1
|
Pramanik M, Bera A, Karmakar S, Sinha P, Singha A, Das K. High-Performance Broadband Self-Driven Photodetector Based on MoS 2/Cs 2CuBr 4 Heterojunction. ACS APPLIED MATERIALS & INTERFACES 2024; 16:38260-38268. [PMID: 39004815 DOI: 10.1021/acsami.4c06966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Few-layer transition metal dichalcogenides and perovskites are both promising materials in high-performance optoelectronic devices. Here, we developed a self-driven photodetector by creating a heterojunction between few-layer MoS2 and lead-free perovskite Cs2CuBr4. The detector shows a unique property of very high sensitivity in a broad spectral range of 400 to 800 nm with response speed in a millisecond order. Current-voltage characteristics of the heterojunction device show rectifying behavior, in contrast to the ohmic behavior of the MoS2-based device. The rectifying behavior is attributed to the type II band alignment of the MoS2/Cs2CuBr4 heterojunction. The device shows a broadband (400 to 800 nm) photodetection with very high responsivity reaching up to 2.8 × 104 A/W and detectivity of 1.6 × 1011 Jones at a bias voltage of 3 V. The detector can also operate in self-bias mode with sufficient response. The photocurrent, photoresponsivity, detectivity, and external quantum efficiency of the device are found to be dependent on the illumination power density. The response time of the device is found to be ∼32 and ∼79 ms during the rise and fall of the photocurrent. The work proposes a MoS2/Cs2CuBr4 heterostructure to be a promising candidate for cost-effective, high-performance photodetector.
Collapse
Affiliation(s)
- Mousumi Pramanik
- Department of Physics, Jadavpur University, Kolkata 700032, India
| | - Anupam Bera
- Department of Physics, Jadavpur University, Kolkata 700032, India
| | - Sreya Karmakar
- Department of Basic Science and Humanities, Calcutta Institute of Engineering and Management, Kolkata 700040, India
| | - Pritam Sinha
- Department of Physics, Bose Institute, Kolkata 700009, India
| | - Achintya Singha
- Department of Physics, Bose Institute, Kolkata 700009, India
| | - Kaustuv Das
- Department of Physics, Jadavpur University, Kolkata 700032, India
| |
Collapse
|
2
|
Malik S, Zhao Y, He Y, Zhao X, Li H, Yi W, Occhipinti LG, Wang M, Akhavan S. Spray-lithography of hybrid graphene-perovskite paper-based photodetectors for sustainable electronics. NANOTECHNOLOGY 2024; 35:325301. [PMID: 38640909 DOI: 10.1088/1361-6528/ad40b6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/18/2024] [Indexed: 04/21/2024]
Abstract
Paper is an ideal substrate for the development of flexible and environmentally sustainable ubiquitous electronic systems. When combined with nanomaterial-based devices, it can be harnessed for various Internet-of-Things applications, ranging from wearable electronics to smart packaging. However, paper remains a challenging substrate for electronics due to its rough and porous nature. In addition, the absence of established fabrication methods is impeding its utilization in wearable applications. Unlike other paper-based electronics with added layers, in this study, we present a scalable spray-lithography on a commercial paper substrate. We present a non-vacuum spray-lithography of chemical vapor deposition (CVD) single-layer graphene (SLG), carbon nanotubes (CNTs) and perovskite quantum dots (QDs) on a paper substrate. This approach combines the advantages of two large-area techniques: CVD and spray-coating. The first technique allows for the growth of SLG, while the second enables the spray coating of a mask to pattern CVD SLG, electrodes (CNTs), and photoactive (QDs) layers. We harness the advantages of perovskite QDs in photodetection, leveraging their strong absorption coefficients. Integrating them with the graphene enhances the photoconductive gain mechanism, leading to high external responsivity. The presented device shows high external responsivity of ∼520 A W-1at 405 nm at <1 V bias due to the photoconductive gain mechanism. The prepared paper-based photodetectors (PDs) achieve an external responsivity of 520 A W-1under 405 nm illumination at <1 V operating voltage. To the best of our knowledge, our devices have the highest external responsivity among paper-based PDs. By fabricating arrays of PDs on a paper substrate in the air, this work highlights the potential of this scalable approach for enabling ubiquitous electronics on paper.
Collapse
Affiliation(s)
- Sunaan Malik
- Institute for Materials Discovery, University College London, London, United Kingdom
| | - Yining Zhao
- Institute for Materials Discovery, University College London, London, United Kingdom
| | - Yutong He
- Institute for Materials Discovery, University College London, London, United Kingdom
| | - Xinyu Zhao
- Institute for Materials Discovery, University College London, London, United Kingdom
| | - Hongyu Li
- Institute for Materials Discovery, University College London, London, United Kingdom
| | - Wentian Yi
- Cambridge Graphene Centre, University of Cambridge, Cambridge, United Kingdom
| | - Luigi G Occhipinti
- Cambridge Graphene Centre, University of Cambridge, Cambridge, United Kingdom
| | - Mingqing Wang
- Institute for Materials Discovery, University College London, London, United Kingdom
| | - Shahab Akhavan
- Institute for Materials Discovery, University College London, London, United Kingdom
| |
Collapse
|
3
|
Patel RP, Shah PV, Siraj S, Sahatiya P, Pataniya PM, Sumesh CK. Fabrication of a wearable and foldable photodetector based on a WSe 2-MXene 2D-2D heterostructure using a scalable handprint technique. NANOSCALE 2024; 16:10011-10029. [PMID: 38700054 DOI: 10.1039/d4nr00615a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Several studies on semiconductor material-based single-band, high-performance photosensitive, and chemically stable photodetectors are available; however, the lack of broad spectral response, device flexibility, and biodegradability prevents them from being used in wearable and flexible electronics. Apart from that, the selection of the device fabrication technique is a very crucial factor nowadays in terms of equipment utilization and environmental friendliness. This report presents a study demonstrating a straightforward solvent- and equipment-free handprint technique for the fabrication of WSe2-Ti3C2TX flexible, biodegradable, robust, and broadband (Vis-NIR) photodetectors. X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), energy dispersive X-ray spectroscopy (EDX), UV-visible spectroscopy, and X-ray photoelectron spectroscopy (XPS) confirm the formation of a WSe2-Ti3C2TX film. The WSe2-Ti3C2TX van der Waals heterostructure plays a key role in enhancing the optoelectrical properties. The as-prepared photodetector exhibits efficient broadband response with a photoresponsivity and a detectivity of 0.3 mA W-1 and 6.8 × 1010 Jones, respectively, under NIR (780 nm) irradiation (1.0 V bias). Under various pressure and temperature conditions, the device's flexibility and durability were tested. The biodegradable photodetector prepared through the solvent- and equipment-free handprint technique has the potential to attract significant interest in wearable and flexible electronics in the future.
Collapse
Affiliation(s)
- Rahul P Patel
- Department of Physical Sciences, P D Patel Institute of Applied Sciences, Charotar University of Science and Technology, CHARUSAT, Changa, Gujarat, India.
| | - Parth V Shah
- Department of Physical Sciences, P D Patel Institute of Applied Sciences, Charotar University of Science and Technology, CHARUSAT, Changa, Gujarat, India.
| | - Sohel Siraj
- Department of Electrical and Electronic Engineering, BITS Pilani Hyderabad, Secunderabad-500078, India
| | - Parikshit Sahatiya
- Department of Electrical and Electronic Engineering, BITS Pilani Hyderabad, Secunderabad-500078, India
| | - Pratik M Pataniya
- Department of Physical Sciences, P D Patel Institute of Applied Sciences, Charotar University of Science and Technology, CHARUSAT, Changa, Gujarat, India.
| | - C K Sumesh
- Department of Physical Sciences, P D Patel Institute of Applied Sciences, Charotar University of Science and Technology, CHARUSAT, Changa, Gujarat, India.
| |
Collapse
|
4
|
Kharchich FZ, Castellanos-Gomez A, Frisenda R. Electrical properties of disordered films of van der Waals semiconductor WS 2 on paper. NANOSCALE 2024. [PMID: 38646962 DOI: 10.1039/d3nr06535a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
One of the primary objectives in contemporary electronics is to develop sensors that are not only scalable and cost-effective but also environmentally sustainable. To achieve this goal, numerous experiments have focused on incorporating nanomaterial-based films, which utilize nanoparticles or van der Waals materials, on paper substrates. In this article, we present a novel fabrication technique for producing dry-abraded van der Waals films on paper, demonstrating outstanding electrical characteristics. We assess the quality and uniformity of these films by conducting a spatial resistivity characterization on a 5 × 5 cm2 dry-abraded WS2 film with an average thickness of 25 μm. Employing transfer length measurements with varying channel length-to-width ratios, we extract critical parameters, including sheet resistance and contact resistance. Notably, our findings reveal a resistivity approximately one order of magnitude lower than previous reports. The film's inherent disorder manifests as an asymmetric distribution of resistance values for specific geometries. We explore how this behavior can be effectively modeled through a random resistance network (RRN), which can reproduce the experimentally observed resistance distribution. Finally, we investigate the response of these devices under applied uniaxial strain and apply the RRN model to gain a deeper understanding of this process.
Collapse
Affiliation(s)
- Fatima Zahra Kharchich
- Physics Department, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy.
- Physics Department, Abdelmalek Essaadi University, M'haneche II, 93002 Tetouan, Morocco
| | - Andres Castellanos-Gomez
- Materials Science Factory, Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC), Madrid E-28049, Spain
| | - Riccardo Frisenda
- Physics Department, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy.
| |
Collapse
|
5
|
Sharma M, Mazumder N, Ajayan PM, Deb P. Quantum enhanced efficiency and spectral performance of paper-based flexible photodetectors functionalized with two dimensional materials. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2024; 36:283001. [PMID: 38574668 DOI: 10.1088/1361-648x/ad3abf] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 04/04/2024] [Indexed: 04/06/2024]
Abstract
Flexible photodetectors (PDs) have exotic significance in recent years due to their enchanting potential in future optoelectronics. Moreover, paper-based fabricated PDs with outstanding flexibility unlock new avenues for future wearable electronics. Such PD has captured scientific interest for its efficient photoresponse properties due to the extraordinary assets like significant absorptive efficiency, surface morphology, material composition, affordability, bendability, and biodegradability. Quantum-confined materials harness the unique quantum-enhanced properties and hold immense promise for advancing both fundamental scientific understanding and practical implication. Two-dimensional (2D) materials as quantum materials have been one of the most extensively researched materials owing to their significant light absorption efficiency, increased carrier mobility, and tunable band gaps. In addition, 2D heterostructures can trap charge carriers at their interfaces, leading increase in photocurrent and photoconductivity. This review represents comprehensive discussion on recent developments in such PDs functionalized by 2D materials, highlighting charge transfer mechanism at their interface. This review thoroughly explains the mechanism behind the enhanced performance of quantum materials across a spectrum of figure of merits including external quantum efficiency, detectivity, spectral responsivity, optical gain, response time, and noise equivalent power. The present review studies the intricate mechanisms that reinforce these improvements, shedding light on the intricacies of quantum materials and their significant capabilities. Moreover, a detailed analysis of the technical applicability of paper-based PDs has been discussed with challenges and future trends, providing comprehensive insights into their practical usage in the field of future wearable and portable electronic technologies.
Collapse
Affiliation(s)
- Monika Sharma
- Advanced Functional Material Laboratory (AFML), Department of Physics, Tezpur University, (Central University), Tezpur 784028, India
| | - Nirmal Mazumder
- Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Pulickel M Ajayan
- Department of Materials Science and Nano Engineering, Rice University, Houston, TX 77005, United States of America
| | - Pritam Deb
- Advanced Functional Material Laboratory (AFML), Department of Physics, Tezpur University, (Central University), Tezpur 784028, India
- Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| |
Collapse
|
6
|
Mahmoodi E, Amiri MH, Salimi A, Frisenda R, Flores E, Ares JR, Ferrer IJ, Castellanos-Gomez A, Ghasemi F. Paper-based broadband flexible photodetectors with van der Waals materials. Sci Rep 2022; 12:12585. [PMID: 35869156 PMCID: PMC9307754 DOI: 10.1038/s41598-022-16834-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 07/18/2022] [Indexed: 11/09/2022] Open
Abstract
Layered metal chalcogenide materials are exceptionally appealing in optoelectronic devices thanks to their extraordinary optical properties. Recently, their application as flexible and wearable photodetectors have received a lot of attention. Herein, broadband and high-performance paper-based PDs were established in a very facile and inexpensive method by rubbing molybdenum disulfide and titanium trisulfide crystals on papers. Transferred layers were characterized by SEM, EDX mapping, and Raman analyses, and their optoelectronic properties were evaluated in a wavelength range of 405–810 nm. Although the highest and lowest photoresponsivities were respectively measured for TiS3 (1.50 mA/W) and MoS2 (1.13 μA/W) PDs, the TiS3–MoS2 heterostructure not only had a significant photoresponsivity but also showed the highest on/off ratio (1.82) and fast response time (0.96 s) compared with two other PDs. This advantage is due to the band offset formation at the heterojunction, which efficiently separates the photogenerated electron–hole pairs within the heterostructure. Numerical simulation of the introduced PDs also confirmed the superiority of TiS3–MoS2 heterostructure over the other two PDs and exhibited a good agreement with the experimental results. Finally, MoS2 PD demonstrated very high flexibility under applied strain, but TiS3 based PDs suffered from its fragility and experience a remarkable drain current reduction at strain larger than ± 0.33%. However, at lower strains, all PDs displayed acceptable performances.
Collapse
|
7
|
Quereda J, Zhao Q, Diez E, Frisenda R, Castellanos-Gomez A. Fiber-coupled light-emitting diodes (LEDs) as safe and convenient light sources for the characterization of optoelectronic devices. OPEN RESEARCH EUROPE 2022; 1:98. [PMID: 37645138 PMCID: PMC10446081 DOI: 10.12688/openreseurope.14018.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/30/2022] [Indexed: 08/31/2023]
Abstract
Optoelectronic device characterization requires to probe the electrical transport changes upon illumination with light of different incident powers, wavelengths, and modulation frequencies. This task is typically performed using laser-based or lamp + monochromator-based light sources, that result complex to use and costly to implement. Here, we describe the use of multimode fiber-coupled light-emitting diodes (LEDs) as a simple, low-cost alternative to more conventional light sources, and demonstrate their capabilities by extracting the main figures of merit of optoelectronic devices based on monolayer MoS 2, i.e. optical absorption edge, photoresponsivity, response time and detectivity. The described light sources represent an excellent alternative for performing optoelectronic characterization experiments on a limited budget.
Collapse
Affiliation(s)
- Jorge Quereda
- Nanotechnology Group, USAL–Nanolab, Univesidad de Salamanca, Salamanca, Junta de Castilla y León, 37007, Spain
| | - Quinghua Zhao
- Materials Science Factory, Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC), Madrid, Madrid, 28049, Spain
| | - Enrique Diez
- Nanotechnology Group, USAL–Nanolab, Univesidad de Salamanca, Salamanca, Junta de Castilla y León, 37007, Spain
| | - Riccardo Frisenda
- Materials Science Factory, Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC), Madrid, Madrid, 28049, Spain
| | - Andrés Castellanos-Gomez
- Materials Science Factory, Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC), Madrid, Madrid, 28049, Spain
| |
Collapse
|
8
|
Matatagui D, Cruz C, Carrascoso F, Al-Enizi AM, Nafady A, Castellanos-Gomez A, Horrillo MDC. Eco-Friendly Disposable WS 2 Paper Sensor for Sub-ppm NO 2 Detection at Room Temperature. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1213. [PMID: 35407331 PMCID: PMC9000778 DOI: 10.3390/nano12071213] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 03/28/2022] [Accepted: 04/01/2022] [Indexed: 12/20/2022]
Abstract
We developed inexpensive and disposable gas sensors with a low environmental footprint. This approach is based on a biodegradable substrate, paper, and features safe and nontoxic electronic materials. We show that abrasion-induced deposited WS2 nanoplatelets on paper can be employed as a successful sensing layer to develop high-sensitivity and selective sensors, which operate even at room temperature. Its performance is investigated, at room temperature, against NO2 exposure, finding that the electrical resistance of the device drops dramatically upon NO2 adsorption, decreasing by ~42% (~31% half a year later) for 0.8 ppm concentration, and establishing a detection limit around~2 ppb (~3 ppb half a year later). The sensor is highly selective towards NO2 gas with respect to the interferents NH3 and CO, whose responses were only 1.8% (obtained for 30 ppm) and 1.5% (obtained for 8 ppm), respectively. Interestingly, an improved response of the developed sensor under humid conditions was observed (tested for 25% relative humidity at 23 °C). The high-performance, in conjunction with its small dimensions, low cost, operation at room temperature, and the possibility of using it as a portable system, makes this sensor a promising candidate for continuous monitoring of NO2 on-site.
Collapse
Affiliation(s)
- Daniel Matatagui
- Grupo de Tecnología de Sensores Avanzados (SENSAVAN), Instituto de Tecnologías Físicas y de la Información (ITEFI), CSIC, 28006 Madrid, Spain; (C.C.); (M.d.C.H.)
| | - Carlos Cruz
- Grupo de Tecnología de Sensores Avanzados (SENSAVAN), Instituto de Tecnologías Físicas y de la Información (ITEFI), CSIC, 28006 Madrid, Spain; (C.C.); (M.d.C.H.)
| | - Felix Carrascoso
- Materials Science Factory, Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC), 28049 Madrid, Spain;
| | - Abdullah M. Al-Enizi
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (A.M.A.-E.); (A.N.)
| | - Ayman Nafady
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (A.M.A.-E.); (A.N.)
| | - Andres Castellanos-Gomez
- Materials Science Factory, Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC), 28049 Madrid, Spain;
| | - María del Carmen Horrillo
- Grupo de Tecnología de Sensores Avanzados (SENSAVAN), Instituto de Tecnologías Físicas y de la Información (ITEFI), CSIC, 28006 Madrid, Spain; (C.C.); (M.d.C.H.)
| |
Collapse
|
9
|
Kelly AG, O'Reilly J, Gabbett C, Szydłowska B, O'Suilleabhain D, Khan U, Maughan J, Carey T, Sheil S, Stamenov P, Coleman JN. Highly Conductive Networks of Silver Nanosheets. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2105996. [PMID: 35218146 DOI: 10.1002/smll.202105996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/18/2022] [Indexed: 06/14/2023]
Abstract
Although printed networks of semiconducting nanosheets have found success in a range of applications, conductive nanosheet networks are limited by low conductivities (<106 S m-1 ). Here, dispersions of silver nanosheets (AgNS) that can be printed into highly conductive networks are described. Using a commercial thermal inkjet printer, AgNS patterns with unannealed conductivities of up to (6.0 ± 1.1) × 106 S m-1 are printed. These networks can form electromagnetic interference shields with record shielding effectiveness of >60 dB in the microwave region at thicknesses <200 nm. High resolution patterns with line widths down to 10 µm are also printed using an aerosol-jet printer which, when annealed at 200 °C, display conductivity >107 S m-1 . Unlike conventional Ag-nanoparticle inks, the 2D geometry of AgNS yields smooth, short-free interfaces between electrode and active layer when used as the top electrode in vertical nanosheet heterostructures. This shows that all-printed vertical heterostructures of AgNS/WS2 /AgNS, where the top electrode is a mesh grid, function as photodetectors demonstrating that such structures can be used in optoelectronic applications that usually require transparent conductors.
Collapse
Affiliation(s)
- Adam G Kelly
- School of Physics, CRANN and AMBER Research Centers, Trinity College Dublin, Dublin 2, D02 W085, Ireland
| | - Jane O'Reilly
- School of Physics, CRANN and AMBER Research Centers, Trinity College Dublin, Dublin 2, D02 W085, Ireland
| | - Cian Gabbett
- School of Physics, CRANN and AMBER Research Centers, Trinity College Dublin, Dublin 2, D02 W085, Ireland
| | - Beata Szydłowska
- School of Physics, CRANN and AMBER Research Centers, Trinity College Dublin, Dublin 2, D02 W085, Ireland
| | - Domhnall O'Suilleabhain
- School of Physics, CRANN and AMBER Research Centers, Trinity College Dublin, Dublin 2, D02 W085, Ireland
| | - Umar Khan
- Department of Life Science, School of Science, Institute of Technology Sligo, Ash Lane, Sligo, F91 YW50, Ireland
| | - Jack Maughan
- School of Physics, CRANN and AMBER Research Centers, Trinity College Dublin, Dublin 2, D02 W085, Ireland
| | - Tian Carey
- School of Physics, CRANN and AMBER Research Centers, Trinity College Dublin, Dublin 2, D02 W085, Ireland
| | - Siadhbh Sheil
- School of Physics, CRANN and AMBER Research Centers, Trinity College Dublin, Dublin 2, D02 W085, Ireland
| | - Plamen Stamenov
- School of Physics, CRANN and AMBER Research Centers, Trinity College Dublin, Dublin 2, D02 W085, Ireland
| | - Jonathan N Coleman
- School of Physics, CRANN and AMBER Research Centers, Trinity College Dublin, Dublin 2, D02 W085, Ireland
| |
Collapse
|
10
|
Patel RP, Pataniya PM, Patel M, Sumesh CK. WSe 2crystals on paper: flexible, large area and broadband photodetectors. NANOTECHNOLOGY 2021; 32:505202. [PMID: 34525463 DOI: 10.1088/1361-6528/ac26fe] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 09/15/2021] [Indexed: 06/13/2023]
Abstract
The paper-based photodetector has recently captivated a great deal of attention in various opto-electronics applications because of facile, cost effective and green synthesis. Two-dimensional transition metal dichalcogenides materials are promising for photodetection under the broad spectral range. In this work, we have fabricated paper-based device by rubbing the tungsten di-selenide (WSe2) crystals on paper substrate. Low-cost, facile and green synthesis technique was employed to make a high-performance paper-based WSe2photodetector. Paper-based photodetector was fabricated via non-toxic simply rubbing process of WSe2nanosheets on low-cost bio-degradable paper. The photodetector shows good responsivity of 72.5 μA W-1and detectivity at around 2.4 × 107Jones at very low bias (1.0 V) at wavelength of 780 nm, respectively. Due to good photo-absorption strength, photodetector exhibits excellent photo-response over wide wavelength range from visible to near infrared. This device also shows very good flexibility with a stable photo-response. This device shows a general and reliable study for the design of photodetectors that is eco-friendly and cost-effective. Overall studied results of the fabricated device indicate that they have the ability to be used in large-scale preparation of the device.
Collapse
Affiliation(s)
- Rahul P Patel
- Department of Physical Sciences, P D Patel Institute of Applied Sciences, Charotar University of Science and Technology, CHARUSAT, Changa, Gujarat, India
| | - Pratik M Pataniya
- Department of Physical Sciences, P D Patel Institute of Applied Sciences, Charotar University of Science and Technology, CHARUSAT, Changa, Gujarat, India
| | - Meswa Patel
- Department of Physical Sciences, P D Patel Institute of Applied Sciences, Charotar University of Science and Technology, CHARUSAT, Changa, Gujarat, India
| | - C K Sumesh
- Department of Physical Sciences, P D Patel Institute of Applied Sciences, Charotar University of Science and Technology, CHARUSAT, Changa, Gujarat, India
| |
Collapse
|
11
|
Xu Q, Liu Y, Cai L, Cao Y, Chen F, Zhou L, Zhu P, Jiang H, Jiang QY, Sun Y, Chen J. A green electrolysis of silver-decorated MoS 2 nanocomposite with an enhanced antibacterial effect and low cytotoxicity. NANOSCALE ADVANCES 2021; 3:3460-3469. [PMID: 36133707 PMCID: PMC9417968 DOI: 10.1039/d1na00100k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 03/20/2021] [Indexed: 05/25/2023]
Abstract
To tackle the devastating microbial infections for the public health, a continuous search for effective and safe nanobiocides based on their prominent nanoscale effects has been extensively explored during past decades. In this study, a green electrolysis method was employed to synthesize silver-doped molybdenum sulfide (Ag@MoS2) composite materials. The obtained nanocomposites exhibited a sheet-like structure with a large specific surface area, which contributed to the efficient loading and refined distribution of silver nanoparticles. G- E. coli and G + S. aureus were used as model bacteria for the antibacterial test, which revealed enhanced antibacterial activity of produced nanocomposites with an identified destructive effect on preformed biofilms. It was found that within 72 hour incubation, 20 μg mL-1 Ag@MoS2 was sufficient to inhibit the growth of E. coli and S. aureus without visible colony formation, pointing to a desirable long-term antibacterial activity. Further a mechanistic antibiosis study of Ag@MoS2 indicated the involvement of a generation of reactive oxygen species. Notably, owing to the well-distributed silver nanoparticles on the nontoxic MoS2 nanosheet, the cytotoxicity evaluation results revealed that produced nanocomposites exhibited negligible toxicity to mammalian cells, and thereby held promising potential for biomedical applications.
Collapse
Affiliation(s)
- Qilan Xu
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University Nanjing 211166 China
| | - Yuhui Liu
- State Key Laboratory of Nuclear Resources and Environment, School of Nuclear Science and Engineering, East China University of Technology Nanchang 330013 China
| | - Ling Cai
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University Nanjing 211166 China
| | - Yue Cao
- Department of Forensic Medicine, Nanjing Medical University Nanjing 211166 China
| | - Feng Chen
- Department of Forensic Medicine, Nanjing Medical University Nanjing 211166 China
| | - Liuzhu Zhou
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University Nanjing 211166 China
| | - Ping Zhu
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University Nanjing 211166 China
| | - Huijun Jiang
- School of Pharmacy, Nanjing Medical University Nanjing 211166 China
| | - Qiao-Yan Jiang
- Department of Forensic Medicine, Nanjing Medical University Nanjing 211166 China
| | - Yang Sun
- Department of Forensic Medicine, Nanjing Medical University Nanjing 211166 China
| | - Jin Chen
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University Nanjing 211166 China
- Jiangsu Province Engineering Research Center of Antibody Drug, Key Laboratory of Antibody Technique of National Health Commission, Nanjing Medical University Nanjing 211166 China
| |
Collapse
|
12
|
Jiang D, Sheng K, Gui G, Jiang H, Liu X, Wang L. A novel smartphone-based electrochemical cell sensor for evaluating the toxicity of heavy metal ions Cd 2+, Hg 2+, and Pb 2+ in rice. Anal Bioanal Chem 2021; 413:4277-4287. [PMID: 34057556 DOI: 10.1007/s00216-021-03379-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/25/2021] [Accepted: 04/27/2021] [Indexed: 02/08/2023]
Abstract
A novel smartphone-based electrochemical cell sensor was developed to evaluate the toxicity of heavy metal ions, such as cadmium (Cd2+), lead (Pb2+), and mercury (Hg2+) ions on Hep G2 cells. The cell sensor was fabricated with reduced graphene oxide (RGO)/molybdenum sulfide (MoS2) composites to greatly improve the biological adaptability and amplify the electrochemical signals. Differential pulse voltammetry (DPV) was employed to measure the electrical signals induced by the toxicity of heavy metal ions. The results showed that Cd2+, Hg2+, and Pb2+ significantly reduced the viability of Hep G2 cells in a dose-dependent manner. The IC50 values obtained by this method were 49.83, 36.94, and 733.90 μM, respectively. A synergistic effect was observed between Cd2+ and Pb2+ and between Hg2+ and Pb2+, and an antagonistic effect was observed between Cd2+ and Hg2+, and an antagonistic effect at low doses and an additive effect at high doses were found in the ternary mixtures of Cd2+, Hg2+, and Pb2+. These electrochemical results were confirmed via MTT assay, SEM and TEM observation, and flow cytometry. Therefore, this new electrochemical cell sensor provided a more convenient, sensitive, and flexible toxicity assessment strategy than traditional cytotoxicity assessment methods.
Collapse
Affiliation(s)
- Donglei Jiang
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, 210023, Jiangsu, China
| | - Kaikai Sheng
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, 210023, Jiangsu, China
| | - Guoyue Gui
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, 210023, Jiangsu, China
| | - Hui Jiang
- Nanjing Institute for Food and Drug Control, Nanjing, 211198, Jiangsu, China
| | - Xinmei Liu
- Nanjing Institute for Food and Drug Control, Nanjing, 211198, Jiangsu, China
| | - Lifeng Wang
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, 210023, Jiangsu, China.
| |
Collapse
|
13
|
Pataniya PM, Patel V, Sumesh CK. MoS 2/WSe 2nanohybrids for flexible paper-based photodetectors. NANOTECHNOLOGY 2021; 32:315709. [PMID: 33848985 DOI: 10.1088/1361-6528/abf77a] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 04/13/2021] [Indexed: 06/12/2023]
Abstract
Flexible photodetectors functionalized by transition metal dichalcogenides have attracted great attention due to their excellent photo-harvesting efficiency. However, the field of optoelectronics still requires advancement in the production of large-area, broad band and flexible photodetectors. Here we report a flexible, stable, broad band and fast photodetector based on a MoS2/WSe2heterostructure on ordinary photocopy paper with pencil-drawn graphite electrodes. Ultrathin MoS2/WSe2nanohybrids have been synthesized by an ultrahigh yield liquid-phase exfoliation technique. The thin sheets of WSe2, and MoS2contain two to four layers with a highly c-oriented crystalline structure. Subsequently, the photodetector was exploited under ultra-broad spectral range from 400 to 780 nm. The photodetector exhibits excellent figure of merit such as on/off ratio of the order of 103, photoresponsivity of 124 mA W-1and external quantum efficiency of 23.1%. Encouragingly, rise/decay time of about 0.1/0.3 s was realized, which is better than in previous reports on paper-based devices.
Collapse
Affiliation(s)
- Pratik M Pataniya
- Department of Physical Science, P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, CHRUSAT, Changa-388421, Gujarat, India
| | - Vikas Patel
- Sophisticated Instrumentation Centre for Applied Research and Testing (SICART), Vallabh Vidyanagar, Anand, Gujarat-388 120, India
| | - C K Sumesh
- Department of Physical Science, P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, CHRUSAT, Changa-388421, Gujarat, India
| |
Collapse
|
14
|
Guo JX, Wu SY, Zhong SY, Zhang GJ, Yu XY, Wu LN. Exploring promising gas sensing and highly active catalysts for CO oxidation: transition-metal (Fe, Co and Ni) adsorbed Janus MoSSe monolayers. Phys Chem Chem Phys 2021; 23:11004-11014. [PMID: 33942039 DOI: 10.1039/d1cp00994j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
From first-principles calculations, the transition-metal (TM) atom (Fe, Co and Ni) adsorbed Janus MoSSe monolayer, toxic gas molecules (CO, NH3 and H2S) adsorbed on the Ni-MoSSe monolayer and CO catalytic oxidation on the Fe-MoSSe monolayer are systematically investigated. An increasing order (Fe-MoSSe < Co-MoSSe < Ni-MoSSe) is found for the stability and band gap of the TM atom adsorbed Janus MoSSe monolayer. These toxic gas molecules are found to be weakly physisorbed and strongly chemisorbed on the pristine and Ni-MoSSe monolayers, respectively. The electronic structure and gas molecular adsorption properties of the Janus MoSSe monolayer can be modulated by adsorbing different TM atoms and gas molecules. Particularly, the CO catalytic oxidation can be realized on the Fe-MoSSe monolayer in light of the more preferable Eley-Rideal (ER) mechanism with the two-step route (CO + O2 → OOCO → CO2 + Oads, CO + Oads → CO2) with highly exothermic processes in each step. The adsorption of TM atoms which may greatly enhance gas sensing performance and catalytic performance of CO oxidation based on the Janus MoSSe monolayer is further discussed.
Collapse
Affiliation(s)
- Jia-Xing Guo
- School of Physics, University of Electronic Science and Technology of China, Chengdu 611731, China.
| | - Shao-Yi Wu
- School of Physics, University of Electronic Science and Technology of China, Chengdu 611731, China.
| | - Si-Ying Zhong
- School of Physics, University of Electronic Science and Technology of China, Chengdu 611731, China.
| | - Gao-Jun Zhang
- School of Physics, University of Electronic Science and Technology of China, Chengdu 611731, China.
| | - Xing-Yuan Yu
- School of Physics, University of Electronic Science and Technology of China, Chengdu 611731, China.
| | - Li-Na Wu
- School of Sciences, Xi'an Technological University, Xi'an 710021, China
| |
Collapse
|
15
|
Azpeitia J, Frisenda R, Lee M, Bouwmeester D, Zhang W, Mompean F, van der Zant HSJ, García-Hernández M, Castellanos-Gomez A. Integrating superconducting van der Waals materials on paper substrates. MATERIALS ADVANCES 2021; 2:3274-3281. [PMID: 34124682 PMCID: PMC8142649 DOI: 10.1039/d1ma00118c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/05/2021] [Indexed: 06/12/2023]
Abstract
Paper has the potential to dramatically reduce the cost of electronic components. In fact, paper is 10 000 times cheaper than crystalline silicon, motivating the research to integrate electronic materials on paper substrates. Among the different electronic materials, van der Waals materials are attracting the interest of the scientific community working on paper-based electronics because of the combination of high electrical performance and mechanical flexibility. Up to now, different methods have been developed to pattern conducting, semiconducting and insulating van der Waals materials on paper but the integration of superconductors remains elusive. Here, the deposition of NbSe2, an illustrative van der Waals superconductor, on standard copy paper is demonstrated. The deposited NbSe2 films on paper display superconducting properties (e.g. observation of Meissner effect and resistance drop to zero-resistance state when cooled down below its critical temperature) similar to those of bulk NbSe2.
Collapse
Affiliation(s)
- Jon Azpeitia
- Materials Science Factory. Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC) Madrid E-28049 Spain
| | - Riccardo Frisenda
- Materials Science Factory. Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC) Madrid E-28049 Spain
| | - Martin Lee
- Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1 Delft The Netherlands
| | - Damian Bouwmeester
- Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1 Delft The Netherlands
| | - Wenliang Zhang
- Materials Science Factory. Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC) Madrid E-28049 Spain
| | - Federico Mompean
- Materials Science Factory. Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC) Madrid E-28049 Spain
| | - Herre S J van der Zant
- Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1 Delft The Netherlands
| | - Mar García-Hernández
- Materials Science Factory. Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC) Madrid E-28049 Spain
| | - Andres Castellanos-Gomez
- Materials Science Factory. Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC) Madrid E-28049 Spain
| |
Collapse
|
16
|
Lee M, Mazaheri A, van der Zant HSJ, Frisenda R, Castellanos-Gomez A. Drawing WS 2 thermal sensors on paper substrates. NANOSCALE 2020; 12:22091-22096. [PMID: 33140811 DOI: 10.1039/d0nr06036d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Paper based thermoresistive sensors are fabricated by rubbing WS2 powder against a piece of standard copier paper, like the way a pencil is used to write on paper. The abrasion between the layered material and the rough paper surface erodes the material, breaking the weak van der Waals interlayer bonds, yielding a film of interconnected platelets. The resistance of WS2 presents a strong temperature dependence, as expected for a semiconductor material in which charge transport is due to thermally activated carriers. This strong temperature dependence makes the paper supported WS2 devices extremely sensitive to small changes in temperature. This exquisite thermal sensitivity, and their fast response times to sudden temperature changes, is exploited thereby demonstrating the usability of a WS2-on-paper thermal sensor in a respiration monitoring device.
Collapse
Affiliation(s)
- Martin Lee
- Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands
| | | | | | | | | |
Collapse
|