1
|
Zhao L, Zhang J, He J, Ma X, Yu Z, Yong Y, Li Y, Ju X, Liu X. Biochemical impact of ALAEm supplementation in late gestation on the reproductive performance of sows. Front Vet Sci 2025; 12:1548263. [PMID: 40336816 PMCID: PMC12055862 DOI: 10.3389/fvets.2025.1548263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 04/03/2025] [Indexed: 05/09/2025] Open
Abstract
Adding plant extracts to diets to enhance sow performance and health is widely regarded as a healthy and sustainable practice. In promoting antibiotic-free farming, plant extracts have emerged as a leading solution for enhancing sow fertility through nutritional strategies. The aim of this study was to investigate the biochemical impacts of supplementation of sows with ALAEm (composed of nine plant extracts) on blood and placental indices of sows in late gestation. The components of ALAEm were determined by UPLC-MS/MS. 196 normal gestation parturient sows were randomly allocated into two groups (n = 98 per group): the control group and the test group fed 20 g/d ALAEm supplementation at 74-114 d of gestation. The study examined the various clinical indexes in the blood, the expression of genes and proteins and metabolomics in the placenta. Dietary ALAEm supplementation improved sow reproductive performance (total number of piglets born alive, number of piglets weaned, wean weight), serum biochemical indices, placental structure and increased gene and protein expression of ZO-1, Claudin-1 and other placental junction-associated factors. ALAEm attenuated placental tissue oxidation, inflammation, and apoptosis, promoted placental growth (EGF and IGF-1) and angiogenesis factors (VEGFA, PIGF and other factors), and increased the nutrient transport in placental (GLUT1 and SNAT2). Dietary ALAEm supplementation decreased the number of metabolites associated with lipid metabolism through alpha-linolenic acid metabolism. Therefore, dietary supplementation of ALAEm in the late gestation may improve fertility by reducing the levels of inflammation, oxidation and apoptosis in placental tissues via the EGFR/VEGFR2-PI3K-AKT1 pathway, promoting placental growth, angiogenesis and nutrient transport, and altering the levels of placental lipid metabolites via α-linolenic acid metabolism.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Xiaoxi Liu
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| |
Collapse
|
2
|
Li Y, Yu B, Liu C, Xia S, Luo Y, Zheng P, Cong G, Yu J, Luo J, Yan H, He J. Effects of dietary genistin supplementation on reproductive performance, immunity and antioxidative capacity in gestating sows. Front Vet Sci 2024; 11:1489227. [PMID: 39641093 PMCID: PMC11618539 DOI: 10.3389/fvets.2024.1489227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 11/11/2024] [Indexed: 12/07/2024] Open
Abstract
Genistin is an isoflavone of soybean, with estrogenic activity. This experiment was conducted to investigate its effect on reproductive performance, antioxidant capacity, and immunity in gestating sows. Seventy-two sows (Landrace × Yorkshire) were selected and randomly divided into two treatment groups (n = 36) based on their backfat thickness, parity and fed with basal diet or supplementation of 150 mg/ kg genistin to the basal diet based on DMI for the entire gestation period. Results showed that dietary genistin supplementation significantly increased the average number of live born per litter (p < 0.05), and tended to increase the number of healthy piglets per litter (p = 0.058), but decreased the average weight of live born per litter (p < 0.05). Dietary genistin supplementation significantly decreased the number of mummified and stillbirths per litter (p < 0.05). Moreover, the average daily feed intake (ADFI) and total feed intake of the gestating sows were also increased in the genistin-supplemented group (p < 0.05). Genistin significantly increased the serum concentrations of catalase (CAT), immunoglobulin A (IgA), IgG, and IgM at 35 days of gestation (p < 0.05). The serum concentrations of interleukin-10 (IL-10) and interferon-γ (IFN-γ) were also increased upon genistin supplementation (p < 0.05). However, genistin supplementation tended to decrease the serum concentrations of total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), and leptin at 85 days of gestation (p = 0.081 and p = 0.096, respectively). Interestingly, genistin supplementation decreased the transcript abundance of interferon-γ (IFN-γ) and placental imprinting gene H19, but significantly increased the transcript abundance of insulin-like growth factor I (IGF-I) and amino acid transporters such as the sodium-coupled neutral amino acid transporter 2 (SNTA2) and SNAT4 in the placenta (p < 0.05). These results suggested that dietary genistin supplementation during gestation can improve the reproductive performance of sows, which was probably associated with improving of antioxidant capacity and immunity, as well as changes of transcript abundance of critical functional genes in the placenta.
Collapse
Affiliation(s)
- Yuchen Li
- Institute of Animal Nutrition Sichuan Agricultural University, Chengdu, China
| | - Bing Yu
- Institute of Animal Nutrition Sichuan Agricultural University, Chengdu, China
| | - Chunxue Liu
- Anyou Biotechnology Group Co., Ltd., Taicang, China
| | | | - Yuheng Luo
- Institute of Animal Nutrition Sichuan Agricultural University, Chengdu, China
| | - Ping Zheng
- Institute of Animal Nutrition Sichuan Agricultural University, Chengdu, China
| | | | - Jie Yu
- Institute of Animal Nutrition Sichuan Agricultural University, Chengdu, China
| | - Junqiu Luo
- Institute of Animal Nutrition Sichuan Agricultural University, Chengdu, China
| | - Hui Yan
- Institute of Animal Nutrition Sichuan Agricultural University, Chengdu, China
| | - Jun He
- Institute of Animal Nutrition Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
3
|
Zhao L, Zhang J, He J, Guo M, Wu H, Ma X, Yu Z, Yong Y, Li Y, Ju X, Liu X. Network pharmacology analysis of the regulatory effects and mechanisms of ALAE on sow reproduction in vivo and in vitro. JOURNAL OF ETHNOPHARMACOLOGY 2024; 334:118525. [PMID: 38992402 DOI: 10.1016/j.jep.2024.118525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/07/2024] [Accepted: 07/03/2024] [Indexed: 07/13/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Reproductive ability of sows is a primary element influencing the development of pig farming. Herbal extracts of Angelica sinensis (Oliv.) Diels, Astragalus mongholicus Bunge, Eucommia ulmoides Oliv., and Polypodium glycyrrhiza D.C.Eaton showed effects on improvement of reproduction in sows. AIMS OF THE STUDY To investigate the mechanism of the treatment effects by a compound of these four Chinese herbs in a 1:1:1:1 ratio (ALAE) on endometriosis, endometritis, uterine adhesion, intrauterine growth retardation, pre-eclampsia, and its enhancement of reproductive efficiency in sows. MATERIALS AND METHODS Active components of ALAE were identified by using ultra-performance liquid chromatography-mass spectrometry analysis and network pharmacology. Then we used the results to construct a visualization network. Key targets and pathways of ALAE involved in sow reproduction improvement were validated in sow animals and porcine endometrial epithelial cells (PEECs). RESULTS A total of 62 active compounds were found in ALAE (41 in Polypodium glycyrrhiza D.C.Eaton, 5 in Astragalus mongholicus Bunge, 11 in Eucommia ulmoides Oliv., 5 in Angelica sinensis (Oliv.) Diels) with 563 disease-related targets (e.g. caspase-3, EGFR, IL-6) involved in EGFR tyrosine kinase inhibitor resistance, PI3K-AKT, and other signaling pathways. Molecular docking results indicated GC41 (glabridin), GC18 (medicarpin), EGFR and CCND1 are possible key components and target proteins related to reproductive improvement in sows. In PEECs, EGFR expression decreased at the mRNA and protein levels by three doses (160, 320, and 640 μg/mL) of ALAE. The phosphorylation of downstream pathway PI3K-AKT1 was enhanced. The expression of inflammatory factors (IL-6, IL-1β), ESR1 and caspase-3 decreased through multiple pathways. Additionally, the expression levels of an anti-inflammatory factor (IL-10), angiogenesis-related factors (MMP9, PIGF, PPARγ, IgG), and placental junction-related factors (CTNNB1, occludin, and claudin1) increased. Furthermore, the total born number of piglets, the number of live and healthy litters were significantly increased. The number of stillbirths decreased by ALAE treatment in sow animals. CONCLUSIONS Dministration of ALAE significantly increased the total number of piglets born, the numbers of live and healthy litters and decreased the number of stillbirths through improving placental structure, attenuating inflammatory response, modulating placental angiogenesis and growth factor receptors in sows. The improvement of reproductive ability may be related to activation of the EGFR-PI3K-AKT1 pathway in PEECs. Moreover, ALAE maybe involved in modulation of estrogen receptors, apoptotic factors, and cell cycle proteins.
Collapse
Affiliation(s)
- Linlu Zhao
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, PR China
| | - Jin Zhang
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, PR China
| | - Jieyi He
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, PR China
| | - Mengru Guo
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, PR China
| | - Huining Wu
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, PR China
| | - Xingbin Ma
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, PR China
| | - Zhichao Yu
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, PR China
| | - Yanhong Yong
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, PR China
| | - Youquan Li
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, PR China
| | - Xianghong Ju
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, PR China
| | - Xiaoxi Liu
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, PR China.
| |
Collapse
|
4
|
Mei H, Li Y, Wu S, He J. Natural plant polyphenols contribute to the ecological and healthy swine production. J Anim Sci Biotechnol 2024; 15:146. [PMID: 39491001 PMCID: PMC11533317 DOI: 10.1186/s40104-024-01096-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 08/25/2024] [Indexed: 11/05/2024] Open
Abstract
The absence of trace amounts of natural bioactive compounds with important biological activities in traditional dietary models for global farm animals, coupled with an incomplete theoretical system for animal nutrition, has led to unbalanced and inadequate animal nutrition. This deficiency has adversely impacted animal health and the ecological environment, presenting formidable challenges to the advancement of the swine breeding industry in various countries around the world toward high-quality development. Recently, due to the ban of antibiotics for growth promotion in swine diets, botanical active compounds have been extensively investigated as feed additives. Polyphenols represent a broad group of plant secondary metabolites. They are natural, non-toxic, pollution-free, and highly reproducible compounds that have a wide range of physiological functions, such as antioxidant, anti-inflammatory, immunomodulatory, antiviral, antibacterial, and metabolic activities. Accordingly, polyphenols have been widely studied and used as feed additives in swine production. This review summarizes the structural characteristics, classification, current application situation, general properties of polyphenols, and the latest research advances on their use in swine production. Additionally, the research and application bottlenecks and future development of plant polyphenols in the animal feed industry are reviewed and prospected. This review aims to stimulate the in-depth study of natural plant polyphenols and the research and development of related products in order to promote the green, healthy, and high-quality development of swine production, while also providing ideas for the innovation and development in the theoretical system of animal nutrition.
Collapse
Affiliation(s)
- Huadi Mei
- College of Animal Science and Technology, Hunan Agriculture University, Changsha, 410128, China
| | - Yuanfei Li
- Jiangxi Province Key Laboratory of Genetic Improvement of Indigenous Chicken Breeds, Institute of Biotechnology, Nanchang Normal University, Nanchang, Jiangxi, 330000, China
| | - Shusong Wu
- College of Animal Science and Technology, Hunan Agriculture University, Changsha, 410128, China.
| | - Jianhua He
- College of Animal Science and Technology, Hunan Agriculture University, Changsha, 410128, China.
| |
Collapse
|
5
|
Rudrapal M, Rakshit G, Singh RP, Garse S, Khan J, Chakraborty S. Dietary Polyphenols: Review on Chemistry/Sources, Bioavailability/Metabolism, Antioxidant Effects, and Their Role in Disease Management. Antioxidants (Basel) 2024; 13:429. [PMID: 38671877 PMCID: PMC11047380 DOI: 10.3390/antiox13040429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/22/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Polyphenols, as secondary metabolites ubiquitous in plant sources, have emerged as pivotal bioactive compounds with far-reaching implications for human health. Plant polyphenols exhibit direct or indirect associations with biomolecules capable of modulating diverse physiological pathways. Due to their inherent abundance and structural diversity, polyphenols have garnered substantial attention from both the scientific and clinical communities. The review begins by providing an in-depth analysis of the chemical intricacies of polyphenols, shedding light on their structural diversity and the implications of such diversity on their biological activities. Subsequently, an exploration of the dietary origins of polyphenols elucidates the natural plant-based sources that contribute to their global availability. The discussion extends to the bioavailability and metabolism of polyphenols within the human body, unraveling the complex journey from ingestion to systemic effects. A central focus of the review is dedicated to unravelling the antioxidant effects of polyphenols, highlighting their role in combating oxidative stress and associated health conditions. The comprehensive analysis encompasses their impact on diverse health concerns such as hypertension, allergies, aging, and chronic diseases like heart stroke and diabetes. Insights into the global beneficial effects of polyphenols further underscore their potential as preventive and therapeutic agents. This review article critically examines the multifaceted aspects of dietary polyphenols, encompassing their chemistry, dietary origins, bioavailability/metabolism dynamics, and profound antioxidant effects. The synthesis of information presented herein aims to provide a valuable resource for researchers, clinicians, and health enthusiasts, fostering a deeper understanding of the intricate relationship between polyphenols and human health.
Collapse
Affiliation(s)
- Mithun Rudrapal
- Department of Pharmaceutical Sciences, School of Biotechnology and Pharmaceutical Sciences, Vignan’s Foundation for Science, Technology & Research (Deemed to be University), Guntur 522213, India
| | - Gourav Rakshit
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Ranchi 835215, India; (G.R.); (R.P.S.); (S.C.)
| | - Ravi Pratap Singh
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Ranchi 835215, India; (G.R.); (R.P.S.); (S.C.)
| | - Samiksha Garse
- School of Biotechnology and Bioinformatics, D Y Patil Deemed to be University, Navi Mumbai 400614, India;
| | - Johra Khan
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majmaah 11952, Saudi Arabia;
| | - Soumi Chakraborty
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Ranchi 835215, India; (G.R.); (R.P.S.); (S.C.)
| |
Collapse
|
6
|
Zhang Y, Ren J, Chen L, Yan H, Zou T, Zhang H, Liu J. Effects of Equol Supplementation on Growth Performance, Redox Status, Intestinal Health and Skeletal Muscle Development of Weanling Piglets with Intrauterine Growth Retardation. Animals (Basel) 2023; 13:ani13091469. [PMID: 37174509 PMCID: PMC10177536 DOI: 10.3390/ani13091469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Animals with intrauterine growth retardation (IUGR) usually undergo injured postnatal growth and development during the early period after birth. Equol (Eq), an isoflavan produced by gut bacteria in response to daidzein intake, has various health benefits. Therefore, the objective of this study was to evaluate whether Eq supplementation can influence the growth performance, redox status, intestinal health and skeletal muscle development of weanling piglets with IUGR. A total of 10 normal-birth-weight (NBW) newborn female piglets and 20 newborn female piglets with IUGR were selected. After weaning at the age of 21 d, 10 NBW piglets and 10 IUGR piglets were allocated to the NBW group and IUGR group, respectively, and offered a basal diet. The other 10 IUGR piglets were allocated to the IUGR + Eq group and offered a basal diet with 50 mg of Eq per kg of diet. The whole trial lasted for 21 d. At the end of the feeding trial, all piglets were sacrificed for the collection of serum, intestinal tissues and skeletal muscles. Supplementation with Eq increased the average daily gain (ADG), average daily feed intake (ADFI), duodenal villus height to crypt depth ratio (V/C), jejunal villus height and V/C, but reduced the duodenal crypt depth in neonatal piglets with IUGR. Meanwhile, Eq supplementation elevated the activities of superoxide dismutase (SOD) and catalase (CAT) in the serum and duodenum and the activity of SOD in the jejunum, but lowered malondialdehyde (MDA) content in the serum, jejunum and ileum of piglets with IUGR. In addition, supplementation with Eq reduced diamine oxidase (DAO) activity and the levels of D-lactate and endotoxin in serum, and the tumor necrosis factor-α (TNF-α) level in jejunum and ileum, whereas the concentration of serum immunoglobulin G (IgG) and the mRNA levels of intestinal barrier-related markers in jejunum and ileum of IUGR piglets were increased. Furthermore, supplementation with Eq elevated the percentage of fast-fibers and was accompanied with higher mRNA expression of myosin heavy chain IIb (MyHC IIb) and lower mRNA levels in MyHC I in the longissimus thoracis (LT) muscle of IUGR piglets. In summary, Eq supplementation can promote antioxidant capacity, maintain intestinal health and facilitate skeletal muscle development, thus resulting in the higher growth performance of IUGR piglets.
Collapse
Affiliation(s)
- Yong Zhang
- School of Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Jingchang Ren
- School of Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Li Chen
- School of Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Honglin Yan
- School of Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Tiande Zou
- Jiangxi Province Key Laboratory of Animal Nutrition, Jiangxi Agricultural University, Nanchang 330045, China
| | - Hongfu Zhang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jingbo Liu
- School of Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| |
Collapse
|
7
|
Liu J, Fu Y, Zhou S, Zhao P, Zhao J, Yang Q, Wu H, Ding M, Li Y. Comparison of the effect of quercetin and daidzein on production performance, anti-oxidation, hormones, and cecal microflora in laying hens during the late laying period. Poult Sci 2023; 102:102674. [PMID: 37104906 PMCID: PMC10160590 DOI: 10.1016/j.psj.2023.102674] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/20/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
This study aims to compare the effect of quercetin and daidzein on production performance, anti-oxidation, hormones, and cecal microflora in laying hens during the late laying period. A total of 360 53-week-old healthy Hyline brown laying hens were randomly divided into 3 groups (control, 0.05% quercetin, and 0.003% daidzein). Diets were fed for 10 wk, afterwards 1 bird per replicate (6 replicates) were euthanized for sampling blood, liver and cecal digesta. Compared with the control, quercetin significantly increased laying rate and decreased feed-to-egg weight ratio from wk 1 to 4, wk 5 to 10, and wk 1 to 10 (P < 0.05). Quercetin significantly increased the activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) and decreased catalase (CAT) activity and malondialdehyde (MDA) content in serum and liver (P < 0.05) and increased content of total antioxidant capacity (T-AOC) in liver (P < 0.05). Quercetin increased content of estradiol (E2), luteinizing hormone (LH), follicle-stimulating hormone (FSH), growth hormone (GH), insulin-like growth factor 1 (IGF-1), triiodothyronine (T3) and thyroxine (T4) in serum (P < 0.05). Quercetin significantly decreased the relative abundance of Bacteroidaceae and Bacteroides (P < 0.01) and significantly increased the relative abundance of Lactobacillaceae and Lactobacillus (P < 0.05) at family and genus levels in cecum. Daidzein did not significantly influence production performance from wk 1 to 10. Daidzein significantly increased SOD activity and decreased CAT activity and MDA content in serum and liver (P < 0.05), and increased T-AOC content in liver (P < 0.05). Daidzein increased content of FSH, IGF-1, T3 in serum (P < 0.05). Daidzein increased the relative abundance of Rikenellaceae RC9 gut group at genus level in cecum (P < 0.05). Quercetin increased economic efficiency by 137.59% and 8.77%, respectively, compared with daidzein and control. In conclusion, quercetin improved production performance through enhancing antioxidant state, hormone levels, and regulating cecal microflora in laying hens during the late laying period. Quercetin was more effective than daidzein in improving economic efficiency.
Collapse
|
8
|
Untargeted Metabolomics Pilot Study Using UHPLC-qTOF MS Profile in Sows' Urine Reveals Metabolites of Bladder Inflammation. Metabolites 2022; 12:metabo12121186. [PMID: 36557224 PMCID: PMC9784506 DOI: 10.3390/metabo12121186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/07/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
Urinary tract infections (UTI) of sows (characterized by ascending infections of the urinary bladder (cyst), ureters, and renal pelvis), are major health issues with a significant economic impact to the swine industry. The current detection of UTI incidents lacks sensitivity; thus, UTIs remain largely under-diagnosed. The value of metabolomics in unraveling the mechanisms of sow UTI has not yet been established. This study aims to investigate the urine metabolome of sows for UTI biomarkers. Urine samples were collected from 58 culled sows from a farrow-to-finish herd in Greece. Urine metabolomic profiles in 31 healthy controls and in 27 inflammatory ones were evaluated. UHPLC-qTOF MS/MS was applied for the analysis with a combination of multivariate and univariate statistical analysis. Eighteen potential markers were found. The changes in several urine metabolites classes (nucleosides, indoles, isoflavones, and dipeptides), as well as amino-acids allowed for an adequate discrimination between the study groups. Identified metabolites were involved in purine metabolism; phenylalanine; tyrosine and tryptophan biosynthesis; and phenylalanine metabolism. Through ROC analysis it was shown that the 18 identified metabolite biomarkers exhibited good predictive accuracy. In summary, our study provided new information on the potential targets for predicting early and accurate diagnosis of UTI. Further, this information also sheds light on how it could be applied in live animals.
Collapse
|
9
|
Plant-derived polyphenols in sow nutrition: An update. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2022; 12:96-107. [PMID: 36632620 PMCID: PMC9823128 DOI: 10.1016/j.aninu.2022.08.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/10/2022] [Accepted: 08/14/2022] [Indexed: 11/07/2022]
Abstract
Oxidative stress is a potentially critical factor that affects productive performance in gestating and lactating sows. Polyphenols are a large class of plant secondary metabolites that possess robust antioxidant capacity. All polyphenols are structurally characterized by aromatic rings with multiple hydrogen hydroxyl groups; those make polyphenols perfect hydrogen atoms and electron donors to neutralize free radicals and other reactive oxygen species. In the past decade, increasing attention has been paid to polyphenols as functional feed additives for sows. Polyphenols have been found to alleviate inflammation and oxidative stress in sows, boost their reproductivity, and promote offspring growth and development. In this review, we provided a systematical summary of the latest research advances in plant-derived polyphenols in sow nutrition, and mainly focused on the effects of polyphenols on the (1) antioxidant and immune functions of sows, (2) placental functions and the growth and development of fetal piglets, (3) mammary gland functions and the growth and development of suckling piglets, and (4) the long-term growth and development of progeny pigs. The output of this review provides an important foundation, from more than 8,000 identified plant phenols, to screen potential polyphenols (or polyphenol-enriched plants) as functional feed additives suitable for gestating and lactating sows.
Collapse
|
10
|
Xie H, Yu E, Wen H, Jiang B, Fu G, Sun H, He J. Effects of dietary daidzein supplementation on reproductive performance, immunity, and antioxidative capacity of New Zealand White does. Anim Feed Sci Technol 2022. [DOI: 10.1016/j.anifeedsci.2022.115431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
11
|
Daidzein Activates Akt Pathway to Promote the Proliferation of Female Germline Stem Cells through Upregulating Clec11a. Stem Cell Rev Rep 2022; 18:3021-3032. [PMID: 35655001 DOI: 10.1007/s12015-022-10394-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/15/2022] [Indexed: 10/18/2022]
Abstract
Female germline stem cells (FGSCs) have been successfully isolated and characterized from postnatal mammalian and human ovarian tissues. However, the effects and mechanisms of action of natural small-molecule compounds on FGSCs are largely unknown. Here, we found that daidzein promoted the viability and proliferation of FGSCs. To elucidate the mechanism underlying this, we performed RNA-Sequence in daidzein-treated FGSCs and controls. The results showed that there were 153 upregulated and 156 downregulated genes in daidzein treatment. We confirmed the expression of some genes related to cell proliferation in the sequencing results by RT-PCR, such as Type C lectin domain family 11 member a (Clec11a), Mucin1 (Muc1), Glutathione peroxidase 3 (Gpx3), and Tet methylcytosine dioxygenase 1 (Tet1). The high expression of Clec11a at the protein level after daidzein treatment was also confirmed by western blotting. Furthermore, recombinant mouse Clec11a (rmClec11a) protein was shown to promote the viability and proliferation of FGSCs. However, knockdown of Clec11a inhibited the viability and proliferation of FGSCs, which could not be rescued by the administration of daidzein. These results indicate that daidzein promoted the viability and proliferation of FGSCs through Clec11a. In addition, both daidzein and rmClec11a activated the Akt signaling pathway in FGSCs. However, Clec11a knockdown inhibited this pathway, which could not be rescued by daidzein administration. Taken together, our findings revealed that daidzein activates the Akt signaling pathway to promote cell viability and proliferation through upregulating Clec11a. This study should deepen our understanding of the developmental mechanism of FGSCs and female infertility.
Collapse
|