1
|
Zhou ZY, Sun N, Duan LH, Chan OK, Li YP, Yan L, Yang HY, Ke HY, Ouyang DY, Shi ZJ, Zha QB, He XH. Theaflavin suppresses necroptosis by attenuating RIPK1-RIPK3-MLKL signaling and mitigates cisplatin-induced kidney injury in mice. Int Immunopharmacol 2025; 157:114761. [PMID: 40318271 DOI: 10.1016/j.intimp.2025.114761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 04/16/2025] [Accepted: 04/27/2025] [Indexed: 05/07/2025]
Abstract
Necroptosis is a lytic form of regulated cell death (RCD) that is dependent on receptor-interacting protein kinase 3 (RIPK3) and mixed lineage kinase domain like pseudokinase (MLKL). This form of RCD has been implicated in various inflammatory diseases and organ injuries including cisplatin-induced acute kidney injury (AKI), thus representing a therapeutic target for such diseases. Theaflavin is an ingredient of black tea that exhibits beneficial effects on human health and has been shown to regulate pyroptosis, but its effects on necroptosis and cisplatin-induced AKI remain unclear. In this study, we found that theaflavin suppressed necroptosis in murine macrophages, MPC-5 podocytes and human HT-29 cells treated with TNF-α, Smac mimetic and IDN-6556 or LPS plus IDN-6556. The RIPK1/RIPK3/MLKL signaling axis in these cells treated with necroptosis inducers was effectively inhibited by theaflavin. The inhibition of necroptotic signaling was associated with attenuated mitochondrial dysfunction (as evidenced by decreased mitochondrial membrane potential and increased mitochondrial ROS production), reduced ubiquitination of RIPK1 and RIPK3, and blockade of necrosome. Furthermore, oral administration of theaflavin mitigated renal and hepatic injury in a mouse model of cisplatin-induced AKI. In agreement with in vitro cellular data, theaflavin decreased the levels of phosphorylated MLKL, an in vivo biomarker for necroptosis, in macrophages and other cells in the kidney and the liver of mice with cisplatin-induced AKI. Collectively, these results indicate that theaflavin can suppress necroptosis by attenuating RIPK1/RIPK3/MLKL signaling and thereby conferring protection against cisplatin-induced AKI, uncovering a previously unappreciated action of black tea components against necroptosis-related disorders.
Collapse
Affiliation(s)
- Zhi-Ya Zhou
- Department of Immunology and Microbiology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Spine and Spinal Cord Reconstruction, the Fifth Affiliated Hospital (Heyuan Shenhe People's Hospital), Jinan University, Heyuan 517000, China; Center of Reproductive Medicine, The First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Nuo Sun
- Department of Immunology and Microbiology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Ling-Han Duan
- Department of Immunology and Microbiology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - On-Kei Chan
- Department of Immunology and Microbiology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Ya-Ping Li
- Department of Immunology and Microbiology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Liang Yan
- Department of Immunology and Microbiology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Spine and Spinal Cord Reconstruction, the Fifth Affiliated Hospital (Heyuan Shenhe People's Hospital), Jinan University, Heyuan 517000, China; Center of Reproductive Medicine, The First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Hai-Yan Yang
- Department of Immunology and Microbiology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Hua-Yu Ke
- Department of Immunology and Microbiology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Dong-Yun Ouyang
- Department of Immunology and Microbiology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Zi-Jian Shi
- Department of Fetal Medicine, The First Affiliated Hospital of Jinan University, Guangzhou 510632, China.
| | - Qing-Bing Zha
- Guangdong Provincial Key Laboratory of Spine and Spinal Cord Reconstruction, the Fifth Affiliated Hospital (Heyuan Shenhe People's Hospital), Jinan University, Heyuan 517000, China; Center of Reproductive Medicine, The First Affiliated Hospital of Jinan University, Guangzhou 510632, China.
| | - Xian-Hui He
- Department of Immunology and Microbiology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Spine and Spinal Cord Reconstruction, the Fifth Affiliated Hospital (Heyuan Shenhe People's Hospital), Jinan University, Heyuan 517000, China; Center of Reproductive Medicine, The First Affiliated Hospital of Jinan University, Guangzhou 510632, China.
| |
Collapse
|
2
|
Yang L, Zhang M, Jiang H, Wang W, Huang J, Ye S, Chen Y, Liu S, Liu J. Theaflavins Are Improved by the Oxidation of Catechins in Tannase Treatment During Black Tea Fermentation. Molecules 2025; 30:452. [PMID: 39942557 PMCID: PMC11820008 DOI: 10.3390/molecules30030452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/07/2025] [Accepted: 01/10/2025] [Indexed: 02/16/2025] Open
Abstract
The treatment of black tea fermentation with different exogenous tannases was investigated, and processing parameters during black tea fermentation, including fermentation time, fermentation temperature, and exoenzyme amounts, were optimized, while the consumption and transformation pathways of catechins were analyzed. The results showed that tannase from Aspergillus niger was ultimately selected as the optimal enzyme to effectively increase the content of theaflavins by promoting the hydrolysis reaction and benzoylation reaction of catechins, resulting in a greater theaflavin (TF) content of 1.41%. The optimal processing conditions were found to be a fermentation time of 3 h, a fermentation temperature of 20 °C, and 1 g of tannase for 300 g of rolled tea leaves. Processing with the exogenous tannase could provide an ideal choice for the efficient utilization of summer and autumn fresh tea leaves, and could be used to develop summer and autumn black tea and to improve the content of theaflavins. It could also be used to develop deep processing of tea products with theaflavin extracts in the future.
Collapse
Affiliation(s)
- Lijuan Yang
- Key Laboratory of Special Economic Animal and Plant Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; (L.Y.); (M.Z.)
| | - Mengxue Zhang
- Key Laboratory of Special Economic Animal and Plant Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; (L.Y.); (M.Z.)
| | - Heyuan Jiang
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610299, China
| | - Weiwei Wang
- Key Laboratory of Special Economic Animal and Plant Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; (L.Y.); (M.Z.)
| | - Jigang Huang
- Jiujiang Agricultural Technology Extension Center, Jiujiang 332000, China
| | - Shuixin Ye
- Key Laboratory of Special Economic Animal and Plant Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; (L.Y.); (M.Z.)
- College of Food and Health, Zhejiang A & F University, Hangzhou 311300, China
| | - Yan Chen
- Jiujiang Agricultural Technology Extension Center, Jiujiang 332000, China
| | - Shuang Liu
- Jiujiang Agricultural Technology Extension Center, Jiujiang 332000, China
| | - Jiaxin Liu
- Jiujiang Agricultural Technology Extension Center, Jiujiang 332000, China
| |
Collapse
|
3
|
Mo H, Sun K, Hou Y, Ruan Z, He Z, Liu H, Li L, Wang Z, Guo F. Inhibition of PA28γ expression can alleviate osteoarthritis by inhibiting endoplasmic reticulum stress and promoting STAT3 phosphorylation. Bone Joint Res 2024; 13:659-672. [PMID: 39564812 PMCID: PMC11577458 DOI: 10.1302/2046-3758.1311.bjr-2023-0361.r2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2024] Open
Abstract
Aims Osteoarthritis (OA) is a common degenerative disease. PA28γ is a member of the 11S proteasome activator and is involved in the regulation of several important cellular processes, including cell proliferation, apoptosis, and inflammation. This study aimed to explore the role of PA28γ in the occurrence and development of OA and its potential mechanism. Methods A total of 120 newborn male mice were employed for the isolation and culture of primary chondrocytes. OA-related indicators such as anabolism, catabolism, inflammation, and apoptosis were detected. Effects and related mechanisms of PA28γ in chondrocyte endoplasmic reticulum (ER) stress were studied using western blotting, real-time polymerase chain reaction (PCR), and immunofluorescence. The OA mouse model was established by destabilized medial meniscus (DMM) surgery, and adenovirus was injected into the knee cavity of 15 12-week-old male mice to reduce the expression of PA28γ. The degree of cartilage destruction was evaluated by haematoxylin and eosin (HE) staining, safranin O/fast green staining, toluidine blue staining, and immunohistochemistry. Results We found that PA28γ knockdown in chondrocytes can effectively improve anabolism and catabolism and inhibit inflammation, apoptosis, and ER stress. Moreover, PA28γ knockdown affected the phosphorylation of IRE1α and the expression of TRAF2, thereby affecting the mitogen-activated protein kinase (MAPK) and nuclear factor-κB (NF-κB) signalling pathways, and finally affecting the inflammatory response of chondrocytes. In addition, we found that PA28γ knockdown can promote the phosphorylation of signal transducer and activator of transcription 3 (STAT3), thereby inhibiting ER stress in chondrocytes. The use of Stattic (an inhibitor of STAT3 phosphorylation) enhanced ER stress. In vivo, we found that PA28γ knockdown effectively reduced cartilage destruction in a mouse model of OA induced by the DMM surgery. Conclusion PA28γ knockdown in chondrocytes can inhibit anabolic and catabolic dysregulation, inflammatory response, and apoptosis in OA. Moreover, PA28γ knockdown in chondrocytes can inhibit ER stress by promoting STAT3 phosphorylation.
Collapse
Affiliation(s)
- Haokun Mo
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kai Sun
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanjun Hou
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhaoxuan Ruan
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhiyi He
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haigang Liu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liang Li
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan, China
| | - Zhenggang Wang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fengjing Guo
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
4
|
Sheng W, Yue Y, Qi T, Qin H, Liu P, Wang D, Zeng H, Yu F. The Multifaceted Protective Role of Nuclear Factor Erythroid 2-Related Factor 2 in Osteoarthritis: Regulation of Oxidative Stress and Inflammation. J Inflamm Res 2024; 17:6619-6633. [PMID: 39329083 PMCID: PMC11424688 DOI: 10.2147/jir.s479186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 09/05/2024] [Indexed: 09/28/2024] Open
Abstract
Osteoarthritis (OA) is a chronic degenerative joint disease characterized by the degradation of joint cartilage, subchondral bone sclerosis, synovitis, and structural changes in the joint. Recent research has highlighted the role of various genes in the pathogenesis and progression of OA, with nuclear factor erythroid 2-related factor 2 (NRF2) emerging as a critical player. NRF2, a vital transcription factor, plays a key role in regulating the OA microenvironment and slowing the disease's progression. It modulates the expression of several antioxidant enzymes, such as Heme oxygenase-1 (HO-1) and NAD(P)H oxidoreductase 1 (NQO1), among others, which help reduce oxidative stress. Furthermore, NRF2 inhibits the nuclear factor kappa-B (NF-κB) signaling pathway, thereby decreasing inflammation, joint pain, and the breakdown of cartilage extracellular matrix, while also mitigating cell aging and death. This review discusses NRF2's impact on oxidative stress, inflammation, cell aging, and various cell death modes (such as apoptosis, necroptosis, and ferroptosis) in OA-affected chondrocytes. The role of NRF2 in OA macrophages, and synovial fibroblasts was also discussed. It also covers NRF2's role in preserving the cartilage extracellular matrix and alleviating joint pain. The purpose of this review is to provide a comprehensive understanding of NRF2's protective mechanisms in OA, highlighting its potential as a therapeutic target and underscoring its significance in the development of novel treatment strategies for OA.
Collapse
Affiliation(s)
- Weibei Sheng
- Department of Bone & Joint Surgery, National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, 518036, People’s Republic of China
| | - Yaohang Yue
- Department of Bone & Joint Surgery, National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, 518036, People’s Republic of China
| | - Tiantian Qi
- Department of Bone & Joint Surgery, National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, 518036, People’s Republic of China
| | - Haotian Qin
- Department of Bone & Joint Surgery, National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, 518036, People’s Republic of China
| | - Peng Liu
- Department of Bone & Joint Surgery, National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, 518036, People’s Republic of China
| | - Deli Wang
- Department of Bone & Joint Surgery, National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, 518036, People’s Republic of China
| | - Hui Zeng
- Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, People’s Republic of China
| | - Fei Yu
- Department of Bone & Joint Surgery, National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, 518036, People’s Republic of China
| |
Collapse
|
5
|
Du G, Sun X, He S, Mi L. The Nrf2/HO-1 pathway participates in the antiapoptotic and anti-inflammatory effects of platelet-rich plasma in the treatment of osteoarthritis. Immun Inflamm Dis 2024; 12:e1169. [PMID: 38860757 PMCID: PMC11165680 DOI: 10.1002/iid3.1169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 01/06/2024] [Accepted: 01/12/2024] [Indexed: 06/12/2024] Open
Abstract
INTRODUCTION We aimed to explore the molecular mechanisms through which platelet-rich plasma (PRP) attenuates osteoarthritis (OA)-induced pain, apoptosis, and inflammation. METHODS An in vivo model of OA was established by injuring rats using the anterior cruciate ligament transection method, whereas an in vitro model was generated by exposing chondrocytes to interleukin (IL)-1β. Both models were then treated with PRP. RESULTS In both the in vivo and in vitro models, OA led to the suppression of the nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) pathway, whereas treatment with PRP reactivated this molecular axis. Inhibition of the Nrf2/HO-1 pathway using the Nrf2 inhibitor brusatol or through Nrf2 gene silencing counteracted the effects of PRP in reducing the tenderness and thermal pain thresholds of OA rats. Additionally, PRP reduced the mRNA expression of IL-1β, IL-6, tumor necrosis factor-alpha (TNF-α), and matrix metallopeptidase 13 (MMP-13) and the protein expression of B-cell lymphoma 2 (Bcl-2), Bcl-2 associated X-protein (Bax), and caspase-3. Furthermore, inflammation and apoptosis were induced by brusatol treatment or Nrf2 silencing. Additionally, in the in vitro model, PRP treatment increased the proliferation of chondrocytes and attenuated their inflammatory response and apoptosis, effects that were abrogated by Nrf2 depletion. CONCLUSIONS The Nrf2/HO-1 pathway participates in the PRP-mediated attenuation of OA development by suppressing inflammation and apoptosis.
Collapse
Affiliation(s)
- Guangyu Du
- Department of Bone SurgeryThe Second Affiliated Hospital of Dalian Medical UniversityDalianChina
| | - Xuegang Sun
- Department of Bone SurgeryThe Second Affiliated Hospital of Dalian Medical UniversityDalianChina
| | - Shengwei He
- Department of Bone SurgeryThe Second Affiliated Hospital of Dalian Medical UniversityDalianChina
| | - Lidong Mi
- Department of Bone SurgeryThe Second Affiliated Hospital of Dalian Medical UniversityDalianChina
| |
Collapse
|
6
|
Lee YT, Mohd Yunus MH, Yazid MD, Ugusman A. Unraveling the path to osteoarthritis management: targeting chondrocyte apoptosis for therapeutic intervention. Front Cell Dev Biol 2024; 12:1347126. [PMID: 38827524 PMCID: PMC11140145 DOI: 10.3389/fcell.2024.1347126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 05/06/2024] [Indexed: 06/04/2024] Open
Abstract
Osteoarthritis (OA) is a chronic disease affecting joints and further causing disabilities. This disease affects around 240 million people worldwide. It is a multifactorial disease, and its etiology is difficult to determine. Although numerous therapeutic strategies are available, the therapies are aimed at reducing pain and improving patients' quality of life. Hence, there is an urgent need to develop disease-modifying drugs (DMOAD) that can reverse or halt OA progression. Apoptosis is a cell removal process that is important in maintaining homeostatic mechanisms in the development and sustaining cell population. The apoptosis of chondrocytes is believed to play an important role in OA progression due to poor chondrocytes self-repair abilities to maintain the extracellular matrix (ECM). Hence, targeting chondrocyte apoptosis can be one of the potential therapeutic strategies in OA management. There are various mediators and targets available to inhibit apoptosis such as autophagy, endoplasmic reticulum (ER) stress, oxidative stress, and inflammation. As such, this review highlights the importance and potential targets that can be aimed to reduce chondrocyte apoptosis.
Collapse
Affiliation(s)
- Yi Ting Lee
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Malaysia
| | - Mohd Heikal Mohd Yunus
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Malaysia
| | - Muhammad Dain Yazid
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Malaysia
| | - Azizah Ugusman
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Malaysia
| |
Collapse
|
7
|
Ding X, Huang J, Zhou R, Che X, Pang Y, Liang D, Lu C, Zhuo Y, Cao F, Wu G, Li W, Li P, Zhao L, Rong X, Li P, Wang C. Bibliometric study and visualization of cellular senescence associated with osteoarthritis from 2009 to 2023. Medicine (Baltimore) 2024; 103:e37611. [PMID: 38669405 PMCID: PMC11049721 DOI: 10.1097/md.0000000000037611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/23/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Osteoarthritis is a common degenerative joint disease that is highly prevalent in the elderly population. Along with the occurrence of sports injuries, osteoarthritis is gradually showing a younger trend. Osteoarthritis has many causative factors, and its pathogenesis is currently unknown. Cellular senescence is a stable form of cell cycle arrest exhibited by cells in response to external stimuli and plays a role in a variety of diseases. And it is only in the last decade or so that cellular senescence has gradually become cross-linked with osteoarthritis. However, there is no comprehensive bibliometric analysis in this field. The aim of this study is to present the current status and research hotspots of cellular senescence in the field of osteoarthritis, and to predict the future trends of cellular senescence in osteoarthritis research from a bibliometric perspective. METHODS This study included 298 records of cellular senescence associated with osteoarthritis from 2009 to 2023, with data from the Web of Science Core Collection database. CiteSpace, Scimago Graphica software, VOSviewer, and the R package "bibliometrix" software were used to analyze regions, institutions, journals, authors, and keywords to predict recent trends in cellular senescence related to osteoarthritis research. RESULTS The number of publications related to cellular senescence associated with osteoarthritis is increasing year by year. China and the United States contribute more than 70% of the publications and are the mainstay of research in this field. Central South University is the most active institution with the largest number of publications. International Journal of Molecular Sciences is the most popular journal in the field with the largest number of publications, while Osteoarthritis and Cartilage is the most cited journal. Loeser, Richard F. is not only the most prolific author, but also the most frequently cited author, contributing greatly to the field. CONCLUSION In the last decade or so, this is the first bibliometric study that systematically describes the current status and development trend of research on cellular senescence associated with osteoarthritis. The study comprehensively and systematically summarizes and concludes the research hotspots and development trends, providing valuable references for researchers in this field.
Collapse
Affiliation(s)
- Xueting Ding
- Department of Embryology, School of Basic Medical Sciences, Shanxi Medical University, Shanxi, China
- Animal Experiment Center, Shanxi Medical University, Shanxi, China
- Orthopaedics, The Second Hospital of Shanxi Medical University, Shanxi, China
- Key Laboratory of Bone and Soft Tissue Injury Repair, The Second Hospital of Shanxi Medical University, Shanxi, China
| | - Jingrui Huang
- Orthopaedics, The Second Hospital of Shanxi Medical University, Shanxi, China
- Key Laboratory of Bone and Soft Tissue Injury Repair, The Second Hospital of Shanxi Medical University, Shanxi, China
| | - Raorao Zhou
- Orthopaedics, The Second Hospital of Shanxi Medical University, Shanxi, China
- Key Laboratory of Bone and Soft Tissue Injury Repair, The Second Hospital of Shanxi Medical University, Shanxi, China
| | - Xianda Che
- Orthopaedics, The Second Hospital of Shanxi Medical University, Shanxi, China
- Key Laboratory of Bone and Soft Tissue Injury Repair, The Second Hospital of Shanxi Medical University, Shanxi, China
| | - Yiming Pang
- Orthopaedics, The Second Hospital of Shanxi Medical University, Shanxi, China
- Key Laboratory of Bone and Soft Tissue Injury Repair, The Second Hospital of Shanxi Medical University, Shanxi, China
| | - Dan Liang
- Orthopaedics, The Second Hospital of Shanxi Medical University, Shanxi, China
- Key Laboratory of Bone and Soft Tissue Injury Repair, The Second Hospital of Shanxi Medical University, Shanxi, China
| | - Chengyang Lu
- Orthopaedics, The Second Hospital of Shanxi Medical University, Shanxi, China
- Key Laboratory of Bone and Soft Tissue Injury Repair, The Second Hospital of Shanxi Medical University, Shanxi, China
| | - Yuhao Zhuo
- Orthopaedics, The Second Hospital of Shanxi Medical University, Shanxi, China
- Key Laboratory of Bone and Soft Tissue Injury Repair, The Second Hospital of Shanxi Medical University, Shanxi, China
| | - Fuyang Cao
- Orthopaedics, The Second Hospital of Shanxi Medical University, Shanxi, China
- Key Laboratory of Bone and Soft Tissue Injury Repair, The Second Hospital of Shanxi Medical University, Shanxi, China
| | - Gaige Wu
- Orthopaedics, The Second Hospital of Shanxi Medical University, Shanxi, China
- Key Laboratory of Bone and Soft Tissue Injury Repair, The Second Hospital of Shanxi Medical University, Shanxi, China
| | - Wenjin Li
- Orthopaedics, The Second Hospital of Shanxi Medical University, Shanxi, China
| | - Penghua Li
- Laboratory department, Fenyang Hospital of Shanxi Province, Shanxi, China
| | - Litao Zhao
- Pain Department, The Third People's Hospital of Hainan Province, Hainan, China
| | - XueQin Rong
- Pain Department, The Third People's Hospital of Hainan Province, Hainan, China
| | - Pengcui Li
- Orthopaedics, The Second Hospital of Shanxi Medical University, Shanxi, China
- Key Laboratory of Bone and Soft Tissue Injury Repair, The Second Hospital of Shanxi Medical University, Shanxi, China
| | - Chunfang Wang
- Department of Embryology, School of Basic Medical Sciences, Shanxi Medical University, Shanxi, China
- Animal Experiment Center, Shanxi Medical University, Shanxi, China
| |
Collapse
|
8
|
Wang X, Li X, Zhou J, Lei Z, Yang X. Fisetin suppresses chondrocyte senescence and attenuates osteoarthritis progression by targeting sirtuin 6. Chem Biol Interact 2024; 390:110890. [PMID: 38278314 DOI: 10.1016/j.cbi.2024.110890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/07/2024] [Accepted: 01/23/2024] [Indexed: 01/28/2024]
Abstract
Osteoarthritis (OA) is the most common type of arthritis and is an age-related joint disease that is particularly prevalent in subjects over 65 years old. The chronic rise of senescent cells has a close correlation with age-related diseases such as OA, and the senescence-associated secretory phenotype (SASP) is implicated in OA cartilage degeneration pathogenesis. Sirtuin 6 (SIRT6) is likely to be a key senescence-related regulator. Fisetin (FST) is a natural flavonol of the flavonoid family that is recommended as a senolytic drug to extend health and lifespan. However, the potential chondroprotective effects of FST on OA rats are largely unclarified. The aim of this study is to investigate the ameliorative effects of FST on OA joint cartilage and the relationship with SIRT6 and the detailed mechanisms from anti-inflammatory and anti-senescent perspectives. Rats were subjected to destabilization of the medial meniscus (DMM) surgery as a means of inducing the experimental OA model in vivo. Chondrocytes treated with IL-1β were utilized for mimicking the OA cell model in vitro. Intra-articular injection of FST, OSS_128,167 (OSS, SIRT6 inhibitor), and MDL800 (MDL, SIRT6 agonist) in vivo or administering them in IL-1β-induced rat chondrocytes in vitro were performed in order to determine the effects FST has on OA and the link with SIRT6. This study found SIRT6 level to be negatively correlated with OA severity. SIRT6 downregulation was validated in the joint cartilages of DMM rats and IL-1β-treated chondrocytes. It was also notably demonstrated that FST can activate SIRT6. Both the administration of FST and activation of SIRT6 using MDL were found to rescue cartilage erosion, decrease extracellular matrix (ECM) degradation, prevent cartilage from apoptosis, and improve detrimental senescence-related phenotype. The alleviative effects of FST against inflammation, ECM degradation, apoptosis, and senescence in IL-1β-stimulated chondrocytes were also confirmed. SIRT6 loss occurs in articular cartilage in OA pathogenesis, which is linked to aging. FST attenuates injury-induced aging-related phenotype changes in chondrocytes through the targeting of SIRT6.
Collapse
Affiliation(s)
- Xuezhong Wang
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Xuyang Li
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jianlin Zhou
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Zheng Lei
- Department of Emergency Medicine, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Xiaoming Yang
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
9
|
Xie X, Fu J, Gou W, Qin Y, Wang D, Huang Z, Wang L, Li X. Potential mechanism of tea for treating osteoporosis, osteoarthritis, and rheumatoid arthritis. Front Med (Lausanne) 2024; 11:1289777. [PMID: 38420363 PMCID: PMC10899483 DOI: 10.3389/fmed.2024.1289777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 01/08/2024] [Indexed: 03/02/2024] Open
Abstract
Osteoporosis (OP), osteoarthritis (OA), and rheumatoid arthritis (RA) are common bone and joint diseases with a high incidence and long duration. Thus, these conditions can affect the lives of middle-aged and elderly people. Tea drinking is a traditional lifestyle in China, and the long-term intake of tea and its active ingredients is beneficial to human health. However, the mechanisms of action of tea and its active ingredients against OP, OA, and RA are not completely elucidated. This study aimed to assess the therapeutic role and related mechanisms of tea and its active ingredients in OP, OA, and RA. Moreover, it expanded the potential mechanisms of tea efficacy based on network pharmacology and molecular docking. Results showed that tea has potential anti-COX properties and hormone-like effects. Compared with a single component, different tea components synergize or antagonize each other, thereby resulting in a more evident dual effect. In conclusion, tea has great potential in the medical and healthcare fields. Nevertheless, further research on the composition, proportion, and synergistic mechanism of several tea components should be performed.
Collapse
Affiliation(s)
- Xinyu Xie
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Jiehui Fu
- Department of Sports Medicine (Orthopedics), Fujian University of Traditional Chinese Medicine Subsidiary Rehabilitation Hospital, Fuzhou, China
| | - Weiying Gou
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Yifei Qin
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Dingzhen Wang
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Zuer Huang
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Lili Wang
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Xihai Li
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| |
Collapse
|
10
|
Apparoo Y, Wei Phan C, Rani Kuppusamy U, Chan EWC. Potential role of ergothioneine rich mushroom as anti-aging candidate through elimination of neuronal senescent cells. Brain Res 2024; 1824:148693. [PMID: 38036238 DOI: 10.1016/j.brainres.2023.148693] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/17/2023] [Accepted: 11/27/2023] [Indexed: 12/02/2023]
Abstract
Oxidative stress can upset the antioxidant balance and cause accelerated aging including neurodegenerative diseases and decline in physiological function. Therefore, an antioxidant-rich diet plays a crucial role in healthy aging. This study aimed to identify and quantify mushrooms with the highest ergothioneine content through HPLC analysis and evaluate their anti-aging potential as a natural antioxidant and antisenescence in HT22 cells. Among the 14 evaluated mushroom species, Lentinula edodes (LE), shiitake mushroom contains the highest ergothioneine content and hence was used for the in-vitro studies. The cells were preincubated with ethanolic extract of ergothioneine-rich mushroom and the equimolar concentration of EGT on t-BHP-induced senescence HT22 cells. The extract was analyzed for its free radical scavenging properties using DPPH and ABTS methods. Then, the neuroprotective effect was conducted by measuring the cell viability using MTT. Senescence-associated markers and ROS staining were also analyzed. Our results revealed that a low dose of t-BHP reduces cell viability and induces senescence in HT22 cells as determined through β-galactosidase staining and expressions of P16INK4a, P21CIPL which are the markers of cellular senescence. However, the pretreatment with ethanolic extract of LE for 8 h significantly improved the cell viability, reversed the t-BHP-induced cellular senescence in the neuronal cells, and reduced the reactive oxygen species visualized through DCFH-DA staining. These results suggest that ergothioneine-rich mushroom is a potential candidate for anti-aging exploration through the elimination of senescent cells.
Collapse
Affiliation(s)
- Yasaaswini Apparoo
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, Universiti Malaya 50603, Kuala Lumpur, Malaysia
| | - Chia Wei Phan
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, Universiti Malaya 50603, Kuala Lumpur, Malaysia; Mushroom Research Centre, Universiti Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Umah Rani Kuppusamy
- Department of Biomedical Science, Faculty of Medicine, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Eric Wei Chiang Chan
- Department of Food Science and Nutrition, Faculty of Applied Sciences, UCSI University, 56000 Kuala Lumpur, Malaysia
| |
Collapse
|
11
|
Che J, Yang X, Jin Z, Xu C. Nrf2: A promising therapeutic target in bone-related diseases. Biomed Pharmacother 2023; 168:115748. [PMID: 37865995 DOI: 10.1016/j.biopha.2023.115748] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/15/2023] [Accepted: 10/17/2023] [Indexed: 10/24/2023] Open
Abstract
Nuclear factor erythroid-2-related factor 2 (Nrf2) plays an important role in maintaining cellular homeostasis, as it suppresses cell damage caused by external stimuli by regulating the transcription of intracellular defense-related genes. Accumulating evidence has highlighted the crucial role of reduction-oxidation (REDOX) imbalance in the development of bone-related diseases. Nrf2, a transcription factor linked to nuclear factor-erythrocyte 2, plays a pivotal role in the regulation of oxidative stress and induction of antioxidant defenses. Therefore, further investigation of the mechanism and function of Nrf2 in bone-related diseases is essential. Considerable evidence suggests that increased nuclear transcription of Nrf2 in response to external stimuli promotes the expression of intracellular antioxidant-related genes, which in turn leads to the inhibition of bone remodeling imbalance, improved fracture recovery, reduced occurrence of osteoarthritis, and greater tumor resistance. Certain natural extracts can selectively target Nrf2, potentially offering therapeutic benefits for osteogenic arthropathy. In this article, the biological characteristics of Nrf2 are reviewed, the intricate interplay between Nrf2-regulated REDOX imbalance and bone-related diseases is explored, and the potential preventive and protective effects of natural products targeting Nrf2 in these diseases are elucidated. A comprehensive understanding of the role of Nrf2 in the development of bone-related diseases provides valuable insights into clinical interventions and can facilitate the discovery of novel Nrf2-targeting drugs.
Collapse
Affiliation(s)
- Jingmin Che
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China; Shaanxi Engineering Research Center of Cell Immunology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China.
| | - Xiaoli Yang
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China; Shaanxi Engineering Research Center of Cell Immunology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| | - Zhankui Jin
- Department of Orthopedics, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China.
| | - Cuixiang Xu
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China; Shaanxi Engineering Research Center of Cell Immunology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| |
Collapse
|
12
|
Wang H, Liu X, Yang H, Jing X, Wang W, Liu X, Zhang B, Liu X, Shao Y, Cui X. Activation of the Nrf-2 pathway by pinocembrin safeguards vertebral endplate chondrocytes against apoptosis and degeneration caused by oxidative stress. Life Sci 2023; 333:122162. [PMID: 37820754 DOI: 10.1016/j.lfs.2023.122162] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/28/2023] [Accepted: 10/06/2023] [Indexed: 10/13/2023]
Abstract
AIM The occurrence and progression of intervertebral disc degeneration (IDD) are significantly influenced by the cartilaginous endplate (CEP). Pinocembrin (PIN), a type of flavonoid present in propolis and botanicals, demonstrates both antioxidant and anti-inflammatory characteristics, which could potentially be utilized in management. Therefore, it is crucial to investigate how PIN protects against CEP degeneration and its mechanisms, offering valuable insights for IDD therapy. MATERIALS AND METHODS To investigate the protective impact of PIN in vivo, we created the IDD mouse model through bilateral facet joint transection. In vitro, an IDD pathological environment was mimicked by applying TBHP to treat endplate chondrocytes. KEY FINDINGS In vivo, compared with the IDD group, the mouse in the PIN group effectively mitigates IDD progression and CEP calcification. In vitro, the activation of the Nrf-2 pathway improves the process of Parkin-mediated autophagy in mitochondria and decreases ferroptosis in chondrocytes. This enhancement promotes cell survival by addressing the imbalance of redox during pathological conditions related to IDD. Knocking down Nrf-2 with siRNA fails to provide protection to endplate chondrocytes against apoptosis and degeneration. SIGNIFICANCE The Nrf-2-mediated activation of mitochondrial autophagy and suppression of ferroptosis play a crucial role in safeguarding against oxidative stress-induced degeneration and calcification of CEP through the protective function of PIN. To sum up, this research offers detailed explanations about how PIN can protect against apoptosis and calcification in CEP, providing valuable information about the development of IDD and suggesting possible treatment approaches.
Collapse
Affiliation(s)
- Heran Wang
- Department of Spine Surgery, Shandong Provincial Hospital, Shandong University, Jinan 250000, China.
| | - Xiaoyang Liu
- Department of Spine Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250000, China.
| | - Heng Yang
- Department of Spine Surgery, Shandong Provincial Hospital, Shandong University, Jinan 250000, China.
| | - Xingzhi Jing
- Department of Spine Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250000, China.
| | - Wenchao Wang
- Department of Spine Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250000, China.
| | - Xiaodong Liu
- Department of Spine Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250000, China.
| | - Bofei Zhang
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China.
| | - Xin Liu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China.
| | - Yuandong Shao
- Department of Spine Surgery, Shandong Provincial Hospital, Shandong University, Jinan 250000, China; Department of Spine Surgery, Binzhou People's Hospital, Binzhou 256600, China.
| | - Xingang Cui
- Department of Spine Surgery, Shandong Provincial Hospital, Shandong University, Jinan 250000, China.
| |
Collapse
|
13
|
Chen SY, Li YP, You YP, Zhang HR, Shi ZJ, Liang QQ, Yuan T, Xu R, Xu LH, Zha QB, Ou-Yang DY, He XH. Theaflavin mitigates acute gouty peritonitis and septic organ injury in mice by suppressing NLRP3 inflammasome assembly. Acta Pharmacol Sin 2023; 44:2019-2036. [PMID: 37221235 PMCID: PMC10545837 DOI: 10.1038/s41401-023-01105-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 05/03/2023] [Indexed: 05/25/2023]
Abstract
Activation of NLR family pyrin domain-containing 3 (NLRP3) inflammasome plays important role in defending against infections, but its aberrant activation is causally linked to many inflammatory diseases, thus being a therapeutic target for these diseases. Theaflavin, one major ingredient of black tea, exhibits potent anti-inflammatory and anti-oxidative activities. In this study, we investigated the therapeutic effects of theaflavin against NLRP3 inflammasome activation in macrophages in vitro and in animal models of related diseases. We showed that theaflavin (50, 100, 200 μM) dose-dependently inhibited NLRP3 inflammasome activation in LPS-primed macrophages stimulated with ATP, nigericin or monosodium urate crystals (MSU), evidenced by reduced release of caspase-1p10 and mature interleukin-1β (IL-1β). Theaflavin treatment also inhibited pyroptosis as shown by decreased generation of N-terminal fragment of gasdermin D (GSDMD-NT) and propidium iodide incorporation. Consistent with these, theaflavin treatment suppressed ASC speck formation and oligomerization in macrophages stimulated with ATP or nigericin, suggesting reduced inflammasome assembly. We revealed that theaflavin-induced inhibition on NLRP3 inflammasome assembly and pyroptosis resulted from ameliorated mitochondrial dysfunction and reduced mitochondrial ROS production, thereby suppressing interaction between NLRP3 and NEK7 downstream of ROS. Moreover, we showed that oral administration of theaflavin significantly attenuated MSU-induced mouse peritonitis and improved the survival of mice with bacterial sepsis. Consistently, theaflavin administration significantly reduced serum levels of inflammatory cytokines including IL-1β and attenuated liver inflammation and renal injury of mice with sepsis, concomitant with reduced generation of caspase-1p10 and GSDMD-NT in the liver and kidney. Together, we demonstrate that theaflavin suppresses NLRP3 inflammasome activation and pyroptosis by protecting mitochondrial function, thus mitigating acute gouty peritonitis and bacterial sepsis in mice, highlighting a potential application in treating NLRP3 inflammasome-related diseases.
Collapse
Affiliation(s)
- Si-Yuan Chen
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Ya-Ping Li
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Yi-Ping You
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Hong-Rui Zhang
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Zi-Jian Shi
- Department of Fetal Medicine, the First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Qi-Qi Liang
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Tao Yuan
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Rong Xu
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Li-Hui Xu
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Qing-Bing Zha
- Department of Fetal Medicine, the First Affiliated Hospital of Jinan University, Guangzhou, 510630, China.
- Department of Clinical Laboratory, the Fifth Affiliated Hospital of Jinan University, Heyuan, 517000, China.
| | - Dong-Yun Ou-Yang
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China.
| | - Xian-Hui He
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China.
- Department of Clinical Laboratory, the Fifth Affiliated Hospital of Jinan University, Heyuan, 517000, China.
| |
Collapse
|
14
|
Zhang CY, Hu XC, Zhang GZ, Liu MQ, Chen HW, Kang XW. Role of Nrf2 and HO-1 in intervertebral disc degeneration. Connect Tissue Res 2022; 63:559-576. [PMID: 35736364 DOI: 10.1080/03008207.2022.2089565] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Intervertebral disc degeneration (IDD) is a common age-related disease with clinical manifestations of lumbar and leg pain and limited mobility. The pathogenesis of IDD is mainly mediated by the death of intervertebral disc (IVD) cells and the imbalance of extracellular matrix (ECM) synthesis and degradation. Oxidative stress and inflammatory reactions are the important factors causing this pathological change. Therefore, the regulation of reactive oxygen species and production of inflammatory factors may be an effective strategy to delay the progression of IDD. In recent years, nuclear factor erythroid 2-related factor 2 (Nrf2) and its downstream regulated protein heme oxygenase-1 (HO-1) have received special attention due to their antioxidant, anti-inflammatory and anti-apoptotic protective effects. Recent studies have elucidated the important role of these two proteins in the treatment of IDD disease. However, Nrf2 and HO-1 have not been systematically reported in IDD-related diseases. Therefore, this review describes the biological characteristics of Nrf2 and HO-1, the relationship between Nrf2- and HO-1-regulated oxidative stress and the inflammatory response and IDD, and the progress in research on some extracts targeting Nrf2 and HO-1 to improve IDD. Understanding the role and mechanism of Nrf2 and HO-1 in IDD may provide novel ideas for the clinical treatment and development of Nrf2- and HO-1-targeted drugs.
Collapse
Affiliation(s)
- Cang-Yu Zhang
- The second clinical medical college, Lanzhou University, Lanzhou, Gansu, PR China.,Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu, PR China
| | - Xu-Chang Hu
- The second clinical medical college, Lanzhou University, Lanzhou, Gansu, PR China.,Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu, PR China
| | - Guang-Zhi Zhang
- The second clinical medical college, Lanzhou University, Lanzhou, Gansu, PR China.,Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu, PR China
| | - Ming-Qiang Liu
- The second clinical medical college, Lanzhou University, Lanzhou, Gansu, PR China.,Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu, PR China
| | - Hai-Wei Chen
- The second clinical medical college, Lanzhou University, Lanzhou, Gansu, PR China.,Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu, PR China
| | - Xue-Wen Kang
- The second clinical medical college, Lanzhou University, Lanzhou, Gansu, PR China.,Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu, PR China
| |
Collapse
|
15
|
Patchouli Alcohol Inhibits D-Gal Induced Oxidative Stress and Ameliorates the Quality of Aging Cartilage via Activating the Nrf2/HO-1 Pathway in Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6821170. [PMID: 35720186 PMCID: PMC9200550 DOI: 10.1155/2022/6821170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 03/07/2022] [Indexed: 12/15/2022]
Abstract
Chondrocytes play an essential role in maintaining the structure and function of articular cartilage. Oxidative stress occurred in chondrocytes accelerates cell senescence and death, which contributes to the development of osteoarthritis (OA). Patchouli alcohol (PA), a kind of sesquiterpene in Pogostemon cablin, processes multiple bioactivities in treatment of many diseases. However, its effects of antisenescence and antioxidation on chondrocytes in a D-gal-induced aging mice model are still obscure. In this study, we found that PA treatment could ameliorate the degradation of cartilage extracellular matrix (ECM) in a D-gal-induced aging mice model. Further analyses through the immunofluorescent staining and western blot revealed that PA inhibited D-gal-induced chondrocyte senescence via the activation of antioxidative system. Besides, the damage caused by D-gal could not be recovered with PA treatment in Nrf2-silencing chondrocytes. In addition, molecular docking analysis between PA and Keap1 further suggested that the mechanism of PA's antisenescence and antioxidation was attributed to the activation of Nrf2/HO-1 pathway. Therefore, our results demonstrated that PA was a promising candidate for preventing the quality loss of aging cartilage through inhibiting oxidative stress-mediated senescence in chondrocytes.
Collapse
|
16
|
Liang S, Wang F, Chen J, Granato D, Li L, Yin JF, Xu YQ. Optimization of a tannase-assisted process for obtaining teas rich in theaflavins from Camelia sinensis leaves. Food Chem X 2022; 13:100203. [PMID: 35499033 PMCID: PMC9039937 DOI: 10.1016/j.fochx.2022.100203] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/06/2021] [Accepted: 01/01/2022] [Indexed: 12/04/2022] Open
Abstract
This work aimed at optimizing the extraction of theaflavins for the development of a potentially functional tea beverage using different technological parameters as factors. Green tea leaves treated with tannase provided a beverage with significant higher amount (4.7-fold) of theaflavin (TF) compared to the pure withered leaf fermentation. For black tea, the optimized process conditions to produce a beverage with high TF (0.269 μg/mL) concentration were: 6 g of leaves/400 mL, a low fermentation temperature of 25 °C with the absence of buffer and pH control, an intermediate fermentation time (60 min) and a relatively low aeration rate (0.8-1.0 L/min). The tea liquid produced under optimized fermentation conditions appears to be ideal for making a black tea beverage with surplus summer tea leaves and brings economic benefits.
Collapse
Affiliation(s)
- Shuang Liang
- Tea Research Institute Chinese Academy of Agricultural Sciences, Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, 9 South Meiling Road, Hangzhou 310008, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Fang Wang
- Tea Research Institute Chinese Academy of Agricultural Sciences, Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, 9 South Meiling Road, Hangzhou 310008, China
| | - Jianxin Chen
- Tea Research Institute Chinese Academy of Agricultural Sciences, Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, 9 South Meiling Road, Hangzhou 310008, China
| | - Daniel Granato
- Department of Biological Sciences, Faculty of Science and Engineering, University of Limerick, V94 T9PX Limerick, Ireland
| | - Lijun Li
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Jun-Feng Yin
- Tea Research Institute Chinese Academy of Agricultural Sciences, Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, 9 South Meiling Road, Hangzhou 310008, China
| | - Yong-Quan Xu
- Tea Research Institute Chinese Academy of Agricultural Sciences, Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, 9 South Meiling Road, Hangzhou 310008, China
| |
Collapse
|
17
|
Chen D, Wu Z, Wu LN, Jiang J, Hu GN. Theaflavin Attenuates TBHP-Induced Endothelial Cells Oxidative Stress by Activating PI3K/AKT/Nrf2 and Accelerates Wound Healing in Rats. Front Bioeng Biotechnol 2022; 10:830574. [PMID: 35309982 PMCID: PMC8924520 DOI: 10.3389/fbioe.2022.830574] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 02/02/2022] [Indexed: 01/26/2023] Open
Abstract
The treatment of wounds remains a clinical challenge because of poor angiogenesis under the wound bed, and increasingly, the patients’ need for functional and aesthetically pleasing scars. Previous reports have shown that Theaflavin can induce angiogenesis and terminate the progression of ischemic cardiovascular disease, but limited therapy is available for the management of cutaneous wounds. In this study, our in vitro work discovered that human umbilical vein endothelial cells (HUVECs) exposed to Theaflavin can alleviate apoptosis and cell dysfunction induced by tert-butyl hydroperoxide (TBHP). The cellular activity of HUVECs were assessed by cell tube formation, migration and adhesion. Mechanistically, Theaflavin protected HUVECs from TBHP-stimulated cell apoptosis through the activation of the phosphatidylinositol-3-kinase (PI3K)/protein kinase B (AKT)/nuclear factor (erythroid-derived 2)-like 2 (Nrf2) axis, so Nrf2 silencing can partly eliminate the cytoprotective effect of Theaflavin treatment. In in vivo experiments, administering Theaflavin orally can enhance vascularization in regenerated tissues and accelerate wound healing. In summary, our data served as a novel evidence for the wound healing treatment with Theaflavin, and certified the potential mechanism of Theaflavin, which can be used as a potential agent for cutaneous wound therapy.
Collapse
Affiliation(s)
- Dalei Chen
- Department of Thyroid and Breast Surgery, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, China
| | - Zhijian Wu
- Department of Thyroid and Breast Surgery, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, China
| | - Lu-Ning Wu
- Department of Thyroid and Breast Surgery, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, China
| | - Jingtao Jiang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Gui-Nv Hu
- Department of Thyroid and Breast Surgery, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, China
- *Correspondence: Gui-Nv Hu,
| |
Collapse
|
18
|
Huang Y, Li Q, Yuan Y, Zhang Z, Jiang B, Yang S, Jian J. Silencing of Nrf2 in Litopenaeus vannamei, decreased the antioxidant capacity, and increased apoptosis and autophagy. FISH & SHELLFISH IMMUNOLOGY 2022; 122:257-267. [PMID: 35149211 DOI: 10.1016/j.fsi.2022.02.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/05/2022] [Accepted: 02/06/2022] [Indexed: 06/14/2023]
Abstract
Nuclear factor E2-related factor 2 (Nrf2) is a multifunctional transcription factor that plays an important role in antioxidant activities. However, its effect on antioxidant capacity in Litopenaeus vannamei, an economically important crustacean, remains unclear. In this study, the role of Nrf2 in response to oxidative stress in L. vannamei was determined by its effect on relevant gene expression and enzymatic activity. Nrf2 was cloned and analyzed. Results revealed that Nrf2 contains a 1575 bp open reading frame encoding 524 amino acids and a conserved bZIP Maf domain. The sequence similarity of Nrf2 between L. vannamei and Homarus americanus is 81%. Although the Nrf2 expression was detected in all tissues, the Nrf2 expression levels were the highest in the hepatopancreas, followed by the eyestalk and muscle. RNA interference significantly decreased the expression of antioxidant-related genes (SOD, GPX, CAT, Trx, and HO-1; p < 0.05), significantly upregulated the expression of autophagy genes (Atg3, Atg4, Atg5, Atg10, and Atg12; p < 0.05) and apoptosis genes (Caspase-3 and P53; p < 0.05). Moreover, SOD, CAT, and GPX enzyme activities decreased whereas the MDA activity increased. The histological results of the shrimp injected with dsRNA-Nrf2 showed that the hepatic tubules were irregularly arranged, the lumen was abnormal, and a few hepatic tubules were significantly enlarged compared with those of the dsRNA-EGFP group. The hepatocytes were also vacuolated. In conclusion, this study provided evidence that Nrf2 is involved in the regulation of antioxidant capacity, oxidative stress, apoptosis, and autophagy in shrimp.
Collapse
Affiliation(s)
- Yongxiong Huang
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animal, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, China
| | - Qi Li
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animal, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China
| | - Yunhao Yuan
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animal, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China
| | - Zhiqiang Zhang
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animal, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China
| | - Baijian Jiang
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animal, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China
| | - Shiping Yang
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animal, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, China.
| | - Jichang Jian
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animal, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, China.
| |
Collapse
|
19
|
Fan X, Fan Z, Yang Z, Huang T, Tong Y, Yang D, Mao X, Yang M. Flavonoids-Natural Gifts to Promote Health and Longevity. Int J Mol Sci 2022; 23:ijms23042176. [PMID: 35216290 PMCID: PMC8879655 DOI: 10.3390/ijms23042176] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/08/2022] [Accepted: 02/14/2022] [Indexed: 02/01/2023] Open
Abstract
The aging of mammals is accompanied by the progressive atrophy of tissues and organs and the accumulation of random damage to macromolecular DNA, protein, and lipids. Flavonoids have excellent antioxidant, anti-inflammatory, and neuroprotective effects. Recent studies have shown that flavonoids can delay aging and prolong a healthy lifespan by eliminating senescent cells, inhibiting senescence-related secretion phenotypes (SASPs), and maintaining metabolic homeostasis. However, only a few systematic studies have described flavonoids in clinical treatment for anti-aging, which needs to be explored further. This review first highlights the association between aging and macromolecular damage. Then, we discuss advances in the role of flavonoid molecules in prolonging the health span and lifespan of organisms. This study may provide crucial information for drug design and developmental and clinical applications based on flavonoids.
Collapse
Affiliation(s)
- Xiaolan Fan
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, China; (X.F.); (Z.F.); (Z.Y.); (T.H.); (Y.T.); (D.Y.); (X.M.)
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Ziqiang Fan
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, China; (X.F.); (Z.F.); (Z.Y.); (T.H.); (Y.T.); (D.Y.); (X.M.)
| | - Ziyue Yang
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, China; (X.F.); (Z.F.); (Z.Y.); (T.H.); (Y.T.); (D.Y.); (X.M.)
| | - Tiantian Huang
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, China; (X.F.); (Z.F.); (Z.Y.); (T.H.); (Y.T.); (D.Y.); (X.M.)
| | - Yingdong Tong
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, China; (X.F.); (Z.F.); (Z.Y.); (T.H.); (Y.T.); (D.Y.); (X.M.)
| | - Deying Yang
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, China; (X.F.); (Z.F.); (Z.Y.); (T.H.); (Y.T.); (D.Y.); (X.M.)
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Xueping Mao
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, China; (X.F.); (Z.F.); (Z.Y.); (T.H.); (Y.T.); (D.Y.); (X.M.)
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Mingyao Yang
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, China; (X.F.); (Z.F.); (Z.Y.); (T.H.); (Y.T.); (D.Y.); (X.M.)
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
- Correspondence:
| |
Collapse
|
20
|
Singh E, Matada GSP, Abbas N, Dhiwar PS, Ghara A, Das A. Management of COVID-19-induced cytokine storm by Keap1-Nrf2 system: a review. Inflammopharmacology 2021; 29:1347-1355. [PMID: 34373972 PMCID: PMC8352144 DOI: 10.1007/s10787-021-00860-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 07/27/2021] [Indexed: 12/17/2022]
Abstract
The natural pathway of antioxidant production is mediated through Kelch-like erythroid cell-derived protein with Cap and collar homology [ECH]-associated protein 1 (Keap1)-Nuclear factor erythroid 2-related factor 2 (Nrf2) system. Keap1 maintains a low level of Nrf2 by holding it in its protein complex. Also, Keap1 facilitates the degradation of Nrf2 by ubiquitination. In other words, Keap1 is a down-regulator of Nrf2. To boost the production of biological antioxidants, Keap1 has to be inhibited and Nrf2 has to be released. Liberated Nrf2 is in an unbound state, so it travels to the nucleus to stimulate the antioxidant response element (ARE) present on the antioxidant genes. AREs activate biosynthesis of biological antioxidants through genes responsible for the production of antioxidants. In some cases of coronavirus disease 2019 (COVID-19), there is an enormous release of cytokines. The antioxidant defense mechanism in the body helps in counteracting symptoms induced by the cytokine storm in COVID-19. So, boosting the production of antioxidants is highly desirable in such a condition. In this review article, we have compiled the role of Keap1-Nrf2 system in antioxidant production. We further propose its potential therapeutic use in managing cytokine storm in COVID-19.
Collapse
Affiliation(s)
- Ekta Singh
- Department of Pharmaceutical Chemistry, Acharya and BM Reddy College of Pharmacy, Bengaluru, Karnataka, 560107, India
| | | | - Nahid Abbas
- Department of Pharmaceutical Chemistry, Acharya and BM Reddy College of Pharmacy, Bengaluru, Karnataka, 560107, India
| | - Prasad Sanjay Dhiwar
- Department of Pharmaceutical Chemistry, Acharya and BM Reddy College of Pharmacy, Bengaluru, Karnataka, 560107, India
| | - Abhishek Ghara
- Department of Pharmaceutical Chemistry, Acharya and BM Reddy College of Pharmacy, Bengaluru, Karnataka, 560107, India
| | - Arka Das
- Department of Pharmaceutical Chemistry, Acharya and BM Reddy College of Pharmacy, Bengaluru, Karnataka, 560107, India
| |
Collapse
|
21
|
Zhan J, Cao H, Hu T, Shen J, Wang W, Wu P, Yang G, Ho CT, Li S. Efficient Preparation of Black Tea Extract (BTE) with the High Content of Theaflavin Mono- and Digallates and the Protective Effects of BTE on CCl 4-Induced Rat Liver and Renal Injury. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:5938-5947. [PMID: 34003645 DOI: 10.1021/acs.jafc.1c01851] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Theaflavins (TFs), formed by the dimerization of green tea catechins during "fermentation" to prepare black tea, possess antioxidant and anti-inflammatory effects. Reported efficacious effects of black tea (∼2% of TFs) or related products come from catechins unless TFs are assayed. The present study aimed to target the preparation of black tea extract (BTE) enriched with theaflavin mono- and digallates majorly from dry tea leaves in aqueous media versus traditional fermentation of fresh leaves. We further investigated the protective function of the produced BTE on rat liver and kidney injury induced by CCl4 and its underlying molecular mechanisms. The results showed that BTE suppressed the activation level of hepatic stellate cells (HSCs), and the secretion of collagen was induced by CCl4. The relative expression levels of TGF-β, p-ERK1/ERK1, p-ERK2/ERK2, p-Smad1/Smad1, and p-Smad2/Smad2 were reduced to 56, 68, 56, 44, and 32%, respectively, compared with those of CCl4-treated rats. Therefore, BTE enriched with TFs prevented rat hepatic fibrosis through the TGF-β/Smad/ERK signaling pathway and kidney injury by inhibiting the expression of TGF-β and proinflammatory cytokines in rats. We predict the broad application of TFs and related products because of their strong antioxidant and inhibitory effects on chronic inflammation.
Collapse
Affiliation(s)
- Jianfeng Zhan
- Hubei Key Laboratory of EFGIR, Huanggang Normal University, Huanggang, Hubei 438000, China
| | - Houjian Cao
- Jiangsu Dehe Biotechnology Company, Jiangyin, Jiangsu 214400, China
| | - Ting Hu
- Hubei Key Laboratory of EFGIR, Huanggang Normal University, Huanggang, Hubei 438000, China
| | - Junfeng Shen
- Hubei Key Laboratory of EFGIR, Huanggang Normal University, Huanggang, Hubei 438000, China
| | - Weixin Wang
- Hubei Key Laboratory of EFGIR, Huanggang Normal University, Huanggang, Hubei 438000, China
| | - Peng Wu
- Hubei Key Laboratory of EFGIR, Huanggang Normal University, Huanggang, Hubei 438000, China
| | - Guliang Yang
- National Engineering Laboratory for Rice and By-products Processing, Food Science and Engineering College, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, New Jersey 08901, United States
| | - Shiming Li
- Hubei Key Laboratory of EFGIR, Huanggang Normal University, Huanggang, Hubei 438000, China
- Jiangsu Dehe Biotechnology Company, Jiangyin, Jiangsu 214400, China
- Department of Food Science, Rutgers University, New Brunswick, New Jersey 08901, United States
| |
Collapse
|