1
|
Song W, Wang C, Liu Y, Chong KC, Zhang X, Wang T, Zhang Y, Li B, Tian J, Zhang X, Wang X, Yao B, Wang X, Xiao Y, Yao Y, Mao X, He Q, Lin Z, Zou Z, Liu B. Unlocking Copper-Free Interfacial Asymmetric C-C Coupling for Ethylene Photosynthesis from CO 2 and H 2O. J Am Chem Soc 2024; 146:29028-29039. [PMID: 39353154 DOI: 10.1021/jacs.4c10023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Solar-driven carbon dioxide (CO2) reduction into C2+ products such as ethylene represents an enticing route toward achieving carbon neutrality. However, due to sluggish electron transfer and intricate C-C coupling, it remains challenging to achieve highly efficient and selective ethylene production from CO2 and H2O beyond capitalizing on Cu-based catalysts. Herein, we report a judicious design to attain asymmetric C-C coupling through interfacial defect-rendered tandem catalytic centers within a sulfur-vacancy-rich MoSx/Fe2O3 photocatalyst sheet, enabling a robust CO2 photoreduction to ethylene without the need for copper, noble metals, and sacrificial agents. Specifically, interfacial S vacancies induce adjacent under-coordinated S atoms to form Fe-S bonds as a rapid electron-transfer pathway for yielding a Z-scheme band alignment. Moreover, these S vacancies further modulate the strong coupling interaction to generate a nitrogenase-analogous Mo-Fe heteronuclear unit and induce the upward shift of the d-band center. This bioinspired interface structure effectively suppresses electrostatic repulsion between neighboring *CO and *COH intermediates via d-p hybridization, ultimately facilitating an asymmetric C-C coupling to achieve a remarkable solar-to-chemical efficiency of 0.565% with a superior selectivity of 84.9% for ethylene production. Further strengthened by MoSx/WO3, our design unveils a promising platform for optimizing interfacial electron transfer and offers a new option for C2+ synthesis from CO2 and H2O using copper-free and noble metal-free catalysts.
Collapse
Affiliation(s)
- Wentao Song
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Cheng Wang
- Eco-materials and Renewable Energy Research Center (ERERC), College of Engineering and Applied Sciences, Nanjing University, No. 22 Hankou Road, Nanjing 210093, China
| | - Yong Liu
- Department of Material Science and Engineering, College of Design and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117575, Singapore
| | - Kok Chan Chong
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Xinyue Zhang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Tie Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Yuanming Zhang
- Eco-materials and Renewable Energy Research Center (ERERC), College of Engineering and Applied Sciences, Nanjing University, No. 22 Hankou Road, Nanjing 210093, China
| | - Bowen Li
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Jianwu Tian
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Xianhe Zhang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Xinyun Wang
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Bingqing Yao
- Department of Material Science and Engineering, College of Design and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117575, Singapore
| | - Xi Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Yukun Xiao
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Yingfang Yao
- Eco-materials and Renewable Energy Research Center (ERERC), College of Engineering and Applied Sciences, Nanjing University, No. 22 Hankou Road, Nanjing 210093, China
- Jiangsu Key Laboratory for Nano Technology, National Laboratory of Solid-State Microstructures, Department of Physics, Nanjing University, No. 22 Hankou Road, Nanjing 210093, China
| | - Xianwen Mao
- Department of Material Science and Engineering, College of Design and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117575, Singapore
| | - Qian He
- Department of Material Science and Engineering, College of Design and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117575, Singapore
| | - Zhiqun Lin
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Zhigang Zou
- Eco-materials and Renewable Energy Research Center (ERERC), College of Engineering and Applied Sciences, Nanjing University, No. 22 Hankou Road, Nanjing 210093, China
- Jiangsu Key Laboratory for Nano Technology, National Laboratory of Solid-State Microstructures, Department of Physics, Nanjing University, No. 22 Hankou Road, Nanjing 210093, China
| | - Bin Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| |
Collapse
|
2
|
Huang XL. Unveiling the role of inorganic nanoparticles in Earth's biochemical evolution through electron transfer dynamics. iScience 2024; 27:109555. [PMID: 38638571 PMCID: PMC11024932 DOI: 10.1016/j.isci.2024.109555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024] Open
Abstract
This article explores the intricate interplay between inorganic nanoparticles and Earth's biochemical history, with a focus on their electron transfer properties. It reveals how iron oxide and sulfide nanoparticles, as examples of inorganic nanoparticles, exhibit oxidoreductase activity similar to proteins. Termed "life fossil oxidoreductases," these inorganic enzymes influence redox reactions, detoxification processes, and nutrient cycling in early Earth environments. By emphasizing the structural configuration of nanoparticles and their electron conformation, including oxygen defects and metal vacancies, especially electron hopping, the article provides a foundation for understanding inorganic enzyme mechanisms. This approach, rooted in physics, underscores that life's origin and evolution are governed by electron transfer principles within the framework of chemical equilibrium. Today, these nanoparticles serve as vital biocatalysts in natural ecosystems, participating in critical reactions for ecosystem health. The research highlights their enduring impact on Earth's history, shaping ecosystems and interacting with protein metal centers through shared electron transfer dynamics, offering insights into early life processes and adaptations.
Collapse
Affiliation(s)
- Xiao-Lan Huang
- Center for Clean Water Technology, School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY 11794-6044, USA
| |
Collapse
|
3
|
Huang XL, Harmer JR, Schenk G, Southam G. Inorganic Fe-O and Fe-S oxidoreductases: paradigms for prebiotic chemistry and the evolution of enzymatic activity in biology. Front Chem 2024; 12:1349020. [PMID: 38389729 PMCID: PMC10881703 DOI: 10.3389/fchem.2024.1349020] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 01/23/2024] [Indexed: 02/24/2024] Open
Abstract
Oxidoreductases play crucial roles in electron transfer during biological redox reactions. These reactions are not exclusive to protein-based biocatalysts; nano-size (<100 nm), fine-grained inorganic colloids, such as iron oxides and sulfides, also participate. These nanocolloids exhibit intrinsic redox activity and possess direct electron transfer capacities comparable to their biological counterparts. The unique metal ion architecture of these nanocolloids, including electron configurations, coordination environment, electron conductivity, and the ability to promote spontaneous electron hopping, contributes to their transfer capabilities. Nano-size inorganic colloids are believed to be among the earliest 'oxidoreductases' to have 'evolved' on early Earth, playing critical roles in biological systems. Representing a distinct type of biocatalysts alongside metalloproteins, these nanoparticles offer an early alternative to protein-based oxidoreductase activity. While the roles of inorganic nano-sized catalysts in current Earth ecosystems are intuitively significant, they remain poorly understood and underestimated. Their contribution to chemical reactions and biogeochemical cycles likely helped shape and maintain the balance of our planet's ecosystems. However, their potential applications in biomedical, agricultural, and environmental protection sectors have not been fully explored or exploited. This review examines the structure, properties, and mechanisms of such catalysts from a material's evolutionary standpoint, aiming to raise awareness of their potential to provide innovative solutions to some of Earth's sustainability challenges.
Collapse
Affiliation(s)
- Xiao-Lan Huang
- NYS Center for Clean Water Technology, School of Marine and Atmospheric Sciences, Stony Brook, NY, United States
| | - Jeffrey R Harmer
- Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
| | - Gerhard Schenk
- Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- Sustainable Minerals Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Gordon Southam
- Sustainable Minerals Institute, The University of Queensland, Brisbane, QLD, Australia
- School of the Environment, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
4
|
Wang Z, Kang Y, Hu J, Ji Q, Lu Z, Xu G, Qi Y, Zhang M, Zhang W, Huang R, Yu L, Tian ZQ, Deng D. Boosting CO 2 Hydrogenation to Formate over Edge-Sulfur Vacancies of Molybdenum Disulfide. Angew Chem Int Ed Engl 2023; 62:e202307086. [PMID: 37475578 DOI: 10.1002/anie.202307086] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/15/2023] [Accepted: 07/20/2023] [Indexed: 07/22/2023]
Abstract
Synthesis of formate from hydrogenation of carbon dioxide (CO2 ) is an atom-economic reaction but is confronted with challenges in developing high-performance non-precious metal catalysts for application of the process. Herein, we report a highly durable edge-rich molybdenum disulfide (MoS2 ) catalyst for CO2 hydrogenation to formate at 200 °C, which delivers a high selectivity of over 99 % with a superior turnover frequency of 780.7 h-1 surpassing those of previously reported non-precious metal catalysts. Multiple experimental characterization techniques combined with theoretical calculations reveal that sulfur vacancies at MoS2 edges are the active sites and the selective production of formate is enabled via a completely new water-mediated hydrogenation mechanism, in which surface OH* and H* species in dynamic equilibrium with water serve as moderate hydrogenating agents for CO2 with residual O* reduced by hydrogen. This study provides a new route for developing low-cost high-performance catalysts for CO2 hydrogenation to formate.
Collapse
Affiliation(s)
- Zifeng Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- State Key Laboratory of Catalysis, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, 116023, China
| | - Yiran Kang
- State Key Laboratory of Catalysis, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Jingting Hu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- State Key Laboratory of Catalysis, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, 116023, China
| | - Qinqin Ji
- State Key Laboratory of Catalysis, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Zhixuan Lu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Guilan Xu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- State Key Laboratory of Catalysis, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, 116023, China
| | - Yutai Qi
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- State Key Laboratory of Catalysis, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, 116023, China
| | - Mo Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- State Key Laboratory of Catalysis, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, 116023, China
| | - Wangwang Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- State Key Laboratory of Catalysis, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, 116023, China
| | - Rui Huang
- State Key Laboratory of Catalysis, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, 116023, China
| | - Liang Yu
- State Key Laboratory of Catalysis, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Zhong-Qun Tian
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Dehui Deng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- State Key Laboratory of Catalysis, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| |
Collapse
|
5
|
Uzunova EL. Cation binding of Li(I), Na(I) and Zn(II) to cobalt and iron sulphide clusters - electronic structure study. Phys Chem Chem Phys 2022; 24:20228-20238. [PMID: 35983907 DOI: 10.1039/d2cp02415b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The binding of alkaline (Li+ and Na+) and zinc (Zn2+) cations to mononuclear disulphides MS2 and to persulphides, containing an S-S bond, M(S2), to binuclear disulphides M2S2 and persulphides M2(S2) and to cubic tetranuclear sulphides M4S4 where M = Fe, Co, is examined by density functional theory with the B3LYP functional, and dispersion corrections were applied. For the small-sized clusters (up to two transition metal centres), the energy gaps between different configurations were verified by CCSD(T) calculations. Persulphides M(S2) are more stable than disulphides MS2 as bare clusters, upon carbonyl and chloride ligand coordination and upon cation binding (Li+, Na+, Zn2+). The one-electron reduction of alkali cations and two-electron reduction of Zn2+ reverses order of stability and the planar disulphides (MS2-reduced cation) become more stable; the energy gap disulphide to persulphide increases. In all reduced clusters, zinc ions form bonds with sulphur and with the transition metal centre (Co or Fe). Lithium cations also form bonds to cobalt or iron, but only in the M2S2 clusters, upon reduction. Energy barriers were calculated for the disulphide to persulphide reaction in the Zn-Co-S2 system in the isolated clusters (gas-phase), in water, acetonitrile and 1-Cl-hexane solution. Most significant decrease in the energy barriers were obtained with less-polar solvents, acetonitrile, and particularly, 1-Cl-hexane. In M4S4 clusters, the cations do not reach optimal coordination to the sulphur centres. The global minima of M2S2 clusters are antiferromagnetic; in the reduced Zn-M2S2 clusters, magnetic moment is induced at zinc centres as a result of charge transfer between Zn and Co or Zn and Fe.
Collapse
Affiliation(s)
- Ellie L Uzunova
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Acad. G.Bonchev Str., block 11, Sofia 1113, Bulgaria.
| |
Collapse
|
6
|
Santos-Carballal D, de Leeuw NH. Catalytic formation of oxalic acid on the partially oxidised greigite Fe 3S 4(001) surface. Phys Chem Chem Phys 2022; 24:20104-20124. [PMID: 35983830 DOI: 10.1039/d2cp00333c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Greigite (Fe3S4), with its ferredoxin-like 4Fe-4S redox centres, is a naturally occurring mineral capable of acting as a catalyst in the conversion of carbon dioxide (CO2) into low molecular-weight organic acids (LMWOAs), which are of paramount significance in several soil and plant processes as well as in the chemical industry. In this paper, we report the reaction between CO2 and water (H2O) to form oxalic acid (H2C2O4) on the partially oxidised greigite Fe3S4(001) surface by means of spin-polarised density functional theory calculations with on-site Coulomb corrections and long-range dispersion interactions (DFT+U-D2). We have calculated the bulk phase of Fe3S4 and the two reconstructed Tasker type 3 terminations of its (001) surface, whose properties are in good agreement with available experimental data. We have obtained the relevant phase diagram, showing that the Fe3S4(001) surface becomes 62.5% partially oxidised, by replacing S by O atoms, in the presence of water at the typical conditions of calcination [Mitchell et al. Faraday Discuss. 2021, 230, 30-51]. The adsorption and co-adsorption of the reactants on the partially oxidised Fe3S4(001) surface are exothermic processes. We have considered three mechanistic pathways to explain the formation of H2C2O4, showing that the coupling of the C-C bond and second protonation are the elementary steps with the largest energy penalty. Our calculations suggest that the partially oxidised Fe3S4(001) surface is a mineral phase that can catalyse the formation of H2C2O4 under favourable conditions, which has important implications for natural ecosystems and is a process that can be harnessed for the industrial manufacture of this organic acid.
Collapse
Affiliation(s)
| | - Nora H de Leeuw
- School of Chemistry, University of Leeds, Leeds LS2 9JT, UK. .,Department of Earth Sciences, Utrecht University, Princetonplein 8A, 3584 CD Utrecht, The Netherlands.
| |
Collapse
|
7
|
Mitchell CE, Santos-Carballal D, Beale AM, Jones W, Morgan DJ, Sankar M, de Leeuw NH. The role of surface oxidation and Fe-Ni synergy in Fe-Ni-S catalysts for CO 2 hydrogenation. Faraday Discuss 2021; 230:30-51. [PMID: 33884381 DOI: 10.1039/d0fd00137f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Increasing carbon dioxide (CO2) emissions, resulting in climate change, have driven the motivation to achieve the effective and sustainable conversion of CO2 into useful chemicals and fuels. Taking inspiration from biological processes, synthetic iron-nickel-sulfides have been proposed as suitable catalysts for the hydrogenation of CO2. In order to experimentally validate this hypothesis, here we report violarite (Fe,Ni)3S4 as a cheap and economically viable catalyst for the hydrogenation of CO2 into formate under mild, alkaline conditions at 125 °C and 20 bar (CO2 : H2 = 1 : 1). Calcination of violarite at 200 °C resulted in excellent catalytic activity, far superior to that of Fe-only and Ni-only sulfides. We further report first principles simulations of the CO2 conversion on the partially oxidised (001) and (111) surfaces of stoichiometric violarite (FeNi2S4) and polydymite (Ni3S4) to rationalise the experimentally observed trends. We have obtained the thermodynamic and kinetic profiles for the reaction of carbon dioxide (CO2) and water (H2O) on the catalyst surfaces via substitution and dissociation mechanisms. We report that the partially oxidised (111) surface of FeNi2S4 is the best catalyst in the series and that the dissociation mechanism is the most favourable. Our study reveals that the partial oxidation of the FeNi2S4 surface, as well as the synergy of the Fe and Ni ions, are important in the catalytic activity of the material for the effective hydrogenation of CO2 to formate.
Collapse
Affiliation(s)
- Claire E Mitchell
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff, CF10 3AT, UK.
| | | | - Andrew M Beale
- Department of Chemistry, University College London, London, WC1H 0AJ, UK and Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Science & Innovation Campus, Harwell, Didcot, OX11 0FA, UK
| | - Wilm Jones
- Department of Chemistry, University College London, London, WC1H 0AJ, UK and Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Science & Innovation Campus, Harwell, Didcot, OX11 0FA, UK
| | - David J Morgan
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff, CF10 3AT, UK.
| | | | - Nora H de Leeuw
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff, CF10 3AT, UK. and School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK. and Department of Earth Sciences, Utrecht University, Princetonlaan 8a, 3584 CB Utrecht, The Netherlands
| |
Collapse
|
8
|
Activating the FeS (001) Surface for CO2 Adsorption and Reduction through the Formation of Sulfur Vacancies: A DFT-D3 Study. Catalysts 2021. [DOI: 10.3390/catal11010127] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
As a promising material for heterogeneous catalytic applications, layered iron (II) monosulfide (FeS) contains active edges and an inert basal (001) plane. Activating the basal (001) plane could improve the catalytic performance of the FeS material towards CO2 activation and reduction reactions. Herein, we report dispersion-corrected density functional theory (DFT-D3) calculations of the adsorption of CO2 and the elementary steps involved in its reduction through the reverse water-gas shift reaction on a defective FeS (001) surface containing sulfur vacancies. The exposed Fe sites resulting from the creation of sulfur vacancies are shown to act as highly active sites for CO2 activation and reduction. Based on the calculated adsorption energies, we show that the CO2 molecules will outcompete H2O and H2 molecules for the exposed active Fe sites if all three molecules are present on or near the surface. The CO2 molecule is found to weakly physisorb (−0.20 eV) compared to the sulfur-deficient (001) surface where it adsorbs much strongly, releasing adsorption energy of −1.78 and −1.83 eV at the defective FeS (001) surface containing a single and double sulfur vacancy, respectively. The CO2 molecule gained significant charge from the interacting surface Fe ions at the defective surface upon adsorption, which resulted in activation of the C–O bonds confirmed via vibrational frequency analyses. The reaction and activation energy barriers of the elementary steps involved in the CO2 hydrogenation reactions to form CO and H2O species are also unraveled.
Collapse
|