1
|
Ma J, Sabzehparvar M, Pan Z, Tagliabue G. Nanostructured Fe 2O 3/Cu x O heterojunction for enhanced solar redox flow battery performance. JOURNAL OF MATERIALS CHEMISTRY. A 2025; 13:1320-1329. [PMID: 39651040 PMCID: PMC11622009 DOI: 10.1039/d4ta06302c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 11/26/2024] [Indexed: 12/11/2024]
Abstract
Solar redox flow batteries (SRFB) have received much attention as an alternative integrated technology for simultaneous conversion and storage of solar energy. Yet, the photocatalytic efficiency of semiconductor-based single photoelectrodes, such as hematite, remains low due to the trade-off between fast electron hole recombination and insufficient light utilization, as well as inferior reaction kinetics at the solid/liquid interface. Herein, we present an α-Fe2O3/Cu x O p-n junction, coupled with a readily scalable nanostructure, that increases the electrochemically active sites and improves charge separation. Thanks to light-assisted scanning electrochemical microscopy (photo-SECM), we elucidate the morphology-dependent carrier transfer process involved in the photo-oxidation reaction at an α-Fe2O3 photoanode. The optimized nanostructure is then exploited in the α-Fe2O3/Cu x O p-n junction, achieving an outstanding unbiased photocurrent density of 0.46 mA cm-2, solar-to-chemical (STC) efficiency over 0.35% and a stable photocharge-discharge cycling. The average solar-to-output energy efficiency (SOEE) for this unassisted α-Fe2O3-based SRFB system reaches 0.18%, comparable to previously reported DSSC-assisted hematite SRFBs. The use of earth-abundant materials and the compatibility with scalable nanostructuring and heterojunction preparation techniques offer promising opportunities for cost-effective device deployment in real-world applications.
Collapse
Affiliation(s)
- Jiaming Ma
- Laboratory of Nanoscience for Energy Technologies (LNET), STI, École Polytechnique Fédérale de Lausanne 1015 Lausanne Switzerland
| | - Milad Sabzehparvar
- Laboratory of Nanoscience for Energy Technologies (LNET), STI, École Polytechnique Fédérale de Lausanne 1015 Lausanne Switzerland
| | - Ziyan Pan
- Laboratory of Nanoscience for Energy Technologies (LNET), STI, École Polytechnique Fédérale de Lausanne 1015 Lausanne Switzerland
| | - Giulia Tagliabue
- Laboratory of Nanoscience for Energy Technologies (LNET), STI, École Polytechnique Fédérale de Lausanne 1015 Lausanne Switzerland
| |
Collapse
|
2
|
Kim G, Seo M, Xu J, Park J, Gim S, Chun H. Large-Area Silicon Nitride Nanosieve for Enhanced Diffusion-Based Exosome Isolation. SMALL METHODS 2024; 8:e2301624. [PMID: 38801014 DOI: 10.1002/smtd.202301624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 04/10/2024] [Indexed: 05/29/2024]
Abstract
Nanoporous membranes have a variety of applications, one of which is the size-selective separation of nanoparticles. In drug delivery, nanoporous membranes are becoming increasingly important for the isolation of exosomes, which are bio-nanoparticles. However, the low pore density and thickness of commercial membranes limit their efficiency. There have been many attempts to fabricate sub-micrometer thin membranes, but the limited surface area has restricted their practicality. In this study, large-area silicon nitride nanosieves for enhanced diffusion-based isolation of exosomes are presented. Notably, these nanosieves are scaled to sizes of up to 4-inch-wafers, a significant achievement in overcoming the fabrication challenges associated with such expansive areas. The method employs a 200 nm porous sieve (38.2% porosity) for exosome separation and a 50 nm sieve (10.7% porosity) for soluble protein removal. These 300 nm thick nanosieves outperform conventional polycarbonate membranes by being 50 times thinner, thereby increasing nanoparticle permeability. The method enables a 90% recovery rate of intact exosomes from human serum and a purity ratio of 3 × 107 particles/µg protein, 4.6 times higher than ultracentrifugation methods. The throughput of the method is up to 15 mL by increasing the size of the nanosieve, making it an ideal solution for large-scale exosome production for therapeutic purposes.
Collapse
Affiliation(s)
- Gijung Kim
- Department of Biomedical Engineering, Korea University, 466 Hana Science Hall, Seoul, 02841, Republic of Korea
- Interdisciplinary Program in Precision Public Health, Korea University, 466 Hana Science Hall, Seoul, 02841, Republic of Korea
| | - Mingyu Seo
- Department of Biomedical Engineering, Korea University, 466 Hana Science Hall, Seoul, 02841, Republic of Korea
- Interdisciplinary Program in Precision Public Health, Korea University, 466 Hana Science Hall, Seoul, 02841, Republic of Korea
| | - Jiaxin Xu
- Department of Biomedical Engineering, Korea University, 466 Hana Science Hall, Seoul, 02841, Republic of Korea
| | - Jinhyeok Park
- Department of Biomedical Engineering, Korea University, 466 Hana Science Hall, Seoul, 02841, Republic of Korea
| | - Sangjun Gim
- Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Honggu Chun
- Department of Biomedical Engineering, Korea University, 466 Hana Science Hall, Seoul, 02841, Republic of Korea
- Interdisciplinary Program in Precision Public Health, Korea University, 466 Hana Science Hall, Seoul, 02841, Republic of Korea
| |
Collapse
|
3
|
van de Wakker SI, Meijers FM, Sluijter JPG, Vader P. Extracellular Vesicle Heterogeneity and Its Impact for Regenerative Medicine Applications. Pharmacol Rev 2023; 75:1043-1061. [PMID: 37280097 DOI: 10.1124/pharmrev.123.000841] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/20/2023] [Accepted: 05/01/2023] [Indexed: 06/08/2023] Open
Abstract
Extracellular vesicles (EVs) are cell-derived membrane-enclosed particles that are involved in physiologic and pathologic processes. EVs are increasingly being studied for therapeutic applications in the field of regenerative medicine. Therapeutic application of stem cell-derived EVs has shown great potential to stimulate tissue repair. However, the exact mechanisms through which they induce this effect have not been fully clarified. This may to a large extent be attributed to a lack of knowledge on EV heterogeneity. Recent studies suggest that EVs represent a heterogeneous population of vesicles with distinct functions. The heterogeneity of EVs can be attributed to differences in their biogenesis, and as such, they can be classified into distinct populations that can then be further subcategorized into various subpopulations. A better understanding of EV heterogeneity is crucial for elucidating their mechanisms of action in tissue regeneration. This review provides an overview of the latest insights on EV heterogeneity related to tissue repair, including the different characteristics that contribute to such heterogeneity and the functional differences among EV subtypes. It also sheds light on the challenges that hinder clinical translation of EVs. Additionally, innovative EV isolation techniques for studying EV heterogeneity are discussed. Improved knowledge of active EV subtypes would promote the development of tailored EV therapies and aid researchers in the translation of EV-based therapeutics to the clinic. SIGNIFICANCE STATEMENT: Within this review we discuss the differences in regenerative properties of extracellular vesicle (EV) subpopulations and implications of EV heterogeneity for development of EV-based therapeutics. We aim to provide new insights into which aspects are leading to heterogeneity in EV preparations and stress the importance of EV heterogeneity studies for clinical applications.
Collapse
Affiliation(s)
- Simonides Immanuel van de Wakker
- Department of Experimental Cardiology, University Medical Center Utrecht, Utrecht University, The Netherlands (S.I.V.D.W., F.M.M., J.P.G.S., P.V.) and CDL Research, University Medical Center Utrecht, The Netherlands (P.V.)
| | - Fleur Michelle Meijers
- Department of Experimental Cardiology, University Medical Center Utrecht, Utrecht University, The Netherlands (S.I.V.D.W., F.M.M., J.P.G.S., P.V.) and CDL Research, University Medical Center Utrecht, The Netherlands (P.V.)
| | - Joost Petrus Gerardus Sluijter
- Department of Experimental Cardiology, University Medical Center Utrecht, Utrecht University, The Netherlands (S.I.V.D.W., F.M.M., J.P.G.S., P.V.) and CDL Research, University Medical Center Utrecht, The Netherlands (P.V.)
| | - Pieter Vader
- Department of Experimental Cardiology, University Medical Center Utrecht, Utrecht University, The Netherlands (S.I.V.D.W., F.M.M., J.P.G.S., P.V.) and CDL Research, University Medical Center Utrecht, The Netherlands (P.V.)
| |
Collapse
|
4
|
Lee J, Hong J, Lee J, Lee C, Kim T, Jeong Y, Kim K, Jung I. Precise Filtration of Chronic Myeloid Leukemia Cells by an Ultrathin Microporous Membrane with Backflushing to Minimize Fouling. MEMBRANES 2023; 13:707. [PMID: 37623768 PMCID: PMC10456395 DOI: 10.3390/membranes13080707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 07/27/2023] [Accepted: 07/27/2023] [Indexed: 08/26/2023]
Abstract
A cell filtration platform that affords accurate size separation and minimizes fouling was developed. The platform features an ultra-thin porous membrane (UTM) filter, a pumping head filtration with backflush (PHF), and cell size measurement (CSM) software. The UTM chip is an ultrathin free-standing membrane with a large window area of 0.68 mm2, a pore diameter of 5 to 9 μm, and a thickness of less than 0.9 μm. The PHF prevents filter fouling. The CSM software analyzes the size distributions of the supernatants and subnatants of isolated cells and presents the data visually. The D99 particle size of cells of the chronic myeloid leukemia (CML) line K562 decreased from 22.2 to 17.5 μm after passage through a 5-μm filter. K562 cells could be separated by careful selection of the pore size; the recovery rate attained 91.3%. The method was compared to conventional blocking models by evaluating the mean square errors (MSEs) between the measured and calculated filtering volumes. The filtering rate was fitted by a linear regression model with a significance that exceeded 0.99 based on the R2 value. The platform can be used to separate various soft biomaterials and afford excellent stability during filtration.
Collapse
Affiliation(s)
- Jaehyuk Lee
- Department of Mechanical Engineering, Kyung Hee University, Yongin 17104, Republic of Korea;
- R&D Center, Metapore Co., Ltd., Advanced Institutes of Convergence Technology 8F, Suwon 16229, Republic of Korea; (J.H.); (J.L.); (C.L.); (T.K.); (Y.J.)
| | - Jeongpyo Hong
- R&D Center, Metapore Co., Ltd., Advanced Institutes of Convergence Technology 8F, Suwon 16229, Republic of Korea; (J.H.); (J.L.); (C.L.); (T.K.); (Y.J.)
| | - Jungwon Lee
- R&D Center, Metapore Co., Ltd., Advanced Institutes of Convergence Technology 8F, Suwon 16229, Republic of Korea; (J.H.); (J.L.); (C.L.); (T.K.); (Y.J.)
| | - Changgyu Lee
- R&D Center, Metapore Co., Ltd., Advanced Institutes of Convergence Technology 8F, Suwon 16229, Republic of Korea; (J.H.); (J.L.); (C.L.); (T.K.); (Y.J.)
| | - Tony Kim
- R&D Center, Metapore Co., Ltd., Advanced Institutes of Convergence Technology 8F, Suwon 16229, Republic of Korea; (J.H.); (J.L.); (C.L.); (T.K.); (Y.J.)
| | - Young Jeong
- R&D Center, Metapore Co., Ltd., Advanced Institutes of Convergence Technology 8F, Suwon 16229, Republic of Korea; (J.H.); (J.L.); (C.L.); (T.K.); (Y.J.)
| | - Kwanghee Kim
- National NanoFab Center, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea;
| | - Inhwa Jung
- Department of Mechanical Engineering, Kyung Hee University, Yongin 17104, Republic of Korea;
| |
Collapse
|
5
|
Cable J, Witwer KW, Coffey RJ, Milosavljevic A, von Lersner AK, Jimenez L, Pucci F, Barr MM, Dekker N, Barman B, Humphrys D, Williams J, de Palma M, Guo W, Bastos N, Hill AF, Levy E, Hantak MP, Crewe C, Aikawa E, Adamczyk AM, Zanotto TM, Ostrowski M, Arab T, Rabe DC, Sheikh A, da Silva DR, Jones JC, Okeoma C, Gaborski T, Zhang Q, Gololobova O. Exosomes, microvesicles, and other extracellular vesicles-a Keystone Symposia report. Ann N Y Acad Sci 2023; 1523:24-37. [PMID: 36961472 PMCID: PMC10715677 DOI: 10.1111/nyas.14974] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2023]
Abstract
Extracellular vesicles (EVs) are small, lipid-bilayer-bound particles released by cells that can contain important bioactive molecules, including lipids, RNAs, and proteins. Once released in the extracellular environment, EVs can act as messengers locally as well as to distant tissues to coordinate tissue homeostasis and systemic responses. There is a growing interest in not only understanding the physiology of EVs as signaling particles but also leveraging them as minimally invasive diagnostic and prognostic biomarkers (e.g., they can be found in biofluids) and drug-delivery vehicles. On October 30-November 2, 2022, researchers in the EV field convened for the Keystone symposium "Exosomes, Microvesicles, and Other Extracellular Vesicles" to discuss developing standardized language and methodology, new data on the basic biology of EVs and potential clinical utility, as well as novel technologies to isolate and characterize EVs.
Collapse
Affiliation(s)
| | - Kenneth W Witwer
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Robert J Coffey
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Aleksandar Milosavljevic
- Department of Molecular and Human Genetics; Dan L Duncan Comprehensive Cancer Center; and Program in Quantitative and Computational Biosciences, Baylor College of Medicine, Houston, Texas, USA
| | | | - Lizandra Jimenez
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Ferdinando Pucci
- Department of Otolaryngology-Head and Neck Surgery; Department of Cell, Developmental & Cancer Biology; Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Maureen M Barr
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Niek Dekker
- Protein Sciences, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Bahnisikha Barman
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | | | - Justin Williams
- University of California, Berkeley, Berkeley, California, USA
| | - Michele de Palma
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology in Lausanne (EPFL); Agora Cancer Research Center; and Swiss Cancer Center Léman (SCCL), Lausanne, Switzerland
| | - Wei Guo
- Department of Biology, School of Arts & Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Nuno Bastos
- i3S Instituto de Investigação e Inovação em Saúde; IPATIMUP Institute of Molecular Pathology and Immunology; and ICBAS Instituto de Ciencias Biomédicas Abel Salazar, University of Porto, Porto, Portugal
| | - Andrew F Hill
- Research Centre for Extracellular Vesicles; Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe University and Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia
| | - Efrat Levy
- Center for Dementia Research, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, New York, USA
- Department of Psychiatry; Department of Biochemistry & Molecular Pharmacology; and NYU Neuroscience Institute, New York University Grossman School of Medicine, New York, New York, USA
| | - Michael P Hantak
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, Utah, USA
| | - Clair Crewe
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Cell Biology, Washington University, St. Louis, Missouri, USA
| | - Elena Aikawa
- Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine and Center for Excellence in Vascular Biology, Department of Medicine; Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Tamires M Zanotto
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Matias Ostrowski
- Facultad de Medicina, Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Universidad de Buenos Aires (UBA) and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Tanina Arab
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Daniel C Rabe
- Mass General Cancer Center, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Aadil Sheikh
- Department of Biology, College of Arts and Sciences, Baylor University, Waco, Texas, USA
| | | | - Jennifer C Jones
- Translational Nanobiology Section, Laboratory of Pathology and Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Chioma Okeoma
- Department of Pharmacology, Stony Brook University Renaissance School of Medicine, Stony Brook, New York, USA
- Department of Pathology, Microbiology, and Immunology, New York Medical College, Valhalla, New York, USA
| | - Thomas Gaborski
- School of Chemistry and Materials Science, Rochester Institute of Technology, Rochester, New York, USA
| | - Qin Zhang
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Olesia Gololobova
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
6
|
Advances in cell coculture membranes recapitulating in vivo microenvironments. Trends Biotechnol 2023; 41:214-227. [PMID: 36030108 DOI: 10.1016/j.tibtech.2022.07.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 07/05/2022] [Accepted: 07/25/2022] [Indexed: 01/24/2023]
Abstract
Porous membranes play a critical role in in vitro heterogeneous cell coculture systems because they recapitulate the in vivo microenvironment to mediate physical and biochemical crosstalk between cells. While the conventionally available Transwell® system has been widely used for heterogeneous cell coculture, there are drawbacks to precise control over cell-cell interactions and separation for implantation. The size and numbers of the pores and the thickness of the porous membranes are crucial in determining the efficiency of paracrine signaling and direct junctions between cocultured cells, and significantly impact on the performance of heterogeneous cell cultures. These opportunities and challenges have motivated the design of advanced coculture platforms through improvement of the structural and functional properties of porous membranes.
Collapse
|
7
|
Playing with sizes and shapes of colloidal particles via dry etching methods. Adv Colloid Interface Sci 2022; 299:102538. [PMID: 34906837 DOI: 10.1016/j.cis.2021.102538] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/21/2021] [Accepted: 09/27/2021] [Indexed: 12/17/2022]
Abstract
Monolayers of self-assembled quasi-spherical colloidal particles are essential building blocks in the field of materials science and engineering. More typically, they are used as a template for the fabrication of nanostructures if they serve, for instance, as a mask for deposition of new material on the surface on which particles are assembled or for etching of the material underneath; in this case, they are removed afterwards. This is what occurs in colloidal or nanosphere lithography. In some other cases, they are not used as a sacrificial material but they are incorporated in the final structure because they are inherently interesting for their properties. Independently of their specific use and application, different strategies have been devised in order to modify size and shape of colloidal particles, so as to enrich the variety of attainable patterns and to tailor the properties of the final structures and materials. In this review, we will focus on one of the most widespread methods to shape spherical colloidal particles, i.e. dry etching techniques. We will follow the development of such approaches until recent days, so as to trace an extensive panorama of the diverse parameters that can be harnessed to achieve specific morphological changes and highlight the characteristic features of the variants of this method. We will finally discuss how particles modified via dry etching can be used for patterning or can be resuspended in solvents for very diverse applications.
Collapse
|
8
|
Sun M, Han K, Hu R, Liu D, Fu W, Liu W. Advances in Micro/Nanoporous Membranes for Biomedical Engineering. Adv Healthc Mater 2021; 10:e2001545. [PMID: 33511718 DOI: 10.1002/adhm.202001545] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 01/19/2021] [Indexed: 12/11/2022]
Abstract
Porous membrane materials at the micro/nanoscale have exhibited practical and potential value for extensive biological and medical applications associated with filtration and isolation, cell separation and sorting, micro-arrangement, in-vitro tissue reconstruction, high-throughput manipulation and analysis, and real-time sensing. Herein, an overview of technological development of micro/nanoporous membranes (M/N-PMs) is provided. Various membrane types and the progress documented in membrane fabrication techniques, including the electrochemical-etching, laser-based technology, microcontact printing, electron beam lithography, imprinting, capillary force lithography, spin coating, and microfluidic molding are described. Their key features, achievements, and limitations associated with micro/nanoporous membrane (M/N-PM) preparation are discussed. The recently popularized applications of M/N-PMs in biomedical engineering involving the separation of cells and biomolecules, bioparticle operations, biomimicking, micropatterning, bioassay, and biosensing are explored too. Finally, the challenges that need to be overcome for M/N-PM fabrication and future applications are highlighted.
Collapse
Affiliation(s)
- Meilin Sun
- School of Basic Medical Science Central South University Changsha Hunan 410013 China
| | - Kai Han
- School of Basic Medical Science Central South University Changsha Hunan 410013 China
| | - Rui Hu
- School of Basic Medical Science Central South University Changsha Hunan 410013 China
| | - Dan Liu
- School of Basic Medical Science Central South University Changsha Hunan 410013 China
| | - Wenzhu Fu
- School of Basic Medical Science Central South University Changsha Hunan 410013 China
| | - Wenming Liu
- School of Basic Medical Science Central South University Changsha Hunan 410013 China
| |
Collapse
|
9
|
Dehghani M, Montange RK, Olszowy MW, Pollard D. An Emerging Fluorescence-Based Technique for Quantification and Protein Profiling of Extracellular Vesicles. SLAS Technol 2020; 26:189-199. [PMID: 33185120 DOI: 10.1177/2472630320970458] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Robust and well-established techniques for the quantification and characterization of extracellular vesicles (EVs) are a crucial need for the utilization of EVs as potential diagnostic and therapeutic tools. Current bulk analysis techniques such as proteomics and Western blot suffer from low resolution in the detection of small changes in target marker expression levels, exemplified by the heterogeneity of EVs. Microscopy-based techniques can provide valuable information from individual EVs; however, they are time-consuming and statistically less powerful than other techniques. Flow cytometry has been successfully employed for the quantification and characterization of individual EVs within larger populations. However, traditional flow cytometry is not highly suited for the examination of smaller, submicron particles. Here we demonstrate the accurate and precise quantification of nanoparticles such as EVs using the Virus Counter 3100 (VC3100) platform, a fluorescence-based technique that uses the principles of flow cytometry with critical enhancements to enable the effective detection of smaller particles. This approach can detect nanoparticles precisely with no evidence of inaccurate concentration measurement from masking effects associated with traditional nanoparticle tracking analysis (NTA). Fluorescently labeled EVs from different sources were successfully quantified using the VC3100 without a postlabeling washing step. Moreover, protein profiling and characterization of individual EVs were achieved and have been shown to determine the expression level of target protein markers.
Collapse
Affiliation(s)
- Mehdi Dehghani
- Sartorius Corporate Research, Sartorius (Smart Labs), Boston, MA, USA.,Sartorius Corporate Research, Sartorius (Smart Labs), Boston, MA, USA.,Department of Microsystems Engineering, Rochester Institute of Technology, Rochester, NY, USA
| | | | | | - David Pollard
- Sartorius Corporate Research, Sartorius (Smart Labs), Boston, MA, USA
| |
Collapse
|
10
|
Bubnov A, Bobrovsky A, Rychetský I, Fekete L, Hamplová V. Self-Assembling Behavior of Smart Nanocomposite System: Ferroelectric Liquid Crystal Confined by Stretched Porous Polyethylene Film. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1498. [PMID: 32751727 PMCID: PMC7466609 DOI: 10.3390/nano10081498] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/22/2020] [Accepted: 07/27/2020] [Indexed: 11/30/2022]
Abstract
The control and prediction of soft systems exhibiting self-organization behavior can be realized by different means but still remains a highlighted task. Novel advanced nanocomposite system has been designed by filling of a stretched porous polyethylene (PE) film with pore dimensions of hundreds of nanometers by chiral ferroelectric liquid crystalline (LC) compound possessing polar self-assembling behavior. Lactic acid derivative exhibiting the paraelectric orthogonal smectic A* and the ferroelectric tilted smectic C* phases over a broad temperature range is used as a self-assembling compound. The morphology of nanocomposite film has been checked by Atomic Force Microscopy (AFM). The designed nanocomposite has been studied by polarizing optical microscopy (POM), differential scanning calorimetry (DSC), small and wide-angle X-ray scattering and broadband dielectric spectroscopy. The effect of a porous PE confinement on self-assembling, structural, and dielectric behavior of the chiral LC compound has been established and discussed. While the mesomorphic and structural properties of the nanocomposite are found not to be much influenced in comparison to that of a pure LC compound, the polar properties have been toughly suppressed by the specific confinement. Nevertheless, the electro-optic switching was clearly observed under applied electric field of low frequency (210 V, 19 Hz). The dielectric spectroscopy and X-ray results reveal that the helical structure of the ferroelectric liquid crystal inside the PE matrix is completely unwound, and the molecules are aligned along stretching direction. Obtained results demonstrate possibilities of using stretched porous polyolefins as promising matrices for the design of new nanocomposites.
Collapse
Affiliation(s)
- Alexej Bubnov
- Institute of Physics of the Czech Academy of Sciences, Na Slovance 1999/2, 182 21 Prague, Czech Republic; (I.R.); (L.F.); (V.H.)
| | - Alexey Bobrovsky
- Faculty of Chemistry, Moscow State University, Leninskie gory, 119992 Moscow, Russia;
| | - Ivan Rychetský
- Institute of Physics of the Czech Academy of Sciences, Na Slovance 1999/2, 182 21 Prague, Czech Republic; (I.R.); (L.F.); (V.H.)
| | - Ladislav Fekete
- Institute of Physics of the Czech Academy of Sciences, Na Slovance 1999/2, 182 21 Prague, Czech Republic; (I.R.); (L.F.); (V.H.)
| | - Věra Hamplová
- Institute of Physics of the Czech Academy of Sciences, Na Slovance 1999/2, 182 21 Prague, Czech Republic; (I.R.); (L.F.); (V.H.)
| |
Collapse
|