitors (MSCs) have recently attracted tremendous research interest due to their high power density, good energy density, long cycling life, and rapid charge/discharge rate delivered in a limited volume and area. As an emerging class of electrochemical energy storage devices, MSCs using polyaniline (PANI) electrodes are envisaged to bridge the gap between carbonaceous MSCs and micro-batteries, leading to a high power density together with improved energy density. However, despite the intensive development of PANI-based MSCs in the past few decades, a comprehensive review focusing on the chemical properties and synthesis of PANI, working mechanisms, design principles, and electrochemical performances of MSCs is lacking. Thus, herein, we summarize the recent advances in PANI-based MSCs using a wide range of electrode materials. Firstly, the fundamentals of MSCs are outlined including their working principle, device design, fabrication technology, and performance metrics. Then, the working principle and synthesis methods of PANI are discussed. Afterward, MSCs based on various PANI materials including pure PANI, PANI hydrogel, and PANI composites are discussed in detail. Lastly, concluding remarks and perspectives on their future development are presented. This review can present new ideas and give rise to new opportunities for the design of high-performance miniaturized PANI-based MSCs that underpin the sustainable prosperity of the approaching IoTs era.
Collapse
Affiliation(s)
- Xiang Chu
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 639798, Singapore.
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China.
| | - Weiqing Yang
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China.
| | - Hong Li
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 639798, Singapore.
| |
Collapse
|
31
|
PET/Graphene Nanocomposite Fibers Obtained by Dry-Jet Wet-Spinning for Conductive Textiles. Polymers (Basel) 2023; 15:polym15051245. [PMID: 36904485 PMCID: PMC10007137 DOI: 10.3390/polym15051245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 03/04/2023] Open
Abstract
The combination of polyethylene terephthalate (PET), one of the most used polymers in the textile industry, with graphene, one of the most outstanding conductive materials in recent years, represents a promising strategy for the preparation of conductive textiles. This study focuses on the preparation of mechanically stable and conductive polymer textiles and describes the preparation of PET/graphene fibers by the dry-jet wet-spinning method from nanocomposite solutions in trifluoroacetic acid. Nanoindentation results show that the addition of a small amount of graphene (2 wt.%) to the glassy PET fibers produces a significant modulus and hardness enhancement (≈10%) that can be partly attributed to the intrinsic mechanical properties of graphene but also to the promotion of crystallinity. Higher graphene loadings up to 5 wt.% are found to produce additional mechanical improvements up to ≈20% that can be merely attributed to the superior properties of the filler. Moreover, the nanocomposite fibers display an electrical conductivity percolation threshold over 2 wt.% approaching ≈0.2 S/cm for the largest graphene loading. Finally, bending tests on the nanocomposite fibers show that the good electrical conductivity can be preserved under cyclic mechanical loading.
Collapse
|
32
|
Zheng Y, Wang Y, Zhao J, Li Y. Electrostatic Interfacial Cross-Linking and Structurally Oriented Fiber Constructed by Surface-Modified 2D MXene for High-Performance Flexible Pseudocapacitive Storage. ACS NANO 2023; 17:2487-2496. [PMID: 36724005 DOI: 10.1021/acsnano.2c10065] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Fiber supercapacitors are promising power supplies suitable for wearable electronics, but the internally insufficient cross-linking and random structure of fiber electrodes restrict their performance. This study describes how interfacial cross-linking and oriented structure can fabricate an MXene fiber with high flexibility and electrochemical performance. The continuous and highly oriented macroscopic fibers were constructed by 2D MXene sheets via a liquid-crystalline wet-spinning assembly. The oxyanion-enriched terminations of surface-modified MXene in situ could reinforce the interfacial cross-linking by electrostatic interactions while mediating the sheet-to-sheet lamellar structure within the fiber. The resultant MXene fiber exhibits high electrical conductivity (3545 S cm-1) and mechanical strength (205.5 MPa) and high pseudocapacitance charge storage capability up to 1570.5 F cm-3. Notably, the assembled fiber supercapacitor delivers an energy density of 77.6 mWh cm-3 at 401.9 mW cm-3, exceptional flexibility and stability exhibiting ∼99.5% capacitance retention under mechanical deformation, and can be integrated into commercial textiles to power microelectronic devices. This work provides insight into the fabrication of an advanced MXene fiber and the development of high-performance flexible fiber supercapacitors.
Collapse
Affiliation(s)
- Yuanchuan Zheng
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Yalei Wang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Jiupeng Zhao
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Yao Li
- Center for Composite Materials and Structure, Harbin Institute of Technology, Harbin 150001, China
| |
Collapse
|
33
|
Sun F, Jiang H, Wang H, Zhong Y, Xu Y, Xing Y, Yu M, Feng LW, Tang Z, Liu J, Sun H, Wang H, Wang G, Zhu M. Soft Fiber Electronics Based on Semiconducting Polymer. Chem Rev 2023; 123:4693-4763. [PMID: 36753731 DOI: 10.1021/acs.chemrev.2c00720] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Fibers, originating from nature and mastered by human, have woven their way throughout the entire history of human civilization. Recent developments in semiconducting polymer materials have further endowed fibers and textiles with various electronic functions, which are attractive in applications such as information interfacing, personalized medicine, and clean energy. Owing to their ability to be easily integrated into daily life, soft fiber electronics based on semiconducting polymers have gained popularity recently for wearable and implantable applications. Herein, we present a review of the previous and current progress in semiconducting polymer-based fiber electronics, particularly focusing on smart-wearable and implantable areas. First, we provide a brief overview of semiconducting polymers from the viewpoint of materials based on the basic concepts and functionality requirements of different devices. Then we analyze the existing applications and associated devices such as information interfaces, healthcare and medicine, and energy conversion and storage. The working principle and performance of semiconducting polymer-based fiber devices are summarized. Furthermore, we focus on the fabrication techniques of fiber devices. Based on the continuous fabrication of one-dimensional fiber and yarn, we introduce two- and three-dimensional fabric fabricating methods. Finally, we review challenges and relevant perspectives and potential solutions to address the related problems.
Collapse
Affiliation(s)
- Fengqiang Sun
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
- Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
| | - Hao Jiang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Haoyu Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yueheng Zhong
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yiman Xu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yi Xing
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Muhuo Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
- Shanghai Key Laboratory of Lightweight Structural Composites, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Liang-Wen Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610065, China
| | - Zheng Tang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
- Center for Advanced Low-dimension Materials, Donghua University, Shanghai 201620, China
| | - Jun Liu
- National Key Laboratory on Electromagnetic Environment Effects and Electro-Optical Engineering, Nanjing 210007, China
| | - Hengda Sun
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Hongzhi Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Gang Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| |
Collapse
|
34
|
Chen C, Feng J, Li J, Guo Y, Shi X, Peng H. Functional Fiber Materials to Smart Fiber Devices. Chem Rev 2023; 123:613-662. [PMID: 35977344 DOI: 10.1021/acs.chemrev.2c00192] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The development of fiber materials has accompanied the evolution of human civilization for centuries. Recent advances in materials science and chemistry offered fibers new applications with various functions, including energy harvesting, energy storing, displaying, health monitoring and treating, and computing. The unique one-dimensional shape of fiber devices endows them advantages to work as human-interfaced electronics due to the small size, lightweight, flexibility, and feasibility for integration into large-scale textile systems. In this review, we first present a discussion of the basics of fiber materials and the design principles of fiber devices, followed by a comprehensive analysis on recently developed fiber devices. Finally, we provide the current challenges facing this field and give an outlook on future research directions. With novel fiber devices and new applications continuing to be discovered after two decades of research, we envision that new fiber devices could have an important impact on our life in the near future.
Collapse
Affiliation(s)
- Chuanrui Chen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai 200438, P. R. China
| | - Jianyou Feng
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai 200438, P. R. China
| | - Jiaxin Li
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai 200438, P. R. China
| | - Yue Guo
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai 200438, P. R. China
| | - Xiang Shi
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai 200438, P. R. China
| | - Huisheng Peng
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai 200438, P. R. China
| |
Collapse
|
35
|
Zong D, Zhang X, Yin X, Wang F, Yu J, Zhang S, Ding B. Electrospun Fibrous Sponges: Principle, Fabrication, and Applications. ADVANCED FIBER MATERIALS 2022; 4:1434-1462. [DOI: 10.1007/s42765-022-00202-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/25/2022] [Indexed: 01/06/2025]
|
36
|
Highly oriented PVDF molecular chains for enhanced material performance. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
37
|
Zhang Z, Innocent MT, Tang N, Li R, Hu Z, Zhai M, Yang L, Ma W, Xiang H, Zhu M. Electromechanical Performance of Strain Sensors Based on Viscoelastic Conductive Composite Polymer Fibers. ACS APPLIED MATERIALS & INTERFACES 2022; 14:44832-44840. [PMID: 36153950 DOI: 10.1021/acsami.2c12120] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Flexible conductive polymer composite (CPC) fibers that show large changes in resistance with deformation have recently gained much attention as strain-sensing components for future wearable electronics. However, the electrical resistance of these materials decays with time during dynamic cyclic loading, a deformation performed to simulate their real application as strain sensors. Despite the extensive research on CPC fibers, the mechanism leading to this decay in the electromechanical response under repetitive cycles remains unreported. Herein, this behavior is investigated using fiber-based strain sensors wet spun from thermoplastic polyurethane (TPU) consisting of a carbonaceous hybrid conductive filler system of carbon black (CB) and carbon nanotubes (CNTs). We found electrical viscosity to predict the observed electromechanical resistance decay. This implies that cycling these materials enables the relaxation of both the polymer chains and the conductive network. In addition, the resulting piezoresistive fibers are sensitive to deformation in the region of low strain (gauge factor of 6.0 within 3.0% strain), remain conductive under 280.5% deformation, and are stable for more than 2000 cycles. Finally, we demonstrate the potential of TPU/CB-CNT fibers as strain sensors for monitoring human motion.
Collapse
Affiliation(s)
- Ziling Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Mugaanire Tendo Innocent
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Ning Tang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Ruyu Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Zexu Hu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Mian Zhai
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Lijun Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Wujun Ma
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
- College of Textile and Garment, Nantong University, Nantong 226019, China
| | - Hengxue Xiang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| |
Collapse
|
38
|
Shao Z, Chen J, Gao K, Xie Q, Xue X, Zhou S, Huang C, Mi L, Hou H. A Double‐Helix Metal‐Chain Metal‐Organic Framework as a High‐Output Triboelectric Nanogenerator Material for Self‐Powered Anticorrosion. Angew Chem Int Ed Engl 2022; 61:e202208994. [DOI: 10.1002/anie.202208994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Zhichao Shao
- Center for Advanced Materials Research Zhongyuan University of Technology Zhengzhou 450007 P. R. China
| | - Junshuai Chen
- Center for Advanced Materials Research Zhongyuan University of Technology Zhengzhou 450007 P. R. China
| | - Kexin Gao
- Center for Advanced Materials Research Zhongyuan University of Technology Zhengzhou 450007 P. R. China
| | - Qiong Xie
- College of Chemistry Zhengzhou University Zhengzhou Henan, 450001 P. R. China
| | - Xiaojing Xue
- College of Chemistry Zhengzhou University Zhengzhou Henan, 450001 P. R. China
| | - Shuangyan Zhou
- Chongqing Key Laboratory on Big Data for Bio Intelligence Chongqing University of Posts and Telecommunications Chongqing 400065 China
| | - Chao Huang
- Center for Advanced Materials Research Zhongyuan University of Technology Zhengzhou 450007 P. R. China
| | - Liwei Mi
- Center for Advanced Materials Research Zhongyuan University of Technology Zhengzhou 450007 P. R. China
| | - Hongwei Hou
- College of Chemistry Zhengzhou University Zhengzhou Henan, 450001 P. R. China
| |
Collapse
|
39
|
Snari RM, Bayazeed A, Ibarhiam SF, Alnoman RB, Attar R, Abumelha HM, El-Metwaly NM. Solution blowing spinning of polylactate/polyvinyl alcohol/ZnO nanocomposite toward green and sustainable preparation of wound dressing nanofibrous films. Microsc Res Tech 2022; 85:3860-3870. [PMID: 36178460 DOI: 10.1002/jemt.24237] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/25/2022] [Accepted: 09/14/2022] [Indexed: 11/08/2022]
Abstract
The outstanding biodegradability, biocompatibility, affordability, and renewability of polylactic acid have made it a prominent biomaterial. Herein, an innovative, easy, and eco-friendly technique is used to prepare sodium polylactate (SP)-based nanofibers. Solution blowing spinning (SBS) was used to create fibrous mats of SP and polyvinyl alcohol (PVA). SBS's SP nanfibers were crosslinked using an aqueous solution of calcium chloride to produce moisture-resistant calcium polylactate nanofibrous spun mats. Both of UV-visible absorption spectra and transmission electron microscopy were utilized to study the produced zinc oxide (ZnO) nanoparticles (NPs) to indicate a diameter of around 15-23 nm with a high intensity absorption intensity at 370 nm. New polylactate copolymer was synthesized and characterized by infrared and NMR spectroscopic techniques. In order to prepare SP/PVA/ZnO nanocomposite nanofibers, various ZnO ratios were used. The morphologies of the composite nanofibers were investigated by infrared spectroscopy (FTIR), energy-dispersive X-ray analyzer, and scanning electron microscopy. The cytotoxicity tests of the prepared mat were studied by conducting experiments with L-929 cells at various time intervals. The prepared composite SP/PVA/ZnO nanofibers were subjected to cytotoxicity tests to determine their cytocompatibility. Results showed that those with ZnO concentrations between 0.5% and 2% were found to be less harmful than those with higher concentrations. A variety of bacterial species, including Bacillus pumilus and Staphylococcus aureus, as well as Klebseilla pneumoniae and Escherichia coli, were used to test the antibacterial properties of SP/PVA/ZnO spun mats. The ZnO NPs integrated in the SP/PVA fibrous mats were responsible for their antibacterial properties. After finding the appropriate concentration of ZnO that is least harmful while yet giving a satisfactory antibacterial activity, this biomaterial might be perfect for wound dressing applications. HIGHLIGHTS: New eco-friendly biodegradable sodium polylactate (SP) copolymer was synthesized. Zinc oxide nanoparticles (ZnO NPs) with a diameter of 15-23 nm were prepared. High antibacterial SP/PVA/ZnO fibers were prepared by solution blowing spinning. SP/PVA/ZnO nanofibers (180-220 nm) with various ratios of ZnO were presented. Cytotoxicity results showed that the cell viability decreases with increasing ZnO.
Collapse
Affiliation(s)
- Razan M Snari
- Department of Chemistry, Faculty of Applied Science, Umm-Al-Qura University, Makkah, Saudi Arabia
| | - Abrar Bayazeed
- Department of Chemistry, Faculty of Applied Science, Umm-Al-Qura University, Makkah, Saudi Arabia
| | - Saham F Ibarhiam
- Department of Chemistry, College of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Rua B Alnoman
- Department of Chemistry, College of Science, Taibah University, Madinah, Saudi Arabia
| | - Roba Attar
- Department of Microbiology, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Hana M Abumelha
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Nashwa M El-Metwaly
- Department of Chemistry, Faculty of Applied Science, Umm-Al-Qura University, Makkah, Saudi Arabia.,Department of Chemistry, Faculty of Science, Mansoura University, Mansoura, Egypt
| |
Collapse
|
40
|
Nan X, Wang X, Kang T, Zhang J, Dong L, Dong J, Xia P, Wei D. Review of Flexible Wearable Sensor Devices for Biomedical Application. MICROMACHINES 2022; 13:1395. [PMID: 36144018 PMCID: PMC9505309 DOI: 10.3390/mi13091395] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 05/26/2023]
Abstract
With the development of cross-fertilisation in various disciplines, flexible wearable sensing technologies have emerged, bringing together many disciplines, such as biomedicine, materials science, control science, and communication technology. Over the past few years, the development of multiple types of flexible wearable devices that are widely used for the detection of human physiological signals has proven that flexible wearable devices have strong biocompatibility and a great potential for further development. These include electronic skin patches, soft robots, bio-batteries, and personalised medical devices. In this review, we present an updated overview of emerging flexible wearable sensor devices for biomedical applications and a comprehensive summary of the research progress and potential of flexible sensors. First, we describe the selection and fabrication of flexible materials and their excellent electrochemical properties. We evaluate the mechanisms by which these sensor devices work, and then we categorise and compare the unique advantages of a variety of sensor devices from the perspective of in vitro and in vivo sensing, as well as some exciting applications in the human body. Finally, we summarise the opportunities and challenges in the field of flexible wearable devices.
Collapse
Affiliation(s)
- Xueli Nan
- School of Automation and Software Engineering, Shanxi University, Taiyuan 030006, China
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Xin Wang
- School of Automation and Software Engineering, Shanxi University, Taiyuan 030006, China
| | - Tongtong Kang
- School of Automation and Software Engineering, Shanxi University, Taiyuan 030006, China
| | - Jiale Zhang
- School of Automation and Software Engineering, Shanxi University, Taiyuan 030006, China
| | - Lanxiao Dong
- School of Automation and Software Engineering, Shanxi University, Taiyuan 030006, China
| | - Jinfeng Dong
- School of Automation and Software Engineering, Shanxi University, Taiyuan 030006, China
| | - Peng Xia
- School of Mathematical Sciences, Shanxi University, Taiyuan 030006, China
| | - Donglai Wei
- School of Mathematical Sciences, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
41
|
Shao Z, Chen J, Gao K, Xie Q, Xue X, Zhou S, Huang C, Mi L, Hou H. A Double‐Helix Metal‐Chain Metal‐Organic Framework as a High‐Output Triboelectric Nanogenerator Material for Self‐Powered Anticorrosion. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Zhichao Shao
- Zhongyuan University of Technology Center for Advanced Materials CHINA
| | - Junshuai Chen
- Zhongyuan University of Technology Center for Advanced Materials CHINA
| | - Kexin Gao
- Zhongyuan University of Technology Center for Advanced Materials CHINA
| | - Qiong Xie
- Zhongyuan University of Technology Center for Advanced Materials CHINA
| | - Xiaojing Xue
- Chongqing University of Posts and Telecommunications Chongqing Key Laboratory on Big Data for Bio Intelligence CHINA
| | - Shuangyan Zhou
- Chongqing University of Posts and Telecommunications Chongqing Key Laboratory on Big Data for Bio Intelligence CHINA
| | - Chao Huang
- Zhongyuan University of Technology Center for Advanced Materials CHINA
| | - Liwei Mi
- Zhongyuan University of Technology Center for Advanced Materials No. 41 Zhongyuan Road (M) 450007 Zhengzhou CHINA
| | - Hongwei Hou
- Zhengzhou University College of chemistry CHINA
| |
Collapse
|
42
|
Qiu Z, Yu X, Zhang J, Xu C, Gao M, Cheng Y, Zhu M. Fibrous aggregates: Amplifying aggregation-induced emission to boost health protection. Biomaterials 2022; 287:121666. [PMID: 35835002 PMCID: PMC9250848 DOI: 10.1016/j.biomaterials.2022.121666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/25/2022] [Accepted: 06/29/2022] [Indexed: 11/17/2022]
Abstract
Environmental monitoring and personal protection are critical for preventing and for protecting human health during all infectious disease outbreaks (including COVID-19). Fluorescent probes combining sensing, imaging and therapy functions, could not only afford direct visualizing existence of biotargets and monitoring their dynamic information, but also provide therapeutic functions for killing various bacteria or viruses. Luminogens with aggregation-induced emission (AIE) could be well suited for above requirements because of their typical photophysical properties and therapeutic functions. Integration of these molecules with fibers or textiles is of great interest for developing flexible devices and wearable systems. In this review, we mainly focus on how fibers and AIEgens to be combined for health protection based on the latest advances in biosensing and bioprotection. We first discuss the construction of fibrous sensors for visualization of biomolecules. Next recent advances in therapeutic fabrics for individual protection are introduced. Finally, the current challenges and future opportunities for "AIE + Fiber" in sensing and therapeutic applications are presented.
Collapse
Affiliation(s)
- Zhenduo Qiu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University. Shanghai, 201620, China
| | - Xiaoxiao Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University. Shanghai, 201620, China
| | - Junyan Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University. Shanghai, 201620, China
| | - Chengjian Xu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University. Shanghai, 201620, China
| | - Mengyue Gao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University. Shanghai, 201620, China
| | - Yanhua Cheng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University. Shanghai, 201620, China.
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University. Shanghai, 201620, China
| |
Collapse
|
43
|
Wang J, Li S, Zhu Y, Zhai S, Liu C, Fu N, Hou S, Niu Y, Luo J, Mu S, Huang Y. Metal-organic frameworks-derived NiSe@RGO composites for high-performance asymmetric supercapacitors. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
44
|
He B, Zhang Q, Pan Z, Li L, Li C, Ling Y, Wang Z, Chen M, Wang Z, Yao Y, Li Q, Sun L, Wang J, Wei L. Freestanding Metal-Organic Frameworks and Their Derivatives: An Emerging Platform for Electrochemical Energy Storage and Conversion. Chem Rev 2022; 122:10087-10125. [PMID: 35446541 PMCID: PMC9185689 DOI: 10.1021/acs.chemrev.1c00978] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
![]()
Metal–organic
frameworks (MOFs) have recently emerged as
ideal electrode materials and precursors for electrochemical energy
storage and conversion (EESC) owing to their large specific surface
areas, highly tunable porosities, abundant active sites, and diversified
choices of metal nodes and organic linkers. Both MOF-based and MOF-derived
materials in powder form have been widely investigated in relation
to their synthesis methods, structure and morphology controls, and
performance advantages in targeted applications. However, to engage
them for energy applications, both binders and additives would be
required to form postprocessed electrodes, fundamentally eliminating
some of the active sites and thus degrading the superior effects of
the MOF-based/derived materials. The advancement of freestanding electrodes
provides a new promising platform for MOF-based/derived materials
in EESC thanks to their apparent merits, including fast electron/charge
transmission and seamless contact between active materials and current
collectors. Benefiting from the synergistic effect of freestanding
structures and MOF-based/derived materials, outstanding electrochemical
performance in EESC can be achieved, stimulating the increasing enthusiasm
in recent years. This review provides a timely and comprehensive overview
on the structural features and fabrication techniques of freestanding
MOF-based/derived electrodes. Then, the latest advances in freestanding
MOF-based/derived electrodes are summarized from electrochemical energy
storage devices to electrocatalysis. Finally, insights into the currently
faced challenges and further perspectives on these feasible solutions
of freestanding MOF-based/derived electrodes for EESC are discussed,
aiming at providing a new set of guidance to promote their further
development in scale-up production and commercial applications.
Collapse
Affiliation(s)
- Bing He
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Qichong Zhang
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.,Division of Nanomaterials and Jiangxi Key Lab of Carbonene Materials, Jiangxi Institute of Nanotechnology, Nanchang 330200, China
| | - Zhenghui Pan
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117574 Singapore
| | - Lei Li
- SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, Southeast University, Nanjing 210096, China
| | - Chaowei Li
- Henan Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, 436 Xian'ge Road, Anyang 455000, China
| | - Ying Ling
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Zhixun Wang
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Mengxiao Chen
- College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou 310027, China
| | - Zhe Wang
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Yagang Yao
- College of Engineering and Applied Sciences and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Qingwen Li
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Litao Sun
- SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, Southeast University, Nanjing 210096, China
| | - John Wang
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117574 Singapore.,Institute of Materials Research and Engineering, A*Star, Singapore 138634, Singapore
| | - Lei Wei
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| |
Collapse
|
45
|
Guan T, Cheng Z, Li Z, Gao L, Yan K, Shen L, Bao N. Hydrothermal-Assisted In Situ Growth of Vertically Aligned MoS 2 Nanosheets on Reduced Graphene Oxide Fiber Fabrics toward High-Performance Flexible Supercapacitors. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c00067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Tuxiang Guan
- College of Chemical Engineering, State Key Laboratory of Material-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 210009, P. R. China
| | - Zhisheng Cheng
- College of Chemical Engineering, State Key Laboratory of Material-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 210009, P. R. China
| | - Zemei Li
- College of Chemical Engineering, State Key Laboratory of Material-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 210009, P. R. China
| | - Lin Gao
- College of Chemical Engineering, State Key Laboratory of Material-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 210009, P. R. China
| | - Kelan Yan
- College of Chemical Engineering, State Key Laboratory of Material-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 210009, P. R. China
| | - Liming Shen
- College of Chemical Engineering, State Key Laboratory of Material-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 210009, P. R. China
| | - Ningzhong Bao
- College of Chemical Engineering, State Key Laboratory of Material-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 210009, P. R. China
| |
Collapse
|
46
|
Wang Y, Sun J, Liao W, Yang Z. Liquid Crystal Elastomer Twist Fibers toward Rotating Microengines. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107840. [PMID: 34933404 DOI: 10.1002/adma.202107840] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/18/2021] [Indexed: 06/14/2023]
Abstract
Untethered twist fibers do not require end-anchoring structures to hold their twist orientation and offer simple designs and convenient operation. The reversible responsiveness of these fibers allows them to generate torque and rotational deformation continuously upon the application of external stimuli. The fibers therefore have potential in rotating microengines. In practical applications, high torque and rotational deformation are desirable to meet work capacity requirements. However, the simultaneous endowment of reversible responsiveness and high rotational performance to untethered twist fibers remains a challenge. In this study, a liquid crystal elastomer twist fiber (LCETF) is designed and developed with a fixed twisting alignment of mesogens to provide untethered and reversible responsiveness. Outstanding rotational performance can be achieved when the mesogenic orientation is disrupted through heat triggering. Owing to the significant intrinsic contractile ratio of the LCE material, the rotational deformation of the LCETF can reach 243.6° mm-1 . More importantly, the specific torque can reach 10.1 N m kg-1 , which exceeds previously reported values. In addition, the LCETF can be exploited in a rotating microengine to convert heat into electricity with an induction voltage as high as 9.4 V. This work broadens the applications of LCEs for energy harvesters, micromachines, and soft robots.
Collapse
Affiliation(s)
- Yunpeng Wang
- Key Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Jiahao Sun
- Key Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Wei Liao
- Key Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Zhongqiang Yang
- Key Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
47
|
Li L, Zhang Q, He B, Pan R, Wang Z, Chen M, Wang Z, Yin K, Yao Y, Wei L, Sun L. Advanced Multifunctional Aqueous Rechargeable Batteries Design: From Materials and Devices to Systems. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2104327. [PMID: 34693565 DOI: 10.1002/adma.202104327] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 07/28/2021] [Indexed: 06/13/2023]
Abstract
Multifunctional aqueous rechargeable batteries (MARBs) are regarded as safe, cost-effective, and scalable electrochemical energy storage devices, which offer additional functionalities that conventional batteries cannot achieve, which ideally leads to unprecedented applications. Although MARBs are among the most exciting and rapidly growing topics in scientific research and industrial development nowadays, a systematic summary of the evolution and advances in the field of MARBs is still not available. Therefore, the review presented comprehensively and systematically summarizes the design principles and the recent advances of MARBs by categories of smart ARBs and integrated systems, together with an analysis of their device design and configuration, electrochemical performance, and diverse smart functions. The two most promising strategies to construct novel MARBs may be A) the introduction of functional materials into ARB components, and B) integration of ARBs with other functional devices. The ongoing challenges and future perspectives in this research and development field are outlined to foster the future development of MARBs. Finally, the most important upcoming research directions in this rapidly developing field are highlighted that may be most promising to lead to the commercialization of MARBs and to a further broadening of their range of applications.
Collapse
Affiliation(s)
- Lei Li
- SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, Southeast University, Nanjing, 210096, China
| | - Qichong Zhang
- SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, Southeast University, Nanjing, 210096, China
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
- Division of Nanomaterials and Jiangxi Key Lab of Carbonene Materials, Suzhou Institute of Nano-Tech and Nano-Bionics, Nanchang, Chinese Academy of Sciences, Nanchang, 330200, China
| | - Bing He
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Rui Pan
- SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, Southeast University, Nanjing, 210096, China
| | - Zhixun Wang
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Mengxiao Chen
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Zhe Wang
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Kuibo Yin
- SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, Southeast University, Nanjing, 210096, China
| | - Yagang Yao
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Lei Wei
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Litao Sun
- SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, Southeast University, Nanjing, 210096, China
| |
Collapse
|
48
|
Meng X, Li Q, Hu Z, Guo M. Microfluidic fabrication of
β‐phase
enriched poly(vinylidene fluoride) microfibers toward flexible piezoelectric sensor. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20210952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Xiangyi Meng
- State‐Local Joint Engineering Laboratory for Novel Functional Polymer Materials, Jiangsu Key Laboratory of Advanced Functional Polymers Design and Application, College of Chemistry, Chemical Engineering and Materials Science Soochow University Suzhou China
| | - Qingqing Li
- School of Optoelectronic Science and Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology Soochow University Suzhou China
| | - Zhijun Hu
- School of Optoelectronic Science and Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology Soochow University Suzhou China
| | - Mingyu Guo
- State‐Local Joint Engineering Laboratory for Novel Functional Polymer Materials, Jiangsu Key Laboratory of Advanced Functional Polymers Design and Application, College of Chemistry, Chemical Engineering and Materials Science Soochow University Suzhou China
| |
Collapse
|
49
|
Nguyen TKA, Kuncoro EP, Doong RA. Manganese ferrite decorated N-doped polyacrylonitrile-based carbon nanofiber for the enhanced capacitive deionization. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2021.139488] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
50
|
Zhang Y, Zhou J, Chen Z, Hu Z, Innocent MT, Yin S, Xiang H, Wen J, Zhu M. Leak-free and shape-stabilized phase change composites with radial spherical SiO 2 scaffolds for thermal management. NEW J CHEM 2022. [DOI: 10.1039/d2nj03485a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A shape-stabilized phase change composite with high heat resistance was prepared by the strategy of adsorbing the phase change medium PEG by radial spherical SiO2 (RSSiO2) nanospheres.
Collapse
Affiliation(s)
- Yuxuan Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Jialiang Zhou
- Jiangsu Gem Advanced Fiber Materials Research Institute Co., Ltd, Nantong 226000, China
| | - Ziye Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Zexu Hu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Mugaanire Tendo Innocent
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Siyu Yin
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Hengxue Xiang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Jin Wen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| |
Collapse
|