1
|
Wang C, Hu N, Li WD, Du XL, Sun LL, Xiao L, Li XQ. Advances in the diagnosis and treatment of primary deep venous valve insufficiency. Eur J Med Res 2025; 30:409. [PMID: 40410866 PMCID: PMC12100926 DOI: 10.1186/s40001-025-02589-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 04/13/2025] [Indexed: 05/25/2025] Open
Abstract
Primary deep venous valve insufficiency (PDVVI) is a common lower extremity venous disease in vascular surgery, distinguished from simple lower extremity varicose veins and lower extremity thrombotic diseases, and requires clinical management as a separate disease. Surgical procedures alone in the superficial venous system cannot completely correct valve reflux and venous hypertension and require surgical valve repair. In addition, the development of non-autologous prosthetic valve transplantation provides a new breakthrough point. This article summarizes the diagnostic and therapeutic advances in PDVVI for discussion.
Collapse
Affiliation(s)
- Chuang Wang
- Department of Vascular Surgery, The Affiliate Nanjing Drum Tower Hospital, Nanjing University Medical School, #321 Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Nan Hu
- Department of Vascular Surgery, The Affiliate Nanjing Drum Tower Hospital, Nanjing University Medical School, #321 Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Wen-Dong Li
- Department of Vascular Surgery, The Affiliate Nanjing Drum Tower Hospital, Nanjing University Medical School, #321 Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Xiao-Long Du
- Department of Vascular Surgery, The Affiliate Nanjing Drum Tower Hospital, Nanjing University Medical School, #321 Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Li-Li Sun
- Department of Vascular Surgery, The Affiliate Nanjing Drum Tower Hospital, Nanjing University Medical School, #321 Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Lun Xiao
- Department of Vascular Surgery, The Affiliate Nanjing Drum Tower Hospital, Nanjing University Medical School, #321 Zhongshan Road, Nanjing, 210008, Jiangsu, China.
| | - Xiao-Qiang Li
- Department of Vascular Surgery, The Affiliate Nanjing Drum Tower Hospital, Nanjing University Medical School, #321 Zhongshan Road, Nanjing, 210008, Jiangsu, China.
| |
Collapse
|
2
|
Wang X, Li W, Zhao X, Hu N, Wang X, Xiao X, Yang K, Sun T. Dysregulated Coagulation in Parkinson's Disease. Cells 2024; 13:1874. [PMID: 39594622 PMCID: PMC11592531 DOI: 10.3390/cells13221874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 11/09/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
Parkinson's disease (PD), a prevalent neurodegenerative disorder characterized by dopaminergic neuron degeneration and α-synuclein accumulation, has been increasingly associated with coagulation dysfunction. This review synthesizes emerging evidence linking dysregulated coagulation to PD pathophysiology. We examine the alterations in coagulation parameters, including elevated fibrinogen levels, impaired fibrinolysis, and platelet dysfunction, which collectively contribute to a hypercoagulable state in PD patients. Epidemiological studies have revealed a higher incidence of thrombotic events, such as deep vein thrombosis (DVT) and stroke, among PD patients, suggesting significant comorbidity between PD and coagulation disorders. This review explores the potential pathophysiological mechanisms underlying this association, focusing on the roles of inflammation and oxidative stress. Additionally, we discuss the limitations of current research and propose future directions. This comprehensive analysis underscores the importance of understanding the coagulation-neurodegeneration axis in PD, which may lead to novel diagnostic and therapeutic strategies for this debilitating condition.
Collapse
Affiliation(s)
- Xinqing Wang
- School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China;
| | - Wenxin Li
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China; (W.L.); (X.Z.); (N.H.); (X.W.); (T.S.)
| | - Xinyue Zhao
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China; (W.L.); (X.Z.); (N.H.); (X.W.); (T.S.)
| | - Ning Hu
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China; (W.L.); (X.Z.); (N.H.); (X.W.); (T.S.)
| | - Xi Wang
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China; (W.L.); (X.Z.); (N.H.); (X.W.); (T.S.)
| | - Xilin Xiao
- School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China;
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China
| | - Kai Yang
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China; (W.L.); (X.Z.); (N.H.); (X.W.); (T.S.)
- Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Taolei Sun
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China; (W.L.); (X.Z.); (N.H.); (X.W.); (T.S.)
- Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| |
Collapse
|
3
|
Li Y, Fan H, Wei W, Zhu H, Wang H, Lyu D, Zhang Z, Tan Y. A Silent Threat: Deep Vein Thrombosis in Early-Stage Parkinson's Disease. Risk Manag Healthc Policy 2024; 17:2169-2179. [PMID: 39263553 PMCID: PMC11389711 DOI: 10.2147/rmhp.s469725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 08/22/2024] [Indexed: 09/13/2024] Open
Abstract
Introduction The primary clinical manifestation of venous thrombosis is discomfort in the lower extremities. Some early Parkinson's disease (PD) patients feel discomfort in the lower limbs. Venous thrombosis can risk lives by causing pulmonary embolism. This study examines the incidence of DVT in early PD patients and its correlation with different clinical and lab features. Methods A cross-sectional study was conducted on 117 patients with early-stage PD. Ultrasonography was employed to detect the presence of DVT. Factors such as age, gender, body mass index, lifestyle habits (smoking and drinking), medical history (hypertension, diabetes, atrial fibrillation, and tumor), and other lab tests linked to thrombosis were analyzed. Results In 117 patients, 11 (9.4%) had DVT, while 106 (90.6%) did not. There were no significant differences in gender, BMI, habits, medical history, or other thrombosis-related tests between both groups. However, DVT patients were older with higher d-dimer levels. They also showed an increased right substantia nigra ultrasound echo area, higher HY grades, higher UPDRS 3 scores, less improvement in UPDRS 3 scores and levodopa response. Discussion The primary risk factors for lower extremity venous thrombosis were found to be age, d-dimer levels, and low-dose levodopa. Therefore, for elderly patients with early-stage PD, it is crucial to conduct d-dimer and lower extremity vascular ultrasound tests. The prevention of venous thrombosis in the lower extremities of early PD patients is of utmost importance.
Collapse
Affiliation(s)
- Yang Li
- Department of Neurology, Huzhou Central Hospital, The Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Huzhou, People's Republic of China
| | - Huihui Fan
- Department of Ultrasound, Huzhou Central Hospital, The Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Huzhou, People's Republic of China
| | - Wei Wei
- Department of Key Laboratory of Basic Research and Clinical Translation, Huzhou Central Hospital, The Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Huzhou, People's Republic of China
| | - Hanyu Zhu
- Department of Neurology, Medical School of Huzhou University, Huzhou, People's Republic of China
| | - Haifeng Wang
- Department of Neurology, Medical School of Huzhou University, Huzhou, People's Republic of China
| | - Dayao Lyu
- Department of Neurology, Huzhou Central Hospital, The Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Huzhou, People's Republic of China
| | - Zengrui Zhang
- Department of Neurology, Huzhou Central Hospital, The Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Huzhou, People's Republic of China
| | - Ying Tan
- Department of Neurology, Huzhou Central Hospital, The Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Huzhou, People's Republic of China
| |
Collapse
|
4
|
Li Y, Li Y, Chen H. The effect of ultrasound-assisted thrombolysis studied in blood-on-a-chip. Artif Organs 2024; 48:734-742. [PMID: 38380722 DOI: 10.1111/aor.14731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/24/2024] [Accepted: 02/07/2024] [Indexed: 02/22/2024]
Abstract
BACKGROUND Thromboembolism, which leads to pulmonary embolism and ischemic stroke, remains one of the main causes of death. Ultrasound-assisted thrombolysis (UAT) is an effective thrombolytic method. However, further studies are required to elucidate the mechanism of ultrasound on arterial and venous thrombi. METHODS We employed the blood-on-a-chip technology to simulate thrombus formation in coronary stenosis and deep vein valves. Subsequently, UAT was conducted on the chip to assess the impact of ultrasound on thrombolysis under varying flow conditions. Real-time fluorescence was used to assess thrombolysis and drug penetration. Finally, scanning electron microscopy and immunofluorescence were used to determine the effect of ultrasound on fibrinolysis. RESULTS The study revealed that UAT enhanced the thrombolytic rate by 40% in the coronary stenosis chip and by 10% in the deep venous valves chip. This enhancement is attributed to the disruption of crosslinked fibrin fibers by ultrasound, leading to increased urokinase diffusion within the thrombus and accumulation of plasminogen on the fibrinogen α chain. Moreover, the acceleration of the dissolution rate of thrombi in the venous valve chip by ultrasound was not as significant as that in the coronary stenosis chip. CONCLUSION These findings highlight the differential impact of ultrasound on thrombolysis under various flow conditions and emphasize the valuable role of the blood-on-a-chip technology in exploring thrombolysis mechanisms.
Collapse
Affiliation(s)
- Yan Li
- State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing, China
| | - Yongjian Li
- State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing, China
| | - Haosheng Chen
- State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing, China
| |
Collapse
|
5
|
Chen L, Yu L, Liu Y, Xu H, Li W, Wang F, Zhu J, Yi K, Ma L, Xiao H, Zhou F, Chen M, Cheng Y, Wang F, Zhu C, Xiao X, Yang Y. Valve-Adjustable Optofluidic Bio-Imaging Platform for Progressive Stenosis Investigation. ACS Sens 2023; 8:3104-3115. [PMID: 37477650 DOI: 10.1021/acssensors.3c00754] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
The clinical evidence has proven that valvular stenosis is closely related to many vascular diseases, which attracts great academic attention to the corresponding pathological mechanisms. The investigation is expected to benefit from the further development of an in vitro model that is tunable for bio-mimicking progressive valvular stenosis and enables accurate optical recognition in complex blood flow. Here, we develop a valve-adjustable optofluidic bio-imaging recognition platform to fulfill it. Specifically, the bionic valve was designed with in situ soft membrane, and the internal air-pressure chamber could be regulated from the inside out to bio-mimic progressive valvular stenosis. The developed imaging algorithm enhances the recognition of optical details in blood flow imaging and allows for quantitative analysis. In a prospective clinical study, we examined the effect of progressive valvular stenosis on hemodynamics within the typical physiological range of veins by this way, where the inhomogeneity and local enhancement effect in the altered blood flow field were precisely described and the optical differences were quantified. The effectiveness and consistency of the results were further validated through statistical analysis. In addition, we tested it on fluorescence and noticed its good performance in fluorescent tracing of the clotting process. In virtue of theses merits, this system should be able to contribute to mechanism investigation, pharmaceutical development, and therapeutics of valvular stenosis-related diseases.
Collapse
Affiliation(s)
- Longfei Chen
- Department of Clinical Laboratory, Institute of Medicine and Physics, Renmin Hospital of Wuhan University, Key Laboratory of Artificial Micro- and Nano- Structures of Ministry of Education, School of Physics & technology, Wuhan University, Wuhan 430072, China
- Shenzhen Research Institute, Wuhan University, Shenzhen 518000, China
| | - Le Yu
- Department of Clinical Laboratory, Institute of Medicine and Physics, Renmin Hospital of Wuhan University, Key Laboratory of Artificial Micro- and Nano- Structures of Ministry of Education, School of Physics & technology, Wuhan University, Wuhan 430072, China
| | - Yantong Liu
- Department of Clinical Laboratory, Institute of Medicine and Physics, Renmin Hospital of Wuhan University, Key Laboratory of Artificial Micro- and Nano- Structures of Ministry of Education, School of Physics & technology, Wuhan University, Wuhan 430072, China
| | - Hongshan Xu
- Department of Clinical Laboratory, Institute of Medicine and Physics, Renmin Hospital of Wuhan University, Key Laboratory of Artificial Micro- and Nano- Structures of Ministry of Education, School of Physics & technology, Wuhan University, Wuhan 430072, China
| | - Wei Li
- Department of Clinical Laboratory, Institute of Medicine and Physics, Renmin Hospital of Wuhan University, Key Laboratory of Artificial Micro- and Nano- Structures of Ministry of Education, School of Physics & technology, Wuhan University, Wuhan 430072, China
| | - Fang Wang
- Department of Clinical Laboratory, Institute of Medicine and Physics, Renmin Hospital of Wuhan University, Key Laboratory of Artificial Micro- and Nano- Structures of Ministry of Education, School of Physics & technology, Wuhan University, Wuhan 430072, China
| | - Jiaomeng Zhu
- Department of Clinical Laboratory, Institute of Medicine and Physics, Renmin Hospital of Wuhan University, Key Laboratory of Artificial Micro- and Nano- Structures of Ministry of Education, School of Physics & technology, Wuhan University, Wuhan 430072, China
| | - Kezhen Yi
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Linlu Ma
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Hui Xiao
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Fuling Zhou
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Ming Chen
- Department of Blood Transfusion, Zhongnan Hospital, Wuhan University, Wuhan 430071, China
| | - Yanxiang Cheng
- School of Medicine, Renmin Hospital, Wuhan University, Wuhan 430060, China
| | - Fubing Wang
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Chengliang Zhu
- Department of Clinical Laboratory, Institute of Medicine and Physics, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
| | - Xuan Xiao
- Department of Clinical Laboratory, Institute of Medicine and Physics, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
| | - Yi Yang
- Department of Clinical Laboratory, Institute of Medicine and Physics, Renmin Hospital of Wuhan University, Key Laboratory of Artificial Micro- and Nano- Structures of Ministry of Education, School of Physics & technology, Wuhan University, Wuhan 430072, China
- Shenzhen Research Institute, Wuhan University, Shenzhen 518000, China
| |
Collapse
|
6
|
Li Y, Li Y, Li J, Chen H. Wall shear gradient dependent thrombosis studied in blood-on-a-chip with stenotic, branched, and valvular constructions. BIOMICROFLUIDICS 2023; 17:034101. [PMID: 37187669 PMCID: PMC10171887 DOI: 10.1063/5.0149884] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 04/19/2023] [Indexed: 05/17/2023]
Abstract
Thrombosis is the leading cause of death, while the effect of the shear flow on the formation of thrombus in vascular constructions has not been thoroughly understood, and one of the challenges is to observe the origination of thrombus with a controlled flow field. In this work, we use blood-on-a-chip technology to mimic the flow conditions in coronary artery stenosis, neonatal aortic arch, and deep venous valve. The flow field is measured by the microparticle image velocimeter (μPIV). In the experiment, we find that the thrombus often originates at the constructions of stenosis, bifurcation, and the entrance of valve, where the flow stream lines change suddenly, and the maximum wall shear rate gradient appears. Using the blood-on-a-chip technology, the effect of the wall shear rate gradients on the formation of the thrombus has been illustrated, and the blood-on-a-chip is demonstrated to be a perspective tool for further studies on the flow-induced formation of thrombosis.
Collapse
Affiliation(s)
- Yan Li
- Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| | - Yongjian Li
- Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| | - Jiang Li
- School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Haosheng Chen
- Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
7
|
Baksamawi HA, Alexiadis A, Vigolo D, Brill A. Platelet accumulation in an endothelium-coated elastic vein valve model of deep vein thrombosis is mediated by GPIb α-VWF interaction. Front Cardiovasc Med 2023; 10:1167884. [PMID: 37180784 PMCID: PMC10174463 DOI: 10.3389/fcvm.2023.1167884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 03/28/2023] [Indexed: 05/16/2023] Open
Abstract
Deep vein thrombosis is a life-threatening disease that takes millions of people's lives worldwide. Given both technical and ethical issues of using animals in research, it is necessary to develop an appropriate in vitro model that would recapitulate the conditions of venous thrombus development. We present here a novel microfluidics vein-on-a-chip with moving valve leaflets to mimic the hydrodynamics in a vein, and Human Umbilical Vein Endothelial Cell (HUVEC) monolayer. A pulsatile flow pattern, typical for veins, was used in the experiments. Unstimulated human platelets, reconstituted with the whole blood, accumulated at the luminal side of the leaflet tips proportionally to the leaflet flexibility. Platelet activation by thrombin induced robust platelet accrual at the leaflet tips. Inhibition of glycoprotein (GP) IIb-IIIa did not decrease but, paradoxically, slightly increased platelet accumulation. In contrast, blockade of the interaction between platelet GPIbα and A1 domain of von Willebrand factor completely abolished platelet deposition. Stimulation of the endothelium with histamine, a known secretagogue of Weibel-Palade bodies, promoted platelet accrual at the basal side of the leaflets, where human thrombi are usually observed. Thus, platelet deposition depends on the leaflet flexibility, and accumulation of activated platelets at the valve leaflets is mediated by GPIbα-VWF interaction.
Collapse
Affiliation(s)
- Hosam Alden Baksamawi
- School of Chemical Engineering, University of Birmingham, Birmingham, United Kingdom
| | - Alessio Alexiadis
- School of Chemical Engineering, University of Birmingham, Birmingham, United Kingdom
- School of Biomedical Engineering, The University of Sydney, Sydney, NSW, Australia
| | - Daniele Vigolo
- School of Chemical Engineering, University of Birmingham, Birmingham, United Kingdom
- School of Biomedical Engineering, The University of Sydney, Sydney, NSW, Australia
- The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW, Australia
| | - Alexander Brill
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
8
|
Sanchez ZAC, Vijayananda V, Virassammy DM, Rosenfeld L, Ramasubramanian AK. The interaction of vortical flows with red cells in venous valve mimics. BIOMICROFLUIDICS 2022; 16:024103. [PMID: 35282036 PMCID: PMC8896891 DOI: 10.1063/5.0078337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 02/08/2022] [Indexed: 06/14/2023]
Abstract
The motion of cells orthogonal to the direction of main flow is of importance in natural and engineered systems. The lateral movement of red blood cells (RBCs) distal to sudden expansion is considered to influence the formation and progression of thrombosis in venous valves, aortic aneurysms, and blood-circulating devices and is also a determining parameter for cell separation applications in flow-focusing microfluidic devices. Although it is known that the unique geometry of venous valves alters the blood flow patterns and cell distribution in venous valve sinuses, the interactions between fluid flow and RBCs have not been elucidated. Here, using a dilute cell suspension in an in vitro microfluidic model of a venous valve, we quantified the spatial distribution of RBCs by microscopy and image analysis, and using micro-particle image velocimetry and 3D computational fluid dynamics simulations, we analyzed the complex flow patterns. The results show that the local hematocrit in the valve pockets is spatially heterogeneous and is significantly different from the feed hematocrit. Above a threshold shear rate, the inertial separation of streamlines and lift forces contribute to an uneven distribution of RBCs in the vortices, the entrapment of RBCs in the vortices, and non-monotonic wall shear stresses in the valve pockets. Our experimental and computational characterization provides insights into the complex interactions between fluid flow, RBC distribution, and wall shear rates in venous valve mimics, which is of relevance to understanding the pathophysiology of thrombosis and improving cell separation efficiency.
Collapse
|
9
|
Nguyen N, Thurgood P, Sekar NC, Chen S, Pirogova E, Peter K, Baratchi S, Khoshmanesh K. Microfluidic models of the human circulatory system: versatile platforms for exploring mechanobiology and disease modeling. Biophys Rev 2021; 13:769-786. [PMID: 34777617 DOI: 10.1007/s12551-021-00815-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 06/22/2021] [Indexed: 02/07/2023] Open
Abstract
The human circulatory system is a marvelous fluidic system, which is very sensitive to biophysical and biochemical cues. The current animal and cell culture models do not recapitulate the functional properties of the human circulatory system, limiting our ability to fully understand the complex biological processes underlying the dysfunction of this multifaceted system. In this review, we discuss the unique ability of microfluidic systems to recapitulate the biophysical, biochemical, and functional properties of the human circulatory system. We also describe the remarkable capacity of microfluidic technologies for exploring the complex mechanobiology of the cardiovascular system, mechanistic studying of cardiovascular diseases, and screening cardiovascular drugs with the additional benefit of reducing the need for animal models. We also discuss opportunities for further advancement in this exciting field.
Collapse
Affiliation(s)
- Ngan Nguyen
- School of Engineering, RMIT University, Melbourne, Australia
| | - Peter Thurgood
- School of Engineering, RMIT University, Melbourne, Australia
| | - Nadia Chandra Sekar
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Australia
| | - Sheng Chen
- School of Engineering, RMIT University, Melbourne, Australia
| | - Elena Pirogova
- School of Engineering, RMIT University, Melbourne, Australia
| | - Karlheinz Peter
- Baker Heart and Diabetes Institute, Melbourne, Australia.,Department of Cardiometabolic Health, The University of Melbourne, Parkville, Australia
| | - Sara Baratchi
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Australia
| | | |
Collapse
|
10
|
Rajeeva Pandian NK, Walther BK, Suresh R, Cooke JP, Jain A. Microengineered Human Vein-Chip Recreates Venous Valve Architecture and Its Contribution to Thrombosis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2003401. [PMID: 33205630 PMCID: PMC7791597 DOI: 10.1002/smll.202003401] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 10/01/2020] [Indexed: 05/03/2023]
Abstract
Deep vein thrombosis (DVT) and its consequences are lethal, but current models cannot completely dissect its determinants-endothelium, flow, and blood constituents-together called Virchow's triad. Most models for studying DVT forego assessment of venous valves that serve as the primary sites of DVT formation. Therefore, the knowledge of DVT formed at the venous cusps has remained obscure due to lack of experimental models. Here, organ-on-chip methodology is leveraged to create a Vein-Chip platform integrating fully vascularized venous valves and its hemodynamic, as seen in vivo. These Vein-Chips reveal that vascular endothelium of valve cusps adapts to the locally disturbed microenvironment by expressing a different phenotype from the regions of uniform flow. This spatial adaptation of endothelial function recreated on the in vitro Vein-Chip platform is shown to protect the vein from thrombosis from disturbed flow in valves, but interestingly, cytokine stimulation reverses the effect and switches the valve endothelium to becoming prothrombotic. The platform eventually modulates the three factors of Virchow's triad and provides a systematic approach to investigate the determinants of fibrin and platelet dynamics of DVT. Therefore, this Vein-Chip offers a new preclinical approach to study venous pathophysiology and show effects of antithrombotic drug treatment.
Collapse
Affiliation(s)
| | - Brandon K Walther
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, TX, 77843, USA
- Department of Cardiovascular Sciences, Houston Methodist Institute for Academic Medicine and Houston Methodist Research Institute, 6670 Bertner Ave., Houston, TX, 77030, USA
| | - Rishi Suresh
- Texas A&M Health Science Center, College of Medicine, Bryan, TX, 77807, USA
| | - John P Cooke
- Department of Cardiovascular Sciences, Houston Methodist Institute for Academic Medicine and Houston Methodist Research Institute, 6670 Bertner Ave., Houston, TX, 77030, USA
| | - Abhishek Jain
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, TX, 77843, USA
- Department of Medical Physiology, College of Medicine, Texas A&M Health Science Center, Bryan, TX, 77808, USA
| |
Collapse
|