1
|
Li Y, Huang R, Duan Y, Deng D, Chen H, Xia T, Duan Y, Lei H, Luo L. Ultrasensitive lab-on-paper electrochemical device via heterostructure copper/cuprous sulfide@N-doped C@Au hollow nanoboxes as signal amplifier for alpha-fetoprotein detection. Biosens Bioelectron 2025; 267:116827. [PMID: 39368293 DOI: 10.1016/j.bios.2024.116827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/24/2024] [Accepted: 09/30/2024] [Indexed: 10/07/2024]
Abstract
Rapid and accurate detection of tumor markers at extremely low levels is crucial for the early diagnosis of cancers. In this work, we developed a portable label-free sliding electrochemical paper-based analytical device (ePAD) using copper/cuprous sulfide@N-doped C@Au nanoparticles (Cu/Cu2S@NC@Au) hollow nanoboxes as the signal amplifier for the ultrasensitive detection of alpha-fetoprotein (AFP). Cu/Cu2S@NC nanoboxes were synthesized by sacrificial template and interface reaction methods, on which Au nanoparticles were electrodeposited to construct unique heterostructure for effectively capturing anti-AFP and serving as signal amplifier. The designed ePAD incorporates sliding microfluidic paper chips to form a flexible three-electrode system, enabling highly sensitive detection of AFP with a wide linear range of 0.005-50 ng mL-1 and a low detection limit of 0.62 pg mL-1. The practicality of the prepared ePAD was validated through AFP detection in clinical human serum, which was consistent with chemiluminescence immunoassay. In addition, the developed immunosensor demonstrates excellent specificity, repeatability and stability. This novel platform exhibits significant potential for rapid on-site analysis and point-of-care diagnosis.
Collapse
Affiliation(s)
- Yuanyuan Li
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, PR China; College of Sciences, Shanghai University, Shanghai, 200444, PR China
| | - Rong Huang
- College of Sciences, Shanghai University, Shanghai, 200444, PR China
| | - Yi Duan
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, PR China
| | - Dongmei Deng
- College of Sciences, Shanghai University, Shanghai, 200444, PR China.
| | - Huinan Chen
- College of Sciences, Shanghai University, Shanghai, 200444, PR China
| | - Tingyu Xia
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, PR China
| | - Yourong Duan
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, PR China.
| | - Hong Lei
- College of Sciences, Shanghai University, Shanghai, 200444, PR China; Shanghai Engineering Research Center for Integrated Circuits and Advanced Display Materials, Shanghai University, Shanghai, 200444, PR China
| | - Liqiang Luo
- College of Sciences, Shanghai University, Shanghai, 200444, PR China; Shanghai Engineering Research Center for Integrated Circuits and Advanced Display Materials, Shanghai University, Shanghai, 200444, PR China.
| |
Collapse
|
2
|
Kim T, Choodinatha HK, Kim KS, Shin K, Kim HJ, Park JY, Hong JW, Lee LP. Understanding the role of soluble proteins and exosomes in non-invasive urine-based diagnosis of preeclampsia. Sci Rep 2024; 14:24117. [PMID: 39406891 PMCID: PMC11482518 DOI: 10.1038/s41598-024-75080-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 10/01/2024] [Indexed: 10/19/2024] Open
Abstract
Preeclampsia is a hypertensive disorder of pregnancy that can lead to stillbirth and preterm birth if not treated promptly. Currently, the diagnosis of preeclampsia relies on clinical symptoms such as hypertension and proteinuria, along with invasive blood tests. Here, we investigate the role of soluble proteins and exosomes in noninvasive diagnosing preeclampsia non-invasively using maternal urine and urine-derived exosomes. We quantified the levels of particles and the presence of TSG101 and CD63 in urine and urinary exosomes via the biologically intact exosome separation technology (BEST) platform. Then, we obtained higher levels of soluble proteins such as fms-like tyrosine kinase-1 (sFlt-1) and placental growth factor (PlGF) from urine as it was than urinary exosomes. Compared to commercial blood tests, the sensitivity of the sFlt-1/PlGF ratio was found to be 4.0 times higher in urine tests and 1.5 times higher in tests utilizing urine-derived exosomes. Our findings offer promising possibilities for the early and non-invasive identification of high-risk individuals at risk of preeclampsia, allowing for comprehensive preventive management.
Collapse
Affiliation(s)
- Taewoon Kim
- Department of Bionanotechnology, Graduate School, Hanyang University, Seoul, 04763, Korea
| | - Harshitha Kallubhavi Choodinatha
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Korea
- Seoul National University, Seoul, Korea
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Kwang Sik Kim
- Department of Bionanotechnology, Graduate School, Hanyang University, Seoul, 04763, Korea
| | - Kyusoon Shin
- Department of Bionanotechnology, Graduate School, Hanyang University, Seoul, 04763, Korea
| | - Hyeon Ji Kim
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Korea
- Seoul National University, Seoul, Korea
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Jee Yoon Park
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Korea.
- Seoul National University, Seoul, Korea.
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Korea.
| | - Jong Wook Hong
- Department of Bionanotechnology, Graduate School, Hanyang University, Seoul, 04763, Korea.
- Department of Medical and Digital Engineering, Graduate School, Hanyang University, Seoul, 04763, Korea.
- Department of Bionanoengineering, Hanyang University, 15588, Ansan, Gyeonggi-do, Korea.
| | - Luke P Lee
- Harvard Medical School, Department of Medicine, Harvard University, Brigham and Women's Hospital, Boston, MA, USA.
- Department of Bioengineering, University of California at Berkeley, Berkeley, CA, USA.
- Department of Electrical Engineering and Computer Science, University of California at Berkeley, Berkeley, CA, USA.
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, Korea.
- Department of Chemistry & Nanoscience, Ewha Womans University, Seoul, Korea.
| |
Collapse
|
3
|
Jang W, Song EL, Mun SJ, Bong KW. Efficient isolation of encoded microparticles in a degassed micromold for highly sensitive and multiplex immunoassay with signal amplification. Biosens Bioelectron 2024; 261:116465. [PMID: 38850735 DOI: 10.1016/j.bios.2024.116465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/29/2024] [Accepted: 06/02/2024] [Indexed: 06/10/2024]
Abstract
Multiplex detection of low-abundance protein biomarkers in biofluids can contribute to diverse biomedical fields such as early diagnosis and precision medicine. However, conventional techniques such as digital ELISA, microarray, and hydrogel-based assay still face limitations in terms of efficient protein detection due to issues with multiplexing capability, sensitivity, or complicated assay procedures. In this study, we present the degassed micromold-based particle isolation technique for highly sensitive and multiplex immunoassay with enzymatic signal amplification. Using degassing treatment of nanoporous polydimethylsiloxane (PDMS) micromold, the encoded particles are isolated in the mold within 5 min absorbing trapped air bubbles into the mold by air suction capability. Through 10 min of signal amplification in the isolated spaces by fluorogenic substrate and horseradish peroxidase labeled in the particle, the assay signal is amplified with one order of magnitude compared to that of the standard hydrogel-based assay. Using the signal amplification assay, vascular endothelial growth factor (VEGF) and chorionic gonadotropin beta (CG beta), the preeclampsia-related protein biomarkers, are quantitatively detected with a limit of detection (LoD) of 249 fg/mL and 476 fg/mL in phosphate buffer saline. The multiplex immunoassay is conducted to validate negligible non-specific detection signals and robust recovery rates in the multiplex assay. Finally, the VEGF and CG beta in real urine samples are simultaneously and quantitatively detected by the developed assay. Given the high sensitivity, multiplexing capability, and process simplicity, the presented particle isolation-based signal amplification assay holds significant potential in biomedical and proteomic fields.
Collapse
Affiliation(s)
- Wookyoung Jang
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - E Loomee Song
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Seok Joon Mun
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Ki Wan Bong
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
4
|
Liu Y, Ling S, Chen Z, Xu J. Ionic Polymerization-Based Synthesis of Bioinspired Adhesive Hydrogel Microparticles with Tunable Morphologies from Microfluidics. ACS APPLIED MATERIALS & INTERFACES 2024; 16:37028-37040. [PMID: 38963006 DOI: 10.1021/acsami.4c06578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Shape-anisotropic hydrogel microparticles have attracted considerable attention for drug-delivery applications. Particularly, nonspherical hydrogel microcarriers with enhanced adhesive and circulatory abilities have demonstrated value in gastrointestinal drug administration. Herein, inspired by the structures of natural suckers, we demonstrate an ionic polymerization-based production of calcium (Ca)-alginate microparticles with tunable shapes from Janus emulsion for the first time. Monodispersed Janus droplets composed of sodium alginate and nongelable segments were generated using a coflow droplet generator. The interfacial curvatures, sizes, and production frequencies of Janus droplets can be flexibly controlled by varying the flow conditions and surfactant concentrations in the multiphase system. Janus droplets were ionically solidified on a chip, and hydrogel beads of different shapes were obtained. The in vitro and in vivo adhesion abilities of the hydrogel beads to the mouse colon were investigated. The anisotropic beads showed prominent adhesive properties compared with the spherical particles owing to their sticky hydrogel components and unique shapes. Finally, a novel computational fluid dynamics and discrete element method (CFD-DEM) coupling simulation was used to evaluate particle migration and contact forces theoretically. This review presents a simple strategy to synthesize Ca-alginate particles with tunable structures that could be ideal materials for constructing gastrointestinal drug delivery systems.
Collapse
Affiliation(s)
- Yingzhe Liu
- The State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Sida Ling
- The State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Zhuo Chen
- The State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Jianhong Xu
- The State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
5
|
Lim YJ, Choi JH, Mun SJ, Kim J, Bong KW. Real-Time Signal Analysis with Wider Dynamic Range and Enhanced Sensitivity in Multiplex Colorimetric Immunoassays Using Encoded Hydrogel Microparticles. Anal Chem 2024; 96:7204-7211. [PMID: 38662417 DOI: 10.1021/acs.analchem.4c00773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
The simultaneous quantification of multiple proteins is crucial for accurate medical diagnostics. A promising technology, the multiplex colorimetric immunoassay using encoded hydrogel microparticles, has garnered attention, due to its simplicity and multiplex capabilities. However, it encounters challenges related to its dynamic range, as it relies solely on the colorimetric signal analysis of encoded hydrogel microparticles at the specific time point (i.e., end-point analysis). This necessitates the precise determination of the optimal time point for the termination of the colorimetric reaction. In this study, we introduce real-time signal analysis to quantify proteins by observing the continuous colorimetric signal change within the encoded hydrogel microparticles. Real-time signal analysis measures the "slope", the rate of the colorimetric signal generation, by focusing on the kinetics of the accumulation of colorimetric products instead of the colorimetric signal that appears at the end point. By developing a deep learning-based automatic analysis program that automatically reads the code of the graphically encoded hydrogel microparticles and obtains the slope by continuously tracking the colorimetric signal, we achieved high accuracy and high throughput analysis. This technology has secured a dynamic range more than twice as wide as that of the conventional end-point signal analysis, simultaneously achieving a sensitivity that is 4-10 times higher. Finally, as a demonstration of application, we performed multiplex colorimetric immunoassays using real-time signal analysis covering a wide concentration range of protein targets associated with pre-eclampsia.
Collapse
Affiliation(s)
- Yong Jun Lim
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, South Korea
| | - Jun Hee Choi
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, South Korea
| | - Seok Joon Mun
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, South Korea
| | - Jiwoo Kim
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, South Korea
| | - Ki Wan Bong
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, South Korea
| |
Collapse
|
6
|
Ganguly R, Chu JO, Lee CS, Choi CH. Solvent-Free Fabrication of Anisotropic Microparticles with Precise 3D Shape Control Using Dipping-Based Micromolding. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:5391-5400. [PMID: 38416015 DOI: 10.1021/acs.langmuir.3c03878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
We present an innovative solvent-free micromolding technique for rapidly fabricating complex polymer microparticles with three-dimensional (3D) shapes utilizing a surface tension-induced dipping process. Our fabrication process involves loading a photocurable solution into micromolds through mold dipping. The loaded solution, induced by surface tension, undergoes spatial deformation upon mold removal caused by surface forces, ultimately acquiring an anisotropic shape before photopolymerization. Results show that the amount of photocurable solution loaded depends on the degree of capillary penetration, which can be adjusted by varying the dipping time and mold height. It enables the production of polymer particles with precisely controlled 3D shapes without diluting them with volatile organic solvents. Sequential micromolding enables the spatial stacking of the polymer domain through a bottom-up approach, facilitating the creation of complex multicompartmental microparticles with independently controlled compartments. Finally, we demonstrated the successful simultaneous conjugation of multiple model-fluorescent proteins through the biofunctionalization of microparticles, indicating functional stability and effective conjugation of hydrophilic molecules such as proteins. We also extend our capacity to create bicompartmental microparticles with distinct functionalities in each compartment, revealing spatially controlled functional structures. In summary, these findings demonstrate a straightforward, rapid, and reliable method for producing highly uniform complex particles with precise control over the 3D shape and compartmentalization, all accomplished without the use of organic solvents.
Collapse
Affiliation(s)
- Reya Ganguly
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Jin-Ok Chu
- Division of Cosmetic Science and Technology, Daegu Haany University, 1 Haanydaero, Gyeongsan, Gyeongbuk 38610, Republic of Korea
| | - Chang-Soo Lee
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Chang-Hyung Choi
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| |
Collapse
|
7
|
Mun SJ, Jang W, Park HS, Lim YJ, Yang TJ, Bong KW. Multiplex genotyping of SNPs in genomic DNA via hydrogel-based assay mediated with MutS and polyethylene glycol. Biosens Bioelectron 2023; 241:115670. [PMID: 37714061 DOI: 10.1016/j.bios.2023.115670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/30/2023] [Accepted: 09/03/2023] [Indexed: 09/17/2023]
Abstract
The simultaneous genotyping of multiple single nucleotide polymorphisms (SNPs) in genomic DNA derived from organisms holds significant potential for applications such as precision medicine and food product authentication. However, conventional assay technologies including qPCR-based techniques, microarrays, and hydrogel-based assays face limitations in efficient multiplexing of SNPs, particularly for large-size DNA beyond kilobase scales, due to constraints in multiplex capability, specificity, or sensitivity. In this study, a hydrogel-based multiplex SNP genotyping platform specifically designed for genomic DNA is presented. This platform integrates the ligation detection reaction (LDR) and rolling circle amplification (RCA) techniques within a hydrogel-based multiplex sensing system, enabling adaptable and sensitive SNP genotyping for genomic DNA. To enhance the specificity of the assay, MutS protein and polyethylene glycol are introduced into the protocol, reducing the non-specific ligation and RCA reactions synergistically. With significant specificity improvement of over 10-fold, three types of SNPs within an artificially constructed ∼1000 bp double-stranded DNA (dsDNA) are successfully genotyped with double-digit picomolar sensitivity. Furthermore, the practical applicability of the developed process for the origin identification of raw materials is demonstrated by genotyping three types of SNPs within genomic DNA obtained from two closely related plant species, Korean ginseng (Panax ginseng) and American ginseng (Panax quinquefolius), containing ca. 3.5 gigabase genome size. Of notable significance, this study marks the premiere achievement in PCR-free multiplex genotyping of SNPs in genomic DNA using a single fluorophore.
Collapse
Affiliation(s)
- Seok Joon Mun
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Wookyoung Jang
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Hyun-Seung Park
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Natural Products Research Institute, Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea; Department of Integrative Biological Sciences and Industry, Convergence Research Center for Natural Products, Sejong University, Seoul, 05006, Republic of Korea
| | - Yong Jun Lim
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Tae-Jin Yang
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Natural Products Research Institute, Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Ki Wan Bong
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
8
|
Choi JH, Jang W, Lim YJ, Mun SJ, Bong KW. Highly Flexible Deep-Learning-Based Automatic Analysis for Graphically Encoded Hydrogel Microparticles. ACS Sens 2023; 8:3158-3166. [PMID: 37489756 DOI: 10.1021/acssensors.3c00857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
Graphically encoded hydrogel microparticle (HMP)-based bioassay is a diagnostic tool characterized by exceptional multiplex detectability and robust sensitivity and specificity. Specifically, deep learning enables highly fast and accurate analyses of HMPs with diverse graphical codes. However, previous related studies have found the use of plain particles as data to be disadvantageous for accurate analyses of HMPs loaded with functional nanomaterials. Furthermore, the manual data annotation method used in existing approaches is highly labor-intensive and time-consuming. In this study, we present an efficient deep-learning-based analysis of encoded HMPs with diverse graphical codes and functional nanomaterials, utilizing the auto-annotation and synthetic data mixing methods for model training. The auto-annotation enhanced the throughput of dataset preparation up to 0.11 s/image. Using synthetic data mixing, a mean average precision of 0.88 was achieved in the analysis of encoded HMPs with magnetic nanoparticles, representing an approximately twofold improvement over the standard method. To evaluate the practical applicability of the proposed automatic analysis strategy, a single-image analysis was performed after the triplex immunoassay for the preeclampsia-related protein biomarkers. Finally, we accomplished a processing throughput of 0.353 s per sample for analyzing the result image.
Collapse
Affiliation(s)
- Jun Hee Choi
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, South Korea
| | - Wookyoung Jang
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, South Korea
| | - Yong Jun Lim
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, South Korea
| | - Seok Joon Mun
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, South Korea
| | - Ki Wan Bong
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, South Korea
| |
Collapse
|
9
|
De Masi A, Scognamiglio PL, Battista E, Netti PA, Causa F. Hydrogel particles-on-chip (HyPoC): a fluorescence micro-sensor array for IgG immunoassay. LAB ON A CHIP 2023; 23:2458-2468. [PMID: 37092599 DOI: 10.1039/d2lc01080a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Novel microparticles have generated growing interest in diagnostics for potential sensitivity and specificity in biomolecule detection and for the possibility to be integrated in a micro-system array as a lab-on-chip. Indeed, bead-based technologies integrated in microfluidics could speed up incubation steps, reduce reagent consumption and improve accessibility of diagnostic devices to non-expert users. To limit non-specific interactions with interfering molecules and to exploit the whole particle volume for bioconjugation, hydrogel microparticles, particularly polyethylene glycol-based, have emerged as promising materials to develop high-performing biosensors since their network can be functionalized to concentrate the target and improve detection. However, the limitations in positioning, trapping and mainly fine manipulation of a precise number of particles in microfluidics have largely impaired point-of-care applications. Herein, we developed an on-chip sandwich immunoassay for the detection of human immunoglobulin G in biological fluids. The detection system is based on finely engineered cleavable PEG-based microparticles, functionalized with specific monoclonal antibodies. By changing the particle number, we demonstrated tuneable specificity and sensitivity (down to 3 pM) in serum and urine. Therefore, a controlled number of hydrogel particles have been integrated in a microfluidic device for on-chip detection (HyPoC) allowing for their precise positioning and fluid exchange for incubation, washing and target detection. HyPoC dramatically decreases incubation time from 180 minutes to one minute and reduces washing volumes from 3.5 ml to 90 μL, achieving a limit of detection of 0.07 nM (with a dynamic range of 0.07-1 nM). Thus, the developed approach represents a versatile, fast and easy point-of-care testing platform for immunoassays.
Collapse
Affiliation(s)
- Alessandra De Masi
- Center for Advanced Biomaterials for Healthcare@CRIB, Istituto Italiano di Tecnologia (IIT), Largo Barsanti e Matteucci 53, 80125 Naples, Italy.
- Dipartimento di Ingegneria Chimica del Materiali e della Produzione Industriale (DICMAPI), University "Federico II", Piazzale Tecchio 80, 80125 Naples, Italy
| | - Pasqualina Liana Scognamiglio
- Center for Advanced Biomaterials for Healthcare@CRIB, Istituto Italiano di Tecnologia (IIT), Largo Barsanti e Matteucci 53, 80125 Naples, Italy.
| | - Edmondo Battista
- Center for Advanced Biomaterials for Healthcare@CRIB, Istituto Italiano di Tecnologia (IIT), Largo Barsanti e Matteucci 53, 80125 Naples, Italy.
- Interdisciplinary Research Centre on Biomaterials (CRIB), University "Federico II", Piazzale Tecchio 80, 80125 Naples, Italy
| | - Paolo Antonio Netti
- Center for Advanced Biomaterials for Healthcare@CRIB, Istituto Italiano di Tecnologia (IIT), Largo Barsanti e Matteucci 53, 80125 Naples, Italy.
- Interdisciplinary Research Centre on Biomaterials (CRIB), University "Federico II", Piazzale Tecchio 80, 80125 Naples, Italy
- Dipartimento di Ingegneria Chimica del Materiali e della Produzione Industriale (DICMAPI), University "Federico II", Piazzale Tecchio 80, 80125 Naples, Italy
| | - Filippo Causa
- Center for Advanced Biomaterials for Healthcare@CRIB, Istituto Italiano di Tecnologia (IIT), Largo Barsanti e Matteucci 53, 80125 Naples, Italy.
- Interdisciplinary Research Centre on Biomaterials (CRIB), University "Federico II", Piazzale Tecchio 80, 80125 Naples, Italy
- Dipartimento di Ingegneria Chimica del Materiali e della Produzione Industriale (DICMAPI), University "Federico II", Piazzale Tecchio 80, 80125 Naples, Italy
| |
Collapse
|
10
|
Chafran L, Carfagno A, Altalhi A, Bishop B. Green Hydrogel Synthesis: Emphasis on Proteomics and Polymer Particle-Protein Interaction. Polymers (Basel) 2022; 14:4755. [PMID: 36365747 PMCID: PMC9656617 DOI: 10.3390/polym14214755] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 08/26/2023] Open
Abstract
The field of drug discovery has seen significant progress in recent years. These advances drive the development of new technologies for testing compound's effectiveness, as well as their adverse effects on organs and tissues. As an auxiliary tool for drug discovery, smart biomaterials and biopolymers produced from biodegradable monomers allow the manufacture of multifunctional polymeric devices capable of acting as biosensors, of incorporating bioactives and biomolecules, or even mimicking organs and tissues through self-association and organization between cells and biopolymers. This review discusses in detail the use of natural monomers for the synthesis of hydrogels via green routes. The physical, chemical and morphological characteristics of these polymers are described, in addition to emphasizing polymer-particle-protein interactions and their application in proteomics studies. To highlight the diversity of green synthesis methodologies and the properties of the final hydrogels, applications in the areas of drug delivery, antibody interactions, cancer therapy, imaging and biomarker analysis are also discussed, as well as the use of hydrogels for the discovery of antimicrobial and antiviral peptides with therapeutic potential.
Collapse
Affiliation(s)
- Liana Chafran
- Department of Chemistry and Biochemistry, George Mason University, Manassas, VA 20110 , USA
| | | | | | - Barney Bishop
- Department of Chemistry and Biochemistry, George Mason University, Manassas, VA 20110 , USA
| |
Collapse
|
11
|
Bae SH, Jang W, Choi JH, Mun SJ, Bong KW. Optimization of particle rinsing process in linker-free post-synthesis functionalization for sensitive encoded hydrogel microparticle-based immunoassay. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.10.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
12
|
Hu X, Zhang T, Li J, Ma Z, Lei D, Zu B, Dou X. Competitive Delocalized Charge Transfer Boosted by Solvent Induction Strategy for Survivable Colorimetric Detection of ng-Level Urea. Anal Chem 2022; 94:6318-6328. [DOI: 10.1021/acs.analchem.2c00505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xiaoyun Hu
- Xinjiang Key Laboratory of Explosives Safety Science, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tianshi Zhang
- Xinjiang Key Laboratory of Explosives Safety Science, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiguang Li
- Xinjiang Key Laboratory of Explosives Safety Science, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiwei Ma
- Xinjiang Key Laboratory of Explosives Safety Science, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Da Lei
- Xinjiang Key Laboratory of Explosives Safety Science, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
| | - Baiyi Zu
- Xinjiang Key Laboratory of Explosives Safety Science, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
| | - Xincun Dou
- Xinjiang Key Laboratory of Explosives Safety Science, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
13
|
Encoded hydrogel microparticles with universal mismatch-incorporated DNA probes for highly specific multiplex detection of SNPs. Talanta 2022; 245:123480. [DOI: 10.1016/j.talanta.2022.123480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/01/2022] [Accepted: 04/12/2022] [Indexed: 11/22/2022]
|
14
|
Chia YY, Theverajah TM, Alias Y, Khor SM. Three-dimensional porous calcium alginate fluorescence bead-based immunoassay for highly sensitive early diagnosis of breast cancer. Anal Bioanal Chem 2021; 414:1359-1373. [PMID: 34839383 DOI: 10.1007/s00216-021-03758-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 11/30/2022]
Abstract
A sensitive biosensor capable of detecting trace concentrations of several cancer biomarkers in clinical samples is critical for early detection of cancer because different cancer biomarkers may be expressed at different stages of cancer. Previous multiplex studies using microarrays or color-coded beads had limited multiplex detection in a single well, and difficulty in optimizing and unifying the incubation parameters for all tests made in different wells had posed challenges to small sample size and lengthened assay time. Herein, we proposed a novel approach to achieve multiplex analysis on a single three-dimensional porous calcium alginate bead. Because of the high surface area to volume ratio of the calcium alginate immuno-bead, the sensitivity and linear dynamic range of the as-proposed multiplex analysis method are significantly improved. Based on the direct sandwich immunoassay principle, dual-capturing antibodies were encapsulated into a single 3D porous calcium alginate bead as a proof-of-concept for multiplexity detection of serum-HER2 and serum-CA125 breast cancer biomarkers. High sensitivity was attained, with LODs of 0.004 ng mL-1 for serum HER2, and 0.005 U mL-1 for serum CA125, both of which are below the clinical cutoff values, enabling for early breast cancer diagnosis. Stability tests revealed that the 3D immuno-beads were stable at 4 °C and room temperature (25 °C) for at least 14 days. Most importantly, the results obtained using the developed system were in good agreement with those obtained using standard methods while analyzing real clinical samples. In addition, the analysis required only approximately 30 min, which was much less time than typical ELISA techniques. When endogenous interferences were introduced, no cross-reactivity was observed. We anticipate this approach to be potentially used in the multiplex assays and biosensors.
Collapse
Affiliation(s)
- Ying Yao Chia
- Department of Chemistry, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - T Malathi Theverajah
- Department of Pathology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Yatimah Alias
- Department of Chemistry, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Sook Mei Khor
- Department of Chemistry, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia. .,Centre for Innovation in Medical Engineering, Faculty of Engineering, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
15
|
Ganguly R, Choi Y, Lee CS, Choi CH. Tuning three-dimensional (3D) shapes of polymeric microparticles by geometry-driven control of mold swelling and capillarity in micromolds. J Colloid Interface Sci 2021; 600:373-381. [PMID: 34023698 DOI: 10.1016/j.jcis.2021.05.045] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/07/2021] [Accepted: 05/08/2021] [Indexed: 11/25/2022]
Abstract
We report a simple method for producing polymeric microparticles with controlled three-dimensional (3D) shapes from two-dimensional (2D) micromolds via mold geometry-mediated tunable mold swelling and capillarity. Specifically, the photocurable solution confined in the mold with diverse geometries is spatially deformed by the addition of the wetting fluid, which triggers the mold swelling and capillarity; this allows the production of highly uniform microparticles with complex shape via photopolymerization. The results show that the swelling-induced mold deflection is varied depending on the mold geometry with different side lengths, allowing a tunable deformation of the photocurable solution and forming non-spherical particles with a convex top. The capillarity of the wetting fluid is also determined by the mold geometry with different corner angles, leading to the directional movement of the photocurable solution via Laplace pressure-driven flow and facilitating the production of spherical particles with or without shape imprinting. Furthermore, we demonstrate a capability to further enhance the mold swelling by varying mold composition, expanding their controllability in 3D shape, and enabling simultaneous production of spherical and non-spherical particles using a single mold.
Collapse
Affiliation(s)
- Reya Ganguly
- Department of Chemical Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Yoon Choi
- Division of Cosmetic Science and Technology, Daegu Haany University, 1 Haanydaero, Gyeongsan-si, Gyeongsangbuk-do 38610, Republic of Korea
| | - Chang-Soo Lee
- Department of Chemical Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea.
| | - Chang-Hyung Choi
- Division of Cosmetic Science and Technology, Daegu Haany University, 1 Haanydaero, Gyeongsan-si, Gyeongsangbuk-do 38610, Republic of Korea.
| |
Collapse
|
16
|
Kim JY, Mun SJ, Roh YH, Bong KW. Rapid colorimetric analysis of multiple microRNAs using encoded hydrogel microparticles. Analyst 2021; 146:5508-5516. [PMID: 34346406 DOI: 10.1039/d1an00622c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
microRNAs (miRNAs) have attracted much attention as potential biomarkers for the diagnosis of various fatal diseases. With increasing interest in miRNA detection at practical sites, colorimetric bead-based assays have garnered much attention, because these allow for simple analysis with cheap and portable devices. Among them, the encoded hydrogel microparticle-based colorimetric miRNA assay is considered as one of the promising techniques, due to its strengths, such as large multiplex capacity, acceptable sensitivity, and simple analysis. However, it still imposes a limitation in terms of the assay time, particularly the colorimetric reaction time, which is too long, making the practical application of the assay difficult and undermining its detection accuracy. In this work, we present a rapid colorimetric assay based on encoded hydrogel microparticles, which exhibits a significant decrease in the colorimetric reaction time due to two factors: (1) an increase in the number of enzymes bound to hydrogel microparticles via a post-synthesis functionalization method, and (2) an elevation in the enzyme reaction temperature during colorimetric labeling. We obtained a comparable sensitivity of the colorimetric assay with three different miRNA targets, even with a shortened colorimetric reaction time. Furthermore, we validated that our colorimetric detection method is suitable for multiplex miRNA detection, owing to its low cross-reactivity.
Collapse
Affiliation(s)
- Ju Yeon Kim
- Department of Chemical and Biological Engineering, Korea University, Seoul, Republic of Korea.
| | - Seok Joon Mun
- Department of Chemical and Biological Engineering, Korea University, Seoul, Republic of Korea.
| | - Yoon Ho Roh
- Department of Chemical and Biological Engineering, Korea University, Seoul, Republic of Korea.
| | - Ki Wan Bong
- Department of Chemical and Biological Engineering, Korea University, Seoul, Republic of Korea.
| |
Collapse
|
17
|
Ouyang M, Tu D, Tong L, Sarwar M, Bhimaraj A, Li C, Coté GL, Di Carlo D. A review of biosensor technologies for blood biomarkers toward monitoring cardiovascular diseases at the point-of-care. Biosens Bioelectron 2021; 171:112621. [PMID: 33120234 DOI: 10.1016/j.bios.2020.112621] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 09/06/2020] [Accepted: 09/14/2020] [Indexed: 01/03/2023]
Abstract
Cardiovascular diseases (CVDs) cause significant mortality globally. Notably, CVDs disproportionately negatively impact underserved populations, such as those that are economically disadvantaged and often located in remote regions. Devices to measure cardiac biomarkers have traditionally been focused on large instruments in a central laboratory but the development of affordable, portable devices that measure multiple cardiac biomarkers at the point-of-care (POC) are needed to improve clinical outcomes for patients, especially in underserved populations. Considering the enormity of the global CVD problem, complexity of CVDs, and the large candidate pool of biomarkers, it is of great interest to evaluate and compare biomarker performance and identify potential multiplexed panels that can be used in combination with affordable and robust biosensors at the POC toward improved patient care. This review focuses on describing the known and emerging CVD biosensing technologies for analysis of cardiac biomarkers from blood. Initially, the global burden of CVDs and the standard of care for the primary CVD categories, namely heart failure (HF) and acute coronary syndrome (ACS) including myocardial infarction (MI) are discussed. The latest United States, Canadian and European society guidelines recommended standalone, emerging, and add-on cardiac biomarkers, as well as their combinations are then described for the prognosis, diagnosis, and risk stratification of CVDs. Finally, both commercial in vitro biosensing devices and recent state-of-art techniques for detection of cardiac biomarkers are reviewed that leverage single and multiplexed panels of cardiac biomarkers with a view toward affordable, compact devices with excellent performance for POC diagnosis and monitoring.
Collapse
Affiliation(s)
- Mengxing Ouyang
- Department of Bioengineering, University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, CA, 90095, USA
| | - Dandan Tu
- Department of Biomedical Engineering, Texas A&M University, 400 Bizzell St, College Station, TX, 77843, USA
| | - Lin Tong
- Nanobioengineering/Bioelectronics Lab, Department of Biomedical Engineering, Florida International University, 10555 West Flagler Street, Miami, FL, 33174, USA
| | - Mehenur Sarwar
- Nanobioengineering/Bioelectronics Lab, Department of Biomedical Engineering, Florida International University, 10555 West Flagler Street, Miami, FL, 33174, USA
| | - Arvind Bhimaraj
- Department of Cardiology, Houston Methodist J.C. Walter Transplant Center, Houston Methodist Hospital, 6550 Fannin St., Houston, TX, 77030, USA
| | - Chenzhong Li
- Nanobioengineering/Bioelectronics Lab, Department of Biomedical Engineering, Florida International University, 10555 West Flagler Street, Miami, FL, 33174, USA.
| | - Gerard L Coté
- Department of Biomedical Engineering, Texas A&M University, 400 Bizzell St, College Station, TX, 77843, USA; Center for Remote Health Technologies & Systems, Texas A&M Engineering Experiment Station, 101 Bizzell St, College Station, TX, 77840, USA.
| | - Dino Di Carlo
- Department of Bioengineering, University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, CA, 90095, USA.
| |
Collapse
|
18
|
Kim HU, Roh YH, Mun SJ, Bong KW. Discontinuous Dewetting in a Degassed Mold for Fabrication of Homogeneous Polymeric Microparticles. ACS APPLIED MATERIALS & INTERFACES 2020; 12:53318-53327. [PMID: 33196158 DOI: 10.1021/acsami.0c15944] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Discontinuous dewetting (DD) is an attractive technique that enables the production of large liquid arrays in microwells and is applicable to the synthesis of anisotropic microparticles with complex morphologies. However, such loading of liquids into microwells presents a significant challenge, as the liquids used in this technique should exhibit low mold surface wettability. This study introduces DD in a degassed mold (DM), a simple yet powerful technique that achieves uniform loading of microparticle precursors into large microwell arrays within 1 min. Using this technique, hydrogel microparticles are produced by different polymerization mechanisms with various shapes and sizes, ranging from a few micrometers to hundreds of micrometers. Hydrophobic oil microparticles are produced by the simple plasma treatment of the DM, and agarose microparticles encapsulating bovine serum albumin (in a well-dispersed state) are produced by submerging the DM in fluorinated oil. To demonstrate additional functionality of microparticles using this technique, high concentrations of magnetic nanoparticles are loaded into microparticles for particle-based immunoassays performed in a microwell plate, and the immunoassay performance is comparable to that of ELISA.
Collapse
Affiliation(s)
- Hyeon Ung Kim
- Department of Chemical and Biological Engineering, Korea University, Seoul 136-713, Republic of Korea
| | - Yoon Ho Roh
- Department of Chemical and Biological Engineering, Korea University, Seoul 136-713, Republic of Korea
| | - Seok Joon Mun
- Department of Chemical and Biological Engineering, Korea University, Seoul 136-713, Republic of Korea
| | - Ki Wan Bong
- Department of Chemical and Biological Engineering, Korea University, Seoul 136-713, Republic of Korea
| |
Collapse
|
19
|
Mun SJ, Ko D, Kim HU, Han Y, Roh YH, Kim BG, Na HB, Bong KW. Photopolymerization-Based Synthesis of Uniform Magnetic Hydrogels and Colorimetric Glucose Detection. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E4401. [PMID: 33023165 PMCID: PMC7579115 DOI: 10.3390/ma13194401] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 09/29/2020] [Accepted: 09/30/2020] [Indexed: 01/03/2023]
Abstract
Magnetic hydrogels have been commonly used in biomedical applications. As magnetite nanoparticles (MNPs) exhibit peroxidase enzyme-like activity, magnetic hydrogels have been actively used as signal transducers for biomedical assays. Droplet microfluidics, which uses photoinitiated polymerization, is a preferred method for the synthesis of magnetic hydrogels. However, light absorption by MNPs makes it difficult to obtain fully polymerized and homogeneous magnetic hydrogels through photoinitiated polymerization. Several methods have been reported to address this issue, but few studies have focused on investigating the light absorption properties of photoinitiators. In this study, we developed a simple method for the synthesis of poly(ethylene glycol) (PEG)-based uniform magnetic hydrogels that exploits the high ultraviolet absorption of a photoinitiator. Additionally, we investigated this effect on shape deformation and structural uniformity of the synthesized magnetic hydrogels. Two different photoinitiators, Darocur 1173 and lithium phenyl (2,4,6-trimethylbenzoyl) phosphinate (LAP), with significantly different UV absorption properties were evaluated based on the synthesis of magnetic hydrogels. The magnetic characteristics of the PEG-stabilized MNPs in hydrogels were investigated with a vibrating sample magnetometer. Finally, the colorimetric detection of hydrogen peroxide and glucose was conducted based on the enzyme-like property of MNPs and repeated several times to observe the catalytic activity of the magnetic hydrogels.
Collapse
Affiliation(s)
- Seok Joon Mun
- Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea; (S.J.M.); (H.U.K.); (Y.H.R.)
| | - Donghyun Ko
- Department of Chemical Engineering, Myongji University, Yongin, Gyeonggi-do 17058, Korea; (D.K.); (Y.H.); (B.-G.K.)
| | - Hyeon Ung Kim
- Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea; (S.J.M.); (H.U.K.); (Y.H.R.)
| | - Yujin Han
- Department of Chemical Engineering, Myongji University, Yongin, Gyeonggi-do 17058, Korea; (D.K.); (Y.H.); (B.-G.K.)
| | - Yoon Ho Roh
- Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea; (S.J.M.); (H.U.K.); (Y.H.R.)
| | - Bong-Geun Kim
- Department of Chemical Engineering, Myongji University, Yongin, Gyeonggi-do 17058, Korea; (D.K.); (Y.H.); (B.-G.K.)
| | - Hyon Bin Na
- Department of Chemical Engineering, Myongji University, Yongin, Gyeonggi-do 17058, Korea; (D.K.); (Y.H.); (B.-G.K.)
| | - Ki Wan Bong
- Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea; (S.J.M.); (H.U.K.); (Y.H.R.)
| |
Collapse
|