1
|
AlAli A, Alkanad M, Alkanad K, Venkatappa A, Sirawase N, Warad I, Khanum SA. A comprehensive review on anti-inflammatory, antibacterial, anticancer and antifungal properties of several bivalent transition metal complexes. Bioorg Chem 2025; 160:108422. [PMID: 40187028 DOI: 10.1016/j.bioorg.2025.108422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/19/2025] [Accepted: 03/25/2025] [Indexed: 04/07/2025]
Abstract
Transition metal complexes have been recognized as possible therapeutic agents, attributed to their special biological actions, including anti-inflammatory, antibacterial, antifungal, and anticancer. The pharmacological perspective connected with Copper (Cu), Cobalt (Co), Nickel (Ni), Manganese (Mn), Palladium (Pd), Zinc (Zn), and Platinum (Pt) metal(II) complexes is comprehensively explored in-depth in this research. The complexes show unique coordination chemistry and modes of action that help interactions with biological targets, including DNA binding, enzyme inhibition, and the formation of reactive oxygen species. All the metal(II) complexes showed notable potential impact in their perspective activity. Conspicuously, Co(II) and Ni(II) complexes show better antibacterial and antifungal action, while Cu(II) and Zn(II) combinations show higher anti-inflammatory activity. While research is constantly investigating alternative metal-based anticancer drugs like Pd(II), which seem to have lowered side effects, Pt(II) complexes especially cisplatin continue to be the benchmark in cancer treatment. Although the possible pharmacological actions are motivating, problems with toxicity and biocompatibility still provide major difficulties, especially in relation to Cd(II) and Hg(II) complexes. Strategies like ligand modification, nanoparticle-based delivery, and prodrug methods are used to increase selectivity and reduce side effects related to metal complexes. This review compiles the most recent developments and continuous research, thereby shedding light on the potential revolutionary power of metal(II) complexes in medical therapy. Understanding their mechanisms and enhancing their safety profiles will help us open the path to creative ideas for addressing some of the most urgent medical issues of today.
Collapse
Affiliation(s)
- Anas AlAli
- Department of Chemistry, Yuvaraja's College, University of Mysore, Mysuru 570 006, Karnataka, India
| | - Maged Alkanad
- Department of Pharmacognosy, Sri. Adichunchanagiri College of Pharmacy, Adichunchanagiri University, B.G. Nagara, Mandya, Karnataka 571448, India
| | - Khaled Alkanad
- Department of Studies in Physics, University of Mysore, Mysuru 570 006, Karnataka, India
| | - Annegowda Venkatappa
- Department of Pharmacognosy, Sri. Adichunchanagiri College of Pharmacy, Adichunchanagiri University, B.G. Nagara, Mandya, Karnataka 571448, India
| | - Nischith Sirawase
- Department of Pharmacognosy, Sri. Adichunchanagiri College of Pharmacy, Adichunchanagiri University, B.G. Nagara, Mandya, Karnataka 571448, India
| | - Ismail Warad
- Department of Chemistry, AN-Najah National University, P.O. Box 7, Nablus, Palestine.
| | - Shaukath Ara Khanum
- Department of Chemistry, Yuvaraja's College, University of Mysore, Mysuru 570 006, Karnataka, India.
| |
Collapse
|
2
|
Kaszuba A, Sitkowski J, Muzioł T, Pokrzywka K, Kaźmierski Ł, Maj M, Steppeler F, Wojaczyńska E, Hoffmann M, Łakomska I. Unveiling the promising in vitro anticancer activity of lipophilic platinum(II) complexes containing (1 S,4 R,5 R)-4-(4-phenyl-1 H-1,2,3-triazol-1-yl)-2-(( S)-1-phenylethyl)-2-azabicyclo[3.2.1]octane: a spectroscopic characterization and DFT calculation. Dalton Trans 2025; 54:5334-5354. [PMID: 40013443 DOI: 10.1039/d4dt03021d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
The main goal of our research was to examine (1S,4R,5R)-4-(4-phenyl-1H-1,2,3-triazol-1-yl)-2-((S)-1-phenylethyl)-2-azabicyclo[3.2.1]octane (L) and its complex-forming abilities with platinum(II) ions. Herein, we present three new square planar platinum(II) complexes of the general formulas trans-[PtCl2L2] (1), cis-[PtCl2(DMSO)(L)] (2) and [Pt(DMSO)(L)(mal)] (3), where DMSO: dimethyl sulfoxide; mal: malonate. Based on the experimental spectroscopic results (1H, 13C, 15N, 195Pt NMR, IR, X-ray analyses) and density functional theoretical calculation (DFT), a square planar geometry was proposed with one or two monodentate bound N3' heterocyclic ligands (L). Surrounding the central atom, there are monodentate chloride (1) and (2) or chelated O,O-donor malonate ligands (3). The coordination spheres in (2) and (3) were completed by the S-donor monodentate dimethyl sulfoxide molecule. Theoretical investigations into the heterocyclic ligand coordination site and geometry around the central ion were performed by DFT calculation, and the results were consistent with the experimental data. The DFT calculations elucidate the thermodynamic preferences for cis versus trans arrangements of the ligands in the isolated platinum(II) complexes (1) and (2), suggesting that the trans arrangement of chloride anions observed in the crystals of (2a) probably results from the crystal packing. The obtained platinum(II) complexes were examined with regard to their therapeutic anticancer potential. In comparison to cisplatin, lipophilic complexes (1) and (3) exhibit lower affinity toward glutathione. According to observations, (1) presents the most satisfactory in vitro activity with the mechanism of its cytotoxic effect on cancer cells different from that of cisplatin.
Collapse
Affiliation(s)
- Adriana Kaszuba
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland.
| | - Jerzy Sitkowski
- National Institutes of Medicines, Chełmska 30/34, 00-725 Warszawa, Poland.
- Institutes of Organic Chemistry, Polish Academic of Science, Kasprzaka 44/52, 01-224 Warszawa, Poland
| | - Tadeusz Muzioł
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland.
| | - Karolina Pokrzywka
- Faculty of Medicine, Tissue Engineering Department, Collegium Medicum, Nicolaus Copernicus University, Karłowicza 24, 85-092 Bydgoszcz, Poland.
| | - Łukasz Kaźmierski
- Faculty of Medicine, Tissue Engineering Department, Collegium Medicum, Nicolaus Copernicus University, Karłowicza 24, 85-092 Bydgoszcz, Poland.
| | - Małgorzata Maj
- Faculty of Medicine, Tissue Engineering Department, Collegium Medicum, Nicolaus Copernicus University, Karłowicza 24, 85-092 Bydgoszcz, Poland.
| | - Franz Steppeler
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50 370 Wrocław, Poland.
| | - Elżbieta Wojaczyńska
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50 370 Wrocław, Poland.
| | - Marcin Hoffmann
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland.
| | - Iwona Łakomska
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland.
| |
Collapse
|
3
|
Rezende WS, Neto AM, Corbi JJ, Corbi PP, de Paiva REF, Bergamini FRG. Coordination Compounds as Antivirals against Neglected Tropical Diseases. ChemMedChem 2025; 20:e202400799. [PMID: 39591549 DOI: 10.1002/cmdc.202400799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/26/2024] [Accepted: 11/26/2024] [Indexed: 11/28/2024]
Abstract
Neglected tropical viral diseases are a burden to social and economic welfare being responsible for higher pathogen-related mortality rates and chronic debilitating patient conditions. Climatic changes have widened up the infectibility ratio of such diseases, with autochthonous transmission in formerly temperate-to-cold environments. The slow-paced development of potential vaccines followed by the inexistence of antiviral drugs for such diseases considerably worsens the situation. Coordination compounds are a class of molecules that have been extensively explored as antiviral drugs for viruses such as poliovirus, HIV and, more recently, SARS-CoV-2, figuring as potential molecules to be explored and capitalized as antivirals against neglected viral strains. In this review the current efforts from the inorganic medicinal chemistry to address viral neglected tropical diseases, with emphasis to coordination compounds, is presented. Since many of neglected viruses are also arthropod-borne viruses, relying on a vector for transmission, coordination entities able to mitigate vectors are also presented as a parallel strategy to prevent and control such diseases.
Collapse
Affiliation(s)
- Wallace S Rezende
- Laboratory of Synthesis of Bioinspired Molecules, Institute of Chemistry, Federal University of Uberlândia-UFU, João Naves de Avila Avenue, 2121, 38408-100, Uberlândia, Minas Gerais, Brazil
| | - Antonio Marçal Neto
- Laboratory of Synthesis of Bioinspired Molecules, Institute of Chemistry, Federal University of Uberlândia-UFU, João Naves de Avila Avenue, 2121, 38408-100, Uberlândia, Minas Gerais, Brazil
| | - Juliano J Corbi
- Department of Hydraulics and Sanitation, University of São Paulo-USP, 13566-590, São Carlos, São Paulo, Brazil
| | - Pedro P Corbi
- Institute of Chemistry, University of Campinas-UNICAMP, PO Box 6154, Campinas, São Paulo, 13083-970, Brazil
| | - Raphael E F de Paiva
- Donostia International Physics Center-DIPC, Paseo Manuel de Lardizabal, 4 Donostia, Euskadi, Gipuzkoa, 20018, Spain
| | - Fernando R G Bergamini
- Laboratory of Synthesis of Bioinspired Molecules, Institute of Chemistry, Federal University of Uberlândia-UFU, João Naves de Avila Avenue, 2121, 38408-100, Uberlândia, Minas Gerais, Brazil
| |
Collapse
|
4
|
de Menezes Pereira G, Bormio Nunes JH, Macedo VS, Pereira DH, Buglio KE, Affonso DD, Ruiz ALTG, de Carvalho JE, Frajácomo SCL, Lustri WR, Lima CSP, Bergamini FRG, Cuin A, Masciocchi N, Corbi PP. Antibacterial profile and antiproliferative activities over human tumor cells of new silver(I) complexes containing two distinct trifluoromethyl uracil isomers. J Inorg Biochem 2025; 262:112752. [PMID: 39366100 DOI: 10.1016/j.jinorgbio.2024.112752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 09/23/2024] [Accepted: 09/29/2024] [Indexed: 10/06/2024]
Abstract
New silver(I) complexes of 5-(trifluoromethyl)uracil (5TFMU) and 6-(trifluoromethyl)uracil (6TFMU) isomers were synthesized, characterized, and evaluated as antibacterial and antiproliferative agents. Based on elemental and thermogravimetric analyses, the Ag-5TFMU and Ag-6TFMU species are formulated as AgC5H2F3N2O2 and Ag2C5HF3N2O2, respectively. Infrared and 13C solid-state nuclear magnetic resonance spectroscopies suggest coordination of the trifluoromethyluracil isomers to silver by both nitrogen and oxygen atoms. Confirmation of their structure and connectivity was achieved, in the absence of single crystals of suitable quality, by state-of-the-art structural powder diffraction methods. In Ag-5TFMU, the organic ligand is tridentate and two distinct metal coordination environments are found (linear AgN2 as well as C2v AgO4 geometries), whereas Ag-6TFMU contains a complex polymeric structure with tetradentate dianionic 6TFMU moieties and five distinct AgX2 (X = N, O) fragments, further stabilized by ancillary (longer) Ag…O contacts. These species presented modest activity over Gram-positive and Gram-negative bacterial strains, whereas Ag-6TFMU was active over a set of tumor cells, with the best activity over prostate (PC-3) and kidney cell lines and selectivity indices of 4.6 and 1.3, respectively. On the other hand, Ag-5TFMU was active over all considered tumor cells except MCF-7 (breast cancer). The best activity was found for PC-3 cells, but no selectivity was observed. The Ag-5TFMU and Ag-6TFMU species also reduced the proliferation of tongue squamous cell carcinoma cell lines SCC - 4 and SCC-15. Preliminary biophysical assays by circular dichroism suggest that the Ag-5TFMU complex interacts with DNA by intercalation, an effect not seen in Ag-6TFMU.
Collapse
Affiliation(s)
| | - Julia H Bormio Nunes
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
| | - Vinicius Souza Macedo
- Chemistry Collegiate, Federal University of Tocantins - UFT, PO Box 66, 77402-970 Gurupi, TO, Brazil
| | - Douglas Henrique Pereira
- Chemistry Collegiate, Federal University of Tocantins - UFT, PO Box 66, 77402-970 Gurupi, TO, Brazil; Department of Chemistry, Technological Institute of Aeronautics (ITA), 12228-900 São José dos Campos, SP, Brazil
| | - Kaio Eduardo Buglio
- Faculty of Pharmaceutical Sciences, University of Campinas - UNICAMP, 13083-871 Campinas, SP, Brazil
| | - Daniele D Affonso
- Faculty of Pharmaceutical Sciences, University of Campinas - UNICAMP, 13083-871 Campinas, SP, Brazil
| | - Ana Lucia T G Ruiz
- Faculty of Pharmaceutical Sciences, University of Campinas - UNICAMP, 13083-871 Campinas, SP, Brazil
| | - João Ernesto de Carvalho
- Faculty of Pharmaceutical Sciences, University of Campinas - UNICAMP, 13083-871 Campinas, SP, Brazil
| | - Silmara Cristina L Frajácomo
- Department of Biological and Health Sciences, University of Araraquara - UNIARA, 14801-320 Araraquara, SP, Brazil
| | - Wilton R Lustri
- Department of Biological and Health Sciences, University of Araraquara - UNIARA, 14801-320 Araraquara, SP, Brazil
| | - Carmen Silvia Passos Lima
- Department of Anesthesiology, Oncology and Radiology, Faculty of Medical Sciences, University of Campinas - UNICAMP, Campinas 13083-887, SP, Brazil
| | - Fernando R G Bergamini
- Laboratory of Synthesis of Bioinspired Molecules, Institute of Chemistry, Federal University of Uberlândia - UFU, 38400-902 Uberlândia, MG, Brazil.
| | - Alexandre Cuin
- Institute of Exact Sciences, Department of Chemistry, Federal University of Juiz de Fora - UFJF, 36036-330 Juiz de Fora, MG, Brazil
| | - Norberto Masciocchi
- Department of Science and High Technology, University of Insubria, 21100 Varese, VA, Italy
| | - Pedro Paulo Corbi
- Institute of Chemistry, University of Campinas - UNICAMP, PO Box 6154, 13083-970 Campinas, SP, Brazil.
| |
Collapse
|
5
|
Oliveira IS, Garcia MSA, Cassani NM, Oliveira ALC, Freitas LCF, Bertolini VKS, Castro J, Clauss G, Honorato J, Gadelha FR, Miguel DC, Jardim ACG, Abbehausen C. Exploring antiviral and antiparasitic activity of gold N-heterocyclic carbenes with thiolate ligands. Dalton Trans 2024; 53:18963-18973. [PMID: 39171417 DOI: 10.1039/d4dt01879f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Gold(I) N-heterocyclic carbenes have been explored for their therapeutic potential against several diseases. Neglected tropical diseases, including leishmaniasis, Chagas disease, and viral infections, such as zika, mayaro, and chikungunya, urgently require new treatment options. The emergent SARS-CoV-2 also demands significant attention. Gold complexes have shown promise as alternative treatments for these conditions. Previously, gold(I)(1,3-bis(mesityl)imidazole-2-ylidene)Cl (AuIMesCl) demonstrated significant leishmanicidal and anti-Chikungunya virus activities. In this study, we synthesized and fully characterized a series of gold(I)(1,3-bis(mesityl)imidazole-2-ylidene)(SR) complexes, where SR includes thiolate donor species such as 1,3-thiazolidine-2-thione, 1,3-benzothiazole-2-thione, 2-mercaptopyrimidine, and 2-thiouracil. These compounds were stable in solution, and ligand exchange reactions with N-acetyl-L-cysteine indicated that complexes with SR ligands are more labile than those with chloride. Although the reactions are rapid, they reach equilibrium at varying molar ratios depending on the SR ligand. The increased lability of these compounds results in higher cytotoxicity to host cells, such as Vero E6 and bone marrow-differentiated macrophages, compared to AuIMesCl. Despite this, the compounds effectively inhibited viral replication, achieving 95.5% inhibition of Zika virus replication at 2 μM with 96% host cell viability. Although active at low concentrations (∼2 μM) against Leishmania (L.) amazonensis and Trypanosoma cruzi, their high cytotoxicity for macrophages confirmed AuIMesCl as a better candidate with a higher selectivity index. This work correlates the coordination chemistry of pyrimidines and thiazolidines with their in vitro biological activities against significant diseases.
Collapse
Affiliation(s)
- Igor S Oliveira
- Institute of Chemistry, University of Campinas, Campinas, São Paulo, Brazil.
| | - Marcus S A Garcia
- Institute of Biology, University of Campinas, Campinas, São Paulo, Brazil
| | - Natasha M Cassani
- Laboratory of Antiviral Research (LAPAV), Institute of Biomedical Sciences, Federal University of Uberlândia, Brazil
| | - Ana L C Oliveira
- Laboratory of Antiviral Research (LAPAV), Institute of Biomedical Sciences, Federal University of Uberlândia, Brazil
| | - Lara C F Freitas
- Laboratory of Antiviral Research (LAPAV), Institute of Biomedical Sciences, Federal University of Uberlândia, Brazil
| | | | - Jennyfer Castro
- Institute of Chemistry, University of Campinas, Campinas, São Paulo, Brazil.
| | - Gustavo Clauss
- Institute of Chemistry, University of Campinas, Campinas, São Paulo, Brazil.
| | - João Honorato
- Institute of Chemistry, University of São Paulo, Brazil
| | - Fernanda R Gadelha
- Institute of Biology, University of Campinas, Campinas, São Paulo, Brazil
| | - Danilo C Miguel
- Institute of Biology, University of Campinas, Campinas, São Paulo, Brazil
| | - Ana C G Jardim
- Laboratory of Antiviral Research (LAPAV), Institute of Biomedical Sciences, Federal University of Uberlândia, Brazil
| | - Camilla Abbehausen
- Institute of Chemistry, University of Campinas, Campinas, São Paulo, Brazil.
| |
Collapse
|
6
|
Oliveira LS, Rosa LB, Affonso DD, Santos IA, Da Silva JC, Rodrigues GC, Harris M, Jardim ACG, Nakahata DH, Sabino JR, de Carvalho JE, Miguel DC, Ruiz ALTG, Abbehausen C. Novel Bidentate Amine Ligand and the Interplay between Pd(II) and Pt(II) Coordination and Biological Activity. Chembiochem 2024; 25:e202300696. [PMID: 38146865 DOI: 10.1002/cbic.202300696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/21/2023] [Accepted: 12/24/2023] [Indexed: 12/27/2023]
Abstract
Pt(II) and Pd(II) coordinating N-donor ligands have been extensively studied as anticancer agents after the success of cisplatin. In this work, a novel bidentate N-donor ligand, the N-[[4-(phenylmethoxy)phenyl]methyl]-2-pyridinemethanamine, was designed to explore the antiparasitic, antiviral and antitumor activity of its Pt(II) and Pd(II) complexes. Chemical and spectroscopic characterization confirm the formation of [MLCl2 ] complexes, where M=Pt(II) and Pd(II). Single crystal X-ray diffraction confirmed a square-planar geometry for the Pd(II) complex. Spectroscopic characterization of the Pt(II) complex suggests a similar structure. 1 H NMR, 195 Pt NMR and HR-ESI-MS(+) analysis of DMSO solution of complexes indicated that both compounds exchange the chloride trans to the pyridine for a solvent molecule with different reaction rates. The ligand and the two complexes were tested for in vitro antitumoral, antileishmanial, and antiviral activity. The Pt(II) complex resulted in a GI50 of 10.5 μM against the NCI/ADR-RES (multidrug-resistant ovarian carcinoma) cell line. The ligand and the Pd(II) complex showed good anti-SARS-CoV-2 activity with around 65 % reduction in viral replication at a concentration of 50 μM.
Collapse
Affiliation(s)
- Laiane S Oliveira
- Institute of Chemistry, University of Campinas, Cidade Universitária Zeferino Vaz - Barão Geraldo, Campinas, São Paulo, Brazil
| | - Letícia B Rosa
- Institute of Biology, University of Campinas, Cidade Universitária Zeferino Vaz -, Barão Geraldo, Campinas, São Paulo, Brazil
| | - Daniele D Affonso
- Faculty of Pharmaceutical Sciences, University of Campinas, Cidade Universitária Zeferino Vaz -, Barão Geraldo, Campinas, São Paulo, Brazil
| | - Igor A Santos
- Institute of Biomedical Sciences, Federal University of Uberlândia, João Naves de Ávila Avenue, 2121 -, Santa Mônica, Uberlândia, Minas Gerais, Brazil
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Woodhouse, Leeds, LS2 9JT, UK
| | - Jennyfer C Da Silva
- Institute of Chemistry, University of Campinas, Cidade Universitária Zeferino Vaz - Barão Geraldo, Campinas, São Paulo, Brazil
| | - Gustavo C Rodrigues
- Institute of Chemistry, University of Campinas, Cidade Universitária Zeferino Vaz - Barão Geraldo, Campinas, São Paulo, Brazil
| | - Mark Harris
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Woodhouse, Leeds, LS2 9JT, UK
| | - Ana Carolina G Jardim
- Institute of Biomedical Sciences, Federal University of Uberlândia, João Naves de Ávila Avenue, 2121 -, Santa Mônica, Uberlândia, Minas Gerais, Brazil
- Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University, Cristóvão Colombo street, 2265 -, Jardim Nazareth. São José do Rio Preto, São Paulo, Brazil
| | - Douglas H Nakahata
- Institute of Chemistry, Federal University of Goiás, Esperança Avenue, Campus Samambaia., Goiânia, Goiás, Brazil
| | - José R Sabino
- Institute of Physics, Federal University of Goiás, Esperança Avenue, Campus Samambaia., Goiânia, Goiás, Brazil
| | - João E de Carvalho
- Faculty of Pharmaceutical Sciences, University of Campinas, Cidade Universitária Zeferino Vaz -, Barão Geraldo, Campinas, São Paulo, Brazil
| | - Danilo C Miguel
- Institute of Biology, University of Campinas, Cidade Universitária Zeferino Vaz -, Barão Geraldo, Campinas, São Paulo, Brazil
| | - Ana Lucia T G Ruiz
- Faculty of Pharmaceutical Sciences, University of Campinas, Cidade Universitária Zeferino Vaz -, Barão Geraldo, Campinas, São Paulo, Brazil
| | - Camilla Abbehausen
- Institute of Chemistry, University of Campinas, Cidade Universitária Zeferino Vaz - Barão Geraldo, Campinas, São Paulo, Brazil
| |
Collapse
|
7
|
Ajaz A, Shaheen MA, Ahmed M, Munawar KS, Siddique AB, Karim A, Ahmad N, Rehman MFU. Synthesis of an amantadine-based novel Schiff base and its transition metal complexes as potential ALP, α-amylase, and α-glucosidase inhibitors. RSC Adv 2023; 13:2756-2767. [PMID: 36756442 PMCID: PMC9846949 DOI: 10.1039/d2ra07051k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 01/09/2023] [Indexed: 01/19/2023] Open
Abstract
A Schiff base ligand HL, (E)-2-((adamantan-1-ylimino)methyl)-6-allylphenol, was synthesized by condensation of amantadine with 3-allyl-2-hydroxybenzaldehyde, followed by the synthesis of its Zn(ii), Co(ii), Cr(iii), and VO(iv) complexes under reflux conditions. The synthesized compounds were comprehensively elucidated by using different spectroscopic and analytical techniques: UV-Vis, 1H and 13C-NMR, FT-IR, ESI-MS, thermal, and single-crystal XRD analysis. The chemical composition of the synthesized compounds was also verified by molar conductance and elemental analysis. An octahedral geometry for Cr(iii) and Co(ii) complexes, tetrahedral for Zn(ii) complex, and square pyramidal geometry have been proposed for VO(iv) complexes. The antidiabetic activities of the synthesized compounds were also evaluated by performing in vitro α-amylase and α-glucosidase inhibition studies. The Co(ii) complex exhibited the highest α-glucosidase inhibitory activity, whereas oxovanadium(iv) and zinc(ii) complexes were also found to be effective against α-amylase. In alkaline phosphatase (ALP) inhibition studies, the HL was found to be inactive, while the complexes showed remarkable enzyme inhibition in the following order: VO > Zn > Co, in a concentration-dependent manner.
Collapse
Affiliation(s)
- Aliya Ajaz
- Institute of Chemistry, University of Sargodha 40100 Pakistan
| | | | - Maqsood Ahmed
- Materials Chemistry Laboratory, Institute of Chemistry, The Islamia University of Bahawalpur Baghdad-ul-Jadeed Campus 63100 Pakistan
| | - Khurram Shahzad Munawar
- Institute of Chemistry, University of Sargodha 40100 Pakistan .,Department of Chemistry, University of Mianwali Mianwali 42200 Pakistan
| | | | - Abdul Karim
- Institute of Chemistry, University of Sargodha 40100 Pakistan
| | - Nazir Ahmad
- Department of Chemistry, Government College University Lahore Lahore 54000 Pakistan
| | | |
Collapse
|
8
|
Santos IA, Pereira AKDS, Guevara-Vega M, de Paiva REF, Sabino-Silva R, Bergamini FRG, Corbi PP, Jardim ACG. Repurposing potential of rimantadine hydrochloride and development of a promising platinum(II)-rimantadine metallodrug for the treatment of Chikungunya virus infection. Acta Trop 2022; 227:106300. [PMID: 34979144 DOI: 10.1016/j.actatropica.2021.106300] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/23/2021] [Accepted: 12/29/2021] [Indexed: 11/15/2022]
Abstract
Most of the patients infected with Chikungunya virus (CHIKV) develop chronic manifestations characterized by pain and deformity in joints, impacting their quality of life. The aminoadamantanes, in their turn, have been exploited due to their biological activities, with amantadine and memantine recently described with anti-CHIKV activities. Here we evaluated the antiviral activity of rimantadine hydrochloride (rtdH), a well-known antiviral agent against influenza A, its platinum complex (Pt-rtd), and the precursor cis-[PtCl2(dmso)2], against CHIKV infection in vitro. The rtdH demonstrated significant antiviral activity in all stages of CHIKV replication (29% in pre-treatment; 57% in early stages of infection; 60% in post-entry stages). The Pt-rtd complex protected the cells against infection in 92%, inhibited 100% of viral entry, mainly by a virucidal effect, and impaired 60% of post-entry stages. Alternatively, cis-[PtCl2(dmso)2] impaired viral entry in 100% and post-entry steps in 60%, but had no effect in protecting cells when administered prior to CHIKV infection. Collectively, the obtained data demonstrated that rtdH and Pt-rtd significantly interfered in the early stages of CHIKV life cycle, with the strongest effect observed to Pt-rtd complex, which reduced up to 100% of CHIKV infection. Moreover, molecular docking analysis and infrared spectroscopy data (ATR-FTIR) suggest an interaction of Pt-rtd with CHIKV glycoproteins, potentially related to the mechanism of inhibition of viral entry by Pt-rtd. Through a migration retardation assay, it was also shown that Pt-rtd and cis-[PtCl2(dmso)2] interacted with the dsRNA in 87% and 100%, respectively. The obtained results highlight the repurposing potential of rtdH as an anti-CHIKV drug, as well as the synthesis of promising platinum(II) metallodrugs with potential application for the treatment of CHIKV infections. Importance Chikungunya fever is a disease that can result in persistent symptoms due to the chronic infection process. Infected patients can develop physical disability, resulting and high costs to the health system and significant impacts on the quality of life of affected individuals. Additionally, there are no licensed vaccines or antivirals against the Chikungunya virus (CHIKV) and the virus is easily transmitted due to the abundance of viable vectors in epidemic regions. In this context, our study highlights the repurposing potential of the commercial drug rimantadine hydrochloride (rtdH) as an antiviral agent for the treatment of CHIKV infections. Moreover, our data demonstrated that a platinum(II)-rimantadine metallodrug (Pt-rtd) poses as a potent anti-CHIKV molecule with potential application for the treatment of Chikungunya fever. Altogether, rtdH and Pt-rtd significantly interfered in the early stages of CHIKV life cycle, reducing up to 100% of CHIKV infection in vitro.
Collapse
Affiliation(s)
- Igor Andrade Santos
- Laboratory of Virology, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia-MG 38405-302, Brazil
| | | | - Marco Guevara-Vega
- Innovation Center in Salivary Diagnostic and Nanotheranostics, Department of Physiology, Institute of Biomedical Sciences, Federal University of Uberlandia, Minas Gerais, Brazil
| | | | - Robinson Sabino-Silva
- Innovation Center in Salivary Diagnostic and Nanotheranostics, Department of Physiology, Institute of Biomedical Sciences, Federal University of Uberlandia, Minas Gerais, Brazil
| | - Fernando R G Bergamini
- Laboratory of Synthesis of Bioinspired Molecules, Institute of Chemistry, Federal University of Uberlândia, Uberlândia-MG 34000-902, Brazil.
| | - Pedro P Corbi
- Institute of Chemistry, University of Campinas-UNICAMP, Campinas-SP 13083-871, Brazil.
| | - Ana Carolina G Jardim
- Laboratory of Virology, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia-MG 38405-302, Brazil; Institute of Biosciences, Humanities and Exact Sciences (Ibilce), São Paulo State University (Unesp), Campus São José do Rio Preto, São José do Rio Preto, São Paulo, Brazil.
| |
Collapse
|
9
|
A novel water-soluble platinum(II) complex with the amino acid deoxyalliin: synthesis, crystal structure, theoretical studies and investigations about its antibacterial activity. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
10
|
Bond order effects on the optoelectronic properties of oxygen/sulfur functionalized adamantanes. J Mol Graph Model 2021; 105:107869. [PMID: 33667864 DOI: 10.1016/j.jmgm.2021.107869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/13/2021] [Accepted: 02/13/2021] [Indexed: 11/24/2022]
Abstract
The objective of this work, is to study adamantanes and to tune their bandgap, since pure adamantane is considered as an insulator due to its high bandgap energy. For this, we doped adamantane with oxygen and sulfur atoms, thus obtaining 730 different structures with double bonds and 730 different structures with single bonds, for a total of 1460 structures, and compared their properties. Among all, 31 molecules were selected that best represented the reduced bandgap behavior. The calculations with greater precision in its results were made using the Local Density Approximation (LDA), in the Density-Functional Theory (DFT) formalism, with PWC functional and TNP basis set. The electronic and optical properties were analyzed, by calculating the energy gap and absorption spectrum. Importantly, we observed that molecules doped with sulfur atoms (double bonds) had their energy gap reduced significantly compared to molecules doped with sulfur and/or oxygen atom with single bonds and pristine adamantane. It was found that in the absorption spectrum, the sulfur-doped structures had their spectrum shifted to the visible region, a fact that becomes relevant for potential dyes and optoelectronic applications. From the seven selected functionalized adamantanes (ADD-04, ADD-05, ADD-07, ADD-19, ADD-20, ADD-41, and ADD-48), any of these could be used as a dye. However, the ADD-20 molecule in particular, which presented optical absorption near (RGB) primary colors, could indicate a potential quantum dot material for application in developing screens of various electronic devices.
Collapse
|