1
|
Zhang Y, Ding M. Probing nanopores: molecular dynamics insights into the mechanisms of DNA and protein translocation through solid-state and biological nanopores. SOFT MATTER 2025; 21:2385-2399. [PMID: 40094904 DOI: 10.1039/d4sm01534g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Nanopore sequencing technology has revolutionized single-molecule analysis through its unique capability to detect and characterize individual biomolecules with unprecedented precision. This perspective provides a comprehensive analysis of molecular dynamics (MD) simulations in nanopore research, with particular emphasis on comparing molecular transport mechanisms between biological and solid-state platforms. We first examine how MD simulations at atomic resolution reveal distinct characteristics: biological nanopores exhibit sophisticated molecular recognition through specific amino acid interactions, while solid-state nanopores demonstrate advantages in structural stability and geometric control. Through detailed analysis of simulation methodologies and their applications, we show how computational approaches have advanced our understanding of critical phenomena such as ion selectivity, conformational dynamics, and surface effects in both nanopore types. Despite computational challenges including limited simulation timescales and force field accuracy constraints, recent advances in high-performance computing and artificial intelligence integration have significantly improved simulation capabilities. By synthesizing perspectives from physics, chemistry, biology, and computational science, this perspective provides both theoretical insights and practical guidelines for developing next-generation nanopore platforms. The integration of computational and experimental approaches discussed here offers promising directions for advancing nanopore technology in applications ranging from DNA/RNA sequencing and protein post-translational modification analysis to disease diagnosis and drug screening.
Collapse
Affiliation(s)
- Yuanshuo Zhang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P. R. China.
| | - Mingming Ding
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P. R. China.
- Jieyang Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Jieyang 515200, P. R. China
| |
Collapse
|
2
|
Yakovliev V, Lev B. Impact of bacterial outer membrane and general porins on cyanide diffusion and biodegradation kinetics. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136117. [PMID: 39427357 DOI: 10.1016/j.jhazmat.2024.136117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 10/22/2024]
Abstract
The present study focuses on the analysis of the diffusion process of various cyanide compounds through general porins and outer membranes of gram-negative bacteria. We demonstrate the impact of the compound-to-porin radius ratio, the charge of cyanide ion, the Donnan potential, the intrinsic porin potential, the number and length of general porins, the fraction of open channels, and the size of bacteria on the effective diffusion coefficients and permeability coefficients of cyanide compounds. Moreover, we report, for the first time, the procedure for comparison of the rate of cyanide diffusion across the outer membrane with the rate of cyanide biodegradation that allows establishing the conditions for which the biodegradation is a diffusion-limited process or the diffusion is a significantly faster process than biodegradation. We apply this procedure to several experimental studies and predict the range of extracellular cyanide concentrations for which diffusion is a significantly faster process than biodegradation. We also demonstrate how these results affect the theoretical view of the cyanide biodegradation kinetics.
Collapse
Affiliation(s)
- Vladyslav Yakovliev
- Department of Synergetics, Bogolyubov Institute for Theoretical Physics of the National Academy of Sciences of Ukraine, 14b Metrolohichna Str., Kyiv 03143, Ukraine.
| | - Bohdan Lev
- Department of Synergetics, Bogolyubov Institute for Theoretical Physics of the National Academy of Sciences of Ukraine, 14b Metrolohichna Str., Kyiv 03143, Ukraine; Condensed Matter Physics Department, J. Stefan Institute, 39 Jamova, Ljubljana 1000, Slovenia; Faculty of Mathematics and Physics, University of Ljubljana, 19 Jadranska, Ljubljana 1000, Slovenia.
| |
Collapse
|
3
|
Galenkamp NS, Zernia S, Van Oppen YB, van den Noort M, Milias-Argeitis A, Maglia G. Allostery can convert binding free energies into concerted domain motions in enzymes. Nat Commun 2024; 15:10109. [PMID: 39572546 PMCID: PMC11582565 DOI: 10.1038/s41467-024-54421-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 11/11/2024] [Indexed: 11/24/2024] Open
Abstract
Enzymatic mechanisms are typically inferred from structural data. However, understanding enzymes require unravelling the intricate dynamic interplay between dynamics, conformational substates, and multiple protein structures. Here, we use single-molecule nanopore analysis to investigate the catalytic conformational changes of adenylate kinase (AK), an enzyme that catalyzes the interconversion of various adenosine phosphates (ATP, ADP, and AMP). Kinetic analysis validated by hidden Markov models unravels the details of domain motions during catalysis. Our findings reveal that allosteric interactions between ligands and cofactor enable converting binding energies into directional conformational changes of the two catalytic domains of AK. These coordinated motions emerged to control the exact sequence of ligand binding and the affinity for the three different substrates, thereby guiding the reactants along the reaction coordinates. Interestingly, we find that about 10% of enzymes show altered allosteric regulation and ligand affinities, indicating that a subset of enzymes folds in alternative catalytically active forms. Since molecules or proteins might be able to selectively stabilize one of the folds, this observation suggests an evolutionary path for allostery in enzymes. In AK, this complex catalytic framework has likely emerged to prevent futile ATP/ADP hydrolysis and to regulate the enzyme for different energy needs of the cell.
Collapse
Affiliation(s)
- Nicole Stéphanie Galenkamp
- Chemical Biology I, Groningen Biomolecular Sciences & Biotechnology Institute, University of Groningen, 9747 AG, Groningen, The Netherlands
| | - Sarah Zernia
- Chemical Biology I, Groningen Biomolecular Sciences & Biotechnology Institute, University of Groningen, 9747 AG, Groningen, The Netherlands
| | - Yulan B Van Oppen
- Molecular Systems Biology, Groningen Biomolecular Sciences & Biotechnology Institute, University of Groningen, 9747 AG, Groningen, The Netherlands
| | - Marco van den Noort
- Chemical Biology I, Groningen Biomolecular Sciences & Biotechnology Institute, University of Groningen, 9747 AG, Groningen, The Netherlands
| | - Andreas Milias-Argeitis
- Molecular Systems Biology, Groningen Biomolecular Sciences & Biotechnology Institute, University of Groningen, 9747 AG, Groningen, The Netherlands
| | - Giovanni Maglia
- Chemical Biology I, Groningen Biomolecular Sciences & Biotechnology Institute, University of Groningen, 9747 AG, Groningen, The Netherlands.
| |
Collapse
|
4
|
Baldelli M, Di Muccio G, Viola F, Giacomello A, Cecconi F, Balme S, Chinappi M. Performance of Single Nanopore and Multi-Pore Membranes for Blue Energy. Chemphyschem 2024:e202400395. [PMID: 39161129 DOI: 10.1002/cphc.202400395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/12/2024] [Accepted: 08/14/2024] [Indexed: 08/21/2024]
Abstract
The salinity gradient power extracted from the mixing of electrolyte solutions at different concentrations through selective nanoporous membranes is a promising route to renewable energy. However, several challenges need to be addressed to make this technology profitable, one of the most relevant being the increase of the extractable power per membrane area. Here, the performance of asymmetric conical and bullet-shaped nanopores in a 50 nm thick membrane are studied via electrohydrodynamic simulations, varying the pore radius, curvature, and surface charge. The output power reaches ~60 pW per pore for positively charged membranes (surface charge σw=160 mC/m2) and ~30 pW for negatively charges ones, σw=-160 mC/m2 and it is robust to minor variations of nanopore shape and radius. A theoretical argument that takes into account the interaction among neighbour pores allows to extrapolate the single-pore performance to multi-pore membranes showing that power densities from tens to hundreds of W/m2 can be reached by proper tuning of the nanopore number density and the boundary layer thickness. Our model for scaling single-pore performance to multi-pore membrane can be applied also to experimental data providing a simple tool to effectively compare different nanopore membranes in blue energy applications.
Collapse
Affiliation(s)
- Matteo Baldelli
- Department of Industrial Engeenering, University of Rome Tor Vergata, Roma, Italy
| | - Giovanni Di Muccio
- Department of Mechanical and Aerospace Engineering, University of Rome Sapienza, Roma, Italy
| | | | - Alberto Giacomello
- Department of Mechanical and Aerospace Engineering, University of Rome Sapienza, Roma, Italy
| | - Fabio Cecconi
- Istituto Sistemi Complessi, CNR, Via dei Taurini 19, Roma, Italy
- INFN, Sezione Roma 1, Piazzale Aldo Moro, 2, Roma, Italy
| | - Sébastien Balme
- Institut Européen des Membranes, IEM UMR 5635, Univ. Montpellier, France
| | - Mauro Chinappi
- Department of Industrial Engeenering, University of Rome Tor Vergata, Roma, Italy
| |
Collapse
|
5
|
Baldelli M, Di Muccio G, Sauciuc A, Morozzo Della Rocca B, Viola F, Balme S, Bonini A, Maglia G, Chinappi M. Controlling Electroosmosis in Nanopores Without Altering the Nanopore Sensing Region. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401761. [PMID: 38860821 DOI: 10.1002/adma.202401761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/24/2024] [Indexed: 06/12/2024]
Abstract
Nanopores are powerful tools for single-molecule sensing of biomolecules and nanoparticles. The signal coming from the molecule to be analyzed strongly depends on its interaction with the narrower section of the nanopore (constriction) that may be tailored to increase sensing accuracy. Modifications of nanopore constriction have also been commonly used to induce electroosmosis, that favors the capture of molecules in the nanopore under a voltage bias and independently of their charge. However, engineering nanopores for increasing both electroosmosis and sensing accuracy is challenging. Here it is shown that large electroosmotic flows can be achieved without altering the nanopore constriction. Using continuum electrohydrodynamic simulations, it is found that an external charged ring generates strong electroosmosis in cylindrical nanopores. Similarly, for conical nanopores it is shown that moving charges away from the cone tip still results in an electroosmotic flow (EOF), whose intensity reduces increasing the diameter of the nanopore section where charges are placed. This paradigm is applied to engineered biological nanopores showing, via atomistic simulations and experiments, that mutations outside the constriction induce a relatively intense electroosmosis. This strategy provides much more flexibility in nanopore design since electroosmosis can be controlled independently from the constriction, which can be optimized to improve sensing accuracy.
Collapse
Affiliation(s)
- Matteo Baldelli
- Department of Industrial Engeenering, University of Rome Tor Vergata, Roma, 00133, Italy
| | - Giovanni Di Muccio
- Department of Mechanical and Aerospace Engineering, University of Rome Sapienza, Roma, 00184, Italy
| | - Adina Sauciuc
- Groningen Biomolecular Sciences & Biotechnology Institute, University of Groningen, Groningen, 9747 AG, The Netherlands
| | | | | | - Sébastien Balme
- Institut Europeen des Membranes, UMR5635, University of Montpellier ENCSM CNRS, Montpellier, 34095, France
| | - Andrea Bonini
- Groningen Biomolecular Sciences & Biotechnology Institute, University of Groningen, Groningen, 9747 AG, The Netherlands
| | - Giovanni Maglia
- Groningen Biomolecular Sciences & Biotechnology Institute, University of Groningen, Groningen, 9747 AG, The Netherlands
| | - Mauro Chinappi
- Department of Industrial Engeenering, University of Rome Tor Vergata, Roma, 00133, Italy
| |
Collapse
|
6
|
Voorspoels A, Gevers J, Santermans S, Akkan N, Martens K, Willems K, Van Dorpe P, Verhulst AS. Design Principles of DNA-Barcodes for Nanopore-FET Readout, Based on Molecular Dynamics and TCAD Simulations. J Phys Chem A 2024. [PMID: 38712508 DOI: 10.1021/acs.jpca.4c01772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Nanopore field-effect transistor (NP-FET) devices hold great promise as sensitive single-molecule sensors, which provide CMOS-based on-chip readout and are also highly amenable to parallelization. A plethora of applications will therefore benefit from NP-FET technology, such as large-scale molecular analysis (e.g., proteomics). Due to its potential for parallelization, the NP-FET looks particularly well-suited for the high-throughput readout of DNA-based barcodes. However, to date, no study exists that unravels the bit-rate capabilities of NP-FET devices. In this paper, we design DNA-based barcodes by labeling a piece of double-stranded DNA with dumbbell-like DNA structures. We explore the impact of both the size of the dumbbells and their spacing on achievable bit-rates. The conformational fluctuations of this DNA-origami, as observed by molecular dynamics (MD) simulation, are accounted for when selecting label sizes. An experimentally informed 3D continuum nanofluidic-nanoelectronic device model subsequently predicts both the ionic current and FET signals. We present a barcode design for a conceptually generic NP-FET, with a 14 nm diameter pore, operating in conditions corresponding to experiments. By adjusting the spacing between the labels to half the length of the pore, we show that a bit-rate of 78 kbit·s-1 is achievable. This lies well beyond the state-of-the-art of ≈40 kbit·s-1, with significant headroom for further optimizations. We also highlight the advantages of NP-FET readout based on the larger signal size and sinusoidal signal shape.
Collapse
Affiliation(s)
- Aderik Voorspoels
- Imec, Kapeldreef 75, B-3001 Leuven, Belgium
- Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200D, B-3001 Leuven, Belgium
| | - Juliette Gevers
- Imec, Kapeldreef 75, B-3001 Leuven, Belgium
- Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200D, B-3001 Leuven, Belgium
| | | | - Nihat Akkan
- Imec, Kapeldreef 75, B-3001 Leuven, Belgium
- Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200D, B-3001 Leuven, Belgium
| | - Koen Martens
- Imec, Kapeldreef 75, B-3001 Leuven, Belgium
- Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200D, B-3001 Leuven, Belgium
| | | | - Pol Van Dorpe
- Imec, Kapeldreef 75, B-3001 Leuven, Belgium
- Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200D, B-3001 Leuven, Belgium
| | - Anne S Verhulst
- Imec, Kapeldreef 75, B-3001 Leuven, Belgium
- Department of Electrical Engineering (ESAT), KU Leuven, Kasteelpark Arenberg 10, B-3001 Leuven, Belgium
| |
Collapse
|
7
|
Li M, Muthukumar M. Electro-osmotic flow in nanoconfinement: Solid-state and protein nanopores. J Chem Phys 2024; 160:084905. [PMID: 38411234 DOI: 10.1063/5.0185574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/05/2024] [Indexed: 02/28/2024] Open
Abstract
Electro-osmotic flow (EOF) is a phenomenon where fluid motion occurs in porous materials or micro/nano-channels when an external electric field is applied. In the particular example of single-molecule electrophoresis using single nanopores, the role of EOF on the translocation velocity of the analyte molecule through the nanopore is not fully understood. The complexity arises from a combination of effects from hydrodynamics in restricted environments, electrostatics emanating from charge decorations and geometry of the pores. We address this fundamental issue using the Poisson-Nernst-Planck and Navier-Stokes (PNP-NS) equations for cylindrical solid-state nanopores and three representative protein nanopores (α-hemolysin, MspA, and CsgG). We present the velocity profiles inside the nanopores as a function of charge decoration and geometry of the pore and applied electric field. We report several unexpected results: (a) The apparent charges of the protein nanopores are different from their net charge and the surface charge of the whole protein geometry, and the net charge of inner surface is consistent with the apparent charge. (b) The fluid velocity depends non-monotonically on voltage. The three protein nanopores exhibit unique EOF and velocity-voltage relations, which cannot be simply deduced from their net charge. Furthermore, effective point mutations can significantly change both the direction and the magnitude of EOF. The present computational analysis offers an opportunity to further understand the origins of the speed of transport of charged macromolecules in restricted space and to design desirable nanopores for tuning the speed of macromolecules through nanopores.
Collapse
Affiliation(s)
- Minglun Li
- Department of Polymer Science and Engineering, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | - Murugappan Muthukumar
- Department of Polymer Science and Engineering, University of Massachusetts, Amherst, Massachusetts 01003, USA
| |
Collapse
|
8
|
Straathof S, Di Muccio G, Yelleswarapu M, Alzate Banguero M, Wloka C, van der Heide NJ, Chinappi M, Maglia G. Protein Sizing with 15 nm Conical Biological Nanopore YaxAB. ACS NANO 2023; 17:13685-13699. [PMID: 37458334 PMCID: PMC10373527 DOI: 10.1021/acsnano.3c02847] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
Nanopores are promising single-molecule tools for the electrical identification and sequencing of biomolecules. However, the characterization of proteins, especially in real-time and in complex biological samples, is complicated by the sheer variety of sizes and shapes in the proteome. Here, we introduce a large biological nanopore, YaxAB for folded protein analysis. The 15 nm cis-opening and a 3.5 nm trans-constriction describe a conical shape that allows the characterization of a wide range of proteins. Molecular dynamics showed proteins are captured by the electroosmotic flow, and the overall resistance is largely dominated by the narrow trans constriction region of the nanopore. Conveniently, proteins in the 35-125 kDa range remain trapped within the conical lumen of the nanopore for a time that can be tuned by the external bias. Contrary to cylindrical nanopores, in YaxAB, the current blockade decreases with the size of the trapped protein, as smaller proteins penetrate deeper into the constriction region than larger proteins do. These characteristics are especially useful for characterizing large proteins, as shown for pentameric C-reactive protein (125 kDa), a widely used health indicator, which showed a signal that could be identified in the background of other serum proteins.
Collapse
Affiliation(s)
- Sabine Straathof
- Groningen Biomolecular Sciences & Biotechnology Institute, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Giovanni Di Muccio
- Department of Industrial Engineering, University of Rome Tor Vergata, Via del Politecnico 1, 00133 Rome, Italy
| | - Maaruthy Yelleswarapu
- Groningen Biomolecular Sciences & Biotechnology Institute, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Melissa Alzate Banguero
- Department of Industrial Engineering, University of Rome Tor Vergata, Via del Politecnico 1, 00133 Rome, Italy
| | - Carsten Wloka
- Groningen Biomolecular Sciences & Biotechnology Institute, University of Groningen, 9747 AG Groningen, The Netherlands
- Experimental Ophthalmology, Department of Ophthalmology, Charité - Universitätsmedizin Berlin, A Corporate Member of Freie Universität, Humboldt-University, The Berlin Institute of Health, Berlin 10178, Germany
| | - Nieck Jordy van der Heide
- Groningen Biomolecular Sciences & Biotechnology Institute, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Mauro Chinappi
- Department of Industrial Engineering, University of Rome Tor Vergata, Via del Politecnico 1, 00133 Rome, Italy
| | - Giovanni Maglia
- Groningen Biomolecular Sciences & Biotechnology Institute, University of Groningen, 9747 AG Groningen, The Netherlands
| |
Collapse
|
9
|
Zhang X, Galenkamp NS, van der Heide NJ, Moreno J, Maglia G, Kjems J. Specific Detection of Proteins by a Nanobody-Functionalized Nanopore Sensor. ACS NANO 2023; 17:9167-9177. [PMID: 37127291 PMCID: PMC10184537 DOI: 10.1021/acsnano.2c12733] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Nanopores are label-free single-molecule analytical tools that show great potential for stochastic sensing of proteins. Here, we described a ClyA nanopore functionalized with different nanobodies through a 5-6 nm DNA linker at its periphery. Ty1, 2Rs15d, 2Rb17c, and nb22 nanobodies were employed to specifically recognize the large protein SARS-CoV-2 Spike, a medium-sized HER2 receptor, and the small protein murine urokinase-type plasminogen activator (muPA), respectively. The pores modified with Ty1, 2Rs15d, and 2Rb17c were capable of stochastic sensing of Spike protein and HER2 receptor, respectively, following a model where unbound nanobodies, facilitated by a DNA linker, move inside the nanopore and provoke reversible blockade events, whereas engagement with the large- and medium-sized proteins outside of the pore leads to a reduced dynamic movement of the nanobodies and an increased current through the open pore. Exploiting the multivalent interaction between trimeric Spike protein and multimerized Ty1 nanobodies enabled the detection of picomolar concentrations of Spike protein. In comparison, detection of the smaller muPA proteins follows a different model where muPA, complexing with the nb22, moves into the pore, generating larger blockage signals. Importantly, the components in blood did not affect the sensing performance of the nanobody-functionalized nanopore, which endows the pore with great potential for clinical detection of protein biomarkers.
Collapse
Affiliation(s)
- Xialin Zhang
- Interdisciplinary Nanoscience Center, Aarhus University, Aarhus C 8000, Denmark
| | | | | | - Julián Moreno
- Interdisciplinary Nanoscience Center, Aarhus University, Aarhus C 8000, Denmark
| | | | - Jørgen Kjems
- Interdisciplinary Nanoscience Center, Aarhus University, Aarhus C 8000, Denmark
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus C 8000, Denmark
| |
Collapse
|
10
|
Huang G, Voorspoels A, Versloot RCA, van der Heide NJ, Carlon E, Willems K, Maglia G. PlyAB Nanopores Detect Single Amino Acid Differences in Folded Haemoglobin from Blood. Angew Chem Int Ed Engl 2022; 61:e202206227. [PMID: 35759385 PMCID: PMC9541544 DOI: 10.1002/anie.202206227] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Indexed: 01/04/2023]
Abstract
The real‐time identification of protein biomarkers is crucial for the development of point‐of‐care and portable devices. Here, we use a PlyAB biological nanopore to detect haemoglobin (Hb) variants. Adult haemoglobin (HbA) and sickle cell anaemia haemoglobin (HbS), which differ by just one amino acid, were distinguished in a mixture with more than 97 % accuracy based on individual blockades. Foetal Hb, which shows a larger sequence variation, was distinguished with near 100 % accuracy. Continuum and Brownian dynamics simulations revealed that Hb occupies two energy minima, one near the inner constriction and one at the trans entry of the nanopore. Thermal fluctuations, the charge of the protein, and the external bias influence the dynamics of Hb within the nanopore, which in turn generates the unique ionic current signal in the Hb variants. Finally, Hb was counted from blood samples, demonstrating that direct discrimination and quantification of Hb from blood using nanopores, is feasible.
Collapse
Affiliation(s)
- Gang Huang
- Groningen Biomolecular Sciences & Biotechnology Institute, University of Groningen, 9747 AG, Groningen, The Netherlands
| | - Aderik Voorspoels
- Soft Matter and Biophysics Unit, KU Leuven, Celestijnenlaan 200D, 3001, Leuven, Belgium
| | | | - Nieck Jordy van der Heide
- Groningen Biomolecular Sciences & Biotechnology Institute, University of Groningen, 9747 AG, Groningen, The Netherlands
| | - Enrico Carlon
- Soft Matter and Biophysics Unit, KU Leuven, Celestijnenlaan 200D, 3001, Leuven, Belgium
| | | | - Giovanni Maglia
- Groningen Biomolecular Sciences & Biotechnology Institute, University of Groningen, 9747 AG, Groningen, The Netherlands
| |
Collapse
|
11
|
Versloot RA, Lucas FL, Yakovlieva L, Tadema MJ, Zhang Y, Wood TM, Martin NI, Marrink SJ, Walvoort MTC, Maglia G. Quantification of Protein Glycosylation Using Nanopores. NANO LETTERS 2022; 22:5357-5364. [PMID: 35766994 PMCID: PMC9284675 DOI: 10.1021/acs.nanolett.2c01338] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Although nanopores can be used for single-molecule sequencing of nucleic acids using low-cost portable devices, the characterization of proteins and their modifications has yet to be established. Here, we show that hydrophilic or glycosylated peptides translocate too quickly across FraC nanopores to be recognized. However, high ionic strengths (i.e., 3 M LiCl) and low pH (i.e., pH 3) together with using a nanopore with a phenylalanine at its constriction allows the recognition of hydrophilic peptides, and to distinguish between mono- and diglycosylated peptides. Using these conditions, we devise a nanopore method to detect, characterize, and quantify post-translational modifications in generic proteins, which is one of the pressing challenges in proteomic analysis.
Collapse
Affiliation(s)
| | | | - Liubov Yakovlieva
- Chemical
Biology Division, Stratingh Institute for Chemistry, University of Groningen, 9747AG Groningen, The Netherlands
| | - Matthijs Jonathan Tadema
- Groningen
Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747AG Groningen, The Netherlands
| | - Yurui Zhang
- Biological
Chemistry Group, Institute of Biology Leiden, Leiden University, 2333 BE Leiden, The Netherlands
| | - Thomas M. Wood
- Biological
Chemistry Group, Institute of Biology Leiden, Leiden University, 2333 BE Leiden, The Netherlands
| | - Nathaniel I. Martin
- Biological
Chemistry Group, Institute of Biology Leiden, Leiden University, 2333 BE Leiden, The Netherlands
| | - Siewert J. Marrink
- Groningen
Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747AG Groningen, The Netherlands
| | - Marthe T. C. Walvoort
- Chemical
Biology Division, Stratingh Institute for Chemistry, University of Groningen, 9747AG Groningen, The Netherlands
| | - Giovanni Maglia
- Groningen
Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747AG Groningen, The Netherlands
| |
Collapse
|
12
|
Belousov R, Hassanali A, Roldán É. Statistical physics of inhomogeneous transport: Unification of diffusion laws and inference from first-passage statistics. Phys Rev E 2022; 106:014103. [PMID: 35974517 DOI: 10.1103/physreve.106.014103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
Characterization of composite materials, whose properties vary in space over microscopic scales, has become a problem of broad interdisciplinary interest. In particular, estimation of the inhomogeneous transport coefficients, e.g., the diffusion coefficient or the heat conductivity, which shape important processes in biology and engineering, is a challenging task. The analysis of such systems is further complicated because two alternative formulations of the inhomogeneous transport equations exist in the literature-the Smoluchowski and Fokker-Planck equations, which are also related to the so-called Ito-Stratonovich dilemma. Using the theory of statistical physics, we show that the two formulations, usually regarded as distinct models, are physically equivalent. From this result we develop efficient estimates for the transverse space-dependent diffusion coefficient in fluids near a phase boundary. Our method requires only measurements of escape probabilities and mean exit times of molecules leaving a narrow spatial region. We test our estimates in three case studies: (i) a Langevin model of a Büttikker-Landauer ratchet; atomistic molecular-dynamics simulations of liquid-water molecules in contact with (ii) vapor, and (iii) soap (surfactant) film which has promising applications in physical chemistry. Our analysis reveals that near the surfactant monolayer the mobility of water molecules is slowed down almost twice with respect to the bulk liquid. Moreover, the diffusion coefficient of water correlates with the transition from hydrophilic to hydrophobic parts of the film.
Collapse
Affiliation(s)
- Roman Belousov
- ICTP-The Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11, 34151 Trieste, Italy
| | - Ali Hassanali
- ICTP-The Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11, 34151 Trieste, Italy
| | - Édgar Roldán
- ICTP-The Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11, 34151 Trieste, Italy
| |
Collapse
|
13
|
Di Muccio G, Morozzo della Rocca B, Chinappi M. Geometrically Induced Selectivity and Unidirectional Electroosmosis in Uncharged Nanopores. ACS NANO 2022; 16:8716-8728. [PMID: 35587777 PMCID: PMC9245180 DOI: 10.1021/acsnano.1c03017] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Selectivity toward positive and negative ions in nanopores is often associated with electroosmotic flow, the control of which is pivotal in several micro-nanofluidic technologies. Selectivity is traditionally understood to be a consequence of surface charges that alter the ion distribution in the pore lumen. Here we present a purely geometrical mechanism to induce ionic selectivity and electroosmotic flow in uncharged nanopores, and we tested it via molecular dynamics simulations. Our approach exploits the accumulation of charges, driven by an external electric field, in a coaxial cavity that decorates the membrane close to the pore entrance. The selectivity was shown to depend on the applied voltage and becomes completely inverted when reversing the voltage. The simultaneous inversion of ionic selectivity and electric field direction causes a unidirectional electroosmotic flow. We developed a quantitatively accurate theoretical model for designing pore geometry to achieve the desired electroosmotic velocity. Finally, we show that unidirectional electroosmosis also occurs in much more complex scenarios, such as a biological pore whose structure presents a coaxial cavity surrounding the pore constriction as well as a complex surface charge pattern. The capability to induce ion selectivity without altering the pore lumen shape or the surface charge may be useful for a more flexible design of selective membranes.
Collapse
Affiliation(s)
- Giovanni Di Muccio
- Dipartimento
di Ingegneria Industriale, Università
di Roma Tor Vergata, Via del Politecnico 1, 00133, Rome, Italy
| | - Blasco Morozzo della Rocca
- Dipartimento
di Biologia, Università di Roma Tor
Vergata, Via della Ricerca Scientifica 1, 00133, Rome, Italy
| | - Mauro Chinappi
- Dipartimento
di Ingegneria Industriale, Università
di Roma Tor Vergata, Via del Politecnico 1, 00133, Rome, Italy
- E-mail:
| |
Collapse
|
14
|
Huang G, Voorspoels A, Versloot RCA, Van Der Heide NJ, Carlon E, Willems K, Maglia G. PlyAB Nanopores Detect Single Amino Acid Differences in Folded Haemoglobin from Blood. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Gang Huang
- University of Groningen: Rijksuniversiteit Groningen Chemical Biology NETHERLANDS
| | - Aderik Voorspoels
- KU Leuven: Katholieke Universiteit Leuven Soft Matter and Biophysics BELGIUM
| | | | | | - Enrico Carlon
- KU Leuven University: Katholieke Universiteit Leuven Soft Matter and Biophysics NETHERLANDS
| | - Kherim Willems
- Imec Integrated photonics for microscopy and biomedical imaging BELGIUM
| | - Giovanni Maglia
- Rijksuniversiteit Groningen Chemical Biology Nijenborgh 7 9747 AG Groningen NETHERLANDS
| |
Collapse
|
15
|
Saurabh K, Solovchuk M, Sheu TWH. A detailed study of ion transport through the SARS-CoV-2 E protein ion channel. NANOSCALE 2022; 14:8291-8305. [PMID: 35648036 DOI: 10.1039/d2nr01385a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The envelope (E) protein encoded in the genome of an RNA virus is crucial for the replication, budding and pathophysiology of the virus. In the light of the ongoing pandemic, we explored similarities/differences between SARS-CoV-1 and SARS-CoV-2 E protein ion channels in terms of their selectivity. Further, we also examined the impact of variation of the bath concentration and introduction of potential and concentration gradients across the channel on the binding ratios of sodium and chloride ions for the SARS-CoV-2 E protein. Ion transport is described through the fourth-order Poisson-Nernst-Planck-Bikerman (4PNPBik) model which generalizes the traditional model by including ionic interactions between ions and their surrounding medium and non-ionic interactions between particles due to their finite size. Governing equations are solved numerically using the immersed boundary-lattice Boltzmann method (IB-LBM). The mathematical model has been validated by comparing analytical and experimental ion activity. The SARS-CoV-1 E protein ion channel is found to be more permeable to cationic ions, while the SARS-CoV-2 E protein has similar selectivity for both cationic and anionic species. For SARS-CoV-2, an increase in the bath concentration results in an increase in the binding ratio for sodium ions. Furthermore, the chloride binding ratio increases as the concentration gradient increases. A potential gradient has a minimal effect on the binding ratio. The SARS-CoV-2 E protein was found to support higher ionic currents than the SARS-CoV-1 E protein. Furthermore, the ionic current increased with increasing bath concentrations.
Collapse
Affiliation(s)
- Kumar Saurabh
- Department of Engineering Science and Ocean Engineering, National Taiwan University, Taipei, Taiwan 10617.
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan, Taiwan 35053.
- NTU High Performance and Scientific Computing Center, National Taiwan University, Taipei, Taiwan 10617
| | - Maxim Solovchuk
- Department of Engineering Science and Ocean Engineering, National Taiwan University, Taipei, Taiwan 10617.
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan, Taiwan 35053.
- Tissue Engineering and Regenerative Medicine, National Chung Hsing University, Taichung, Taiwan 40227
| | - Tony Wen-Hann Sheu
- Department of Engineering Science and Ocean Engineering, National Taiwan University, Taipei, Taiwan 10617.
- NTU High Performance and Scientific Computing Center, National Taiwan University, Taipei, Taiwan 10617
- Center for Advanced Study in Theoretical Sciences (CASTS), National Taiwan University, Taipei, Taiwan 10617
| |
Collapse
|
16
|
Schmid S, Stömmer P, Dietz H, Dekker C. Nanopore electro-osmotic trap for the label-free study of single proteins and their conformations. NATURE NANOTECHNOLOGY 2021; 16:1244-1250. [PMID: 34462599 DOI: 10.1038/s41565-021-00958-5] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 07/12/2021] [Indexed: 06/13/2023]
Abstract
Many strategies have been pursued to trap and monitor single proteins over time to detect the molecular mechanisms of these essential nanomachines. Single-protein sensing with nanopores is particularly attractive because it allows label-free high-bandwidth detection on the basis of ion currents. Here we present the nanopore electro-osmotic trap (NEOtrap) that allows trapping and observing single proteins for hours with submillisecond time resolution. The NEOtrap is formed by docking a DNA-origami sphere onto a passivated solid-state nanopore, which seals off a nanocavity of a user-defined size and creates an electro-osmotic flow that traps nearby particles irrespective of their charge. We demonstrate the NEOtrap's ability to sensitively distinguish proteins on the basis of size and shape, and discriminate between nucleotide-dependent protein conformations, as exemplified by the chaperone protein Hsp90. Given the experimental simplicity and capacity for label-free single-protein detection over the broad bio-relevant time range, the NEOtrap opens new avenues to study the molecular kinetics underlying protein function.
Collapse
Affiliation(s)
- Sonja Schmid
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands
- NanoDynamicsLab, Laboratory of Biophysics, Wageningen University, Wageningen, The Netherlands
| | - Pierre Stömmer
- Physik Department, Technische Universität München, Garching near Munich, Germany
| | - Hendrik Dietz
- Physik Department, Technische Universität München, Garching near Munich, Germany
| | - Cees Dekker
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands.
| |
Collapse
|
17
|
Lucas FLR, Piso TRC, van der Heide NJ, Galenkamp NS, Hermans J, Wloka C, Maglia G. Automated Electrical Quantification of Vitamin B1 in a Bodily Fluid using an Engineered Nanopore Sensor. Angew Chem Int Ed Engl 2021; 60:22849-22855. [PMID: 34390104 PMCID: PMC8518494 DOI: 10.1002/anie.202107807] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/20/2021] [Indexed: 12/27/2022]
Abstract
The ability to measure the concentration of metabolites in biological samples is important, both in the clinic and for home diagnostics. Here we present a nanopore-based biosensor and automated data analysis for quantification of thiamine in urine in less than a minute, without the need for recalibration. For this we use the Cytolysin A nanopore and equip it with an engineered periplasmic thiamine binding protein (TbpA). To allow fast measurements we tuned the affinity of TbpA for thiamine by redesigning the π-π stacking interactions between the thiazole group of thiamine and TbpA. This substitution resulted furthermore in a marked difference between unbound and bound state, allowing the reliable discrimination of thiamine from its two phosphorylated forms by residual current only. Using an array of nanopores, this will allow the quantification within seconds, paving the way for next-generation single-molecule metabolite detection systems.
Collapse
Affiliation(s)
- Florian Leonardus Rudolfus Lucas
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, 9747, AG Groningen, Netherlands
| | - Tjemme Rinze Cornelis Piso
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, 9747, AG Groningen, Netherlands
| | - Nieck Jordy van der Heide
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, 9747, AG Groningen, Netherlands
| | - Nicole Stéphanie Galenkamp
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, 9747, AG Groningen, Netherlands
| | - Jos Hermans
- Analytical Biochemistry, Department of Pharmacy, University of Groningen, Antonius Deusinglaan 1, Groningen, 9713, AV, The Netherlands
| | - Carsten Wloka
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, 9747, AG Groningen, Netherlands
| | - Giovanni Maglia
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, 9747, AG Groningen, Netherlands
| |
Collapse
|
18
|
Lucas FLR, Piso TRC, Heide NJ, Galenkamp NS, Hermans J, Wloka C, Maglia G. Automated Electrical Quantification of Vitamin B1 in a Bodily Fluid using an Engineered Nanopore Sensor. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
| | - Tjemme Rinze Cornelis Piso
- Groningen Biomolecular Sciences and Biotechnology Institute University of Groningen Groningen 9747 AG Groningen Netherlands
| | - Nieck Jordy Heide
- Groningen Biomolecular Sciences and Biotechnology Institute University of Groningen Groningen 9747 AG Groningen Netherlands
| | - Nicole Stéphanie Galenkamp
- Groningen Biomolecular Sciences and Biotechnology Institute University of Groningen Groningen 9747 AG Groningen Netherlands
| | - Jos Hermans
- Analytical Biochemistry Department of Pharmacy University of Groningen Antonius Deusinglaan 1 Groningen 9713 AV The Netherlands
| | - Carsten Wloka
- Groningen Biomolecular Sciences and Biotechnology Institute University of Groningen Groningen 9747 AG Groningen Netherlands
| | - Giovanni Maglia
- Groningen Biomolecular Sciences and Biotechnology Institute University of Groningen Groningen 9747 AG Groningen Netherlands
| |
Collapse
|
19
|
Nanopores: a versatile tool to study protein dynamics. Essays Biochem 2021; 65:93-107. [PMID: 33296461 DOI: 10.1042/ebc20200020] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 12/15/2022]
Abstract
Proteins are the active workhorses in our body. These biomolecules perform all vital cellular functions from DNA replication and general biosynthesis to metabolic signaling and environmental sensing. While static 3D structures are now readily available, observing the functional cycle of proteins - involving conformational changes and interactions - remains very challenging, e.g., due to ensemble averaging. However, time-resolved information is crucial to gain a mechanistic understanding of protein function. Single-molecule techniques such as FRET and force spectroscopies provide answers but can be limited by the required labelling, a narrow time bandwidth, and more. Here, we describe electrical nanopore detection as a tool for probing protein dynamics. With a time bandwidth ranging from microseconds to hours, nanopore experiments cover an exceptionally wide range of timescales that is very relevant for protein function. First, we discuss the working principle of label-free nanopore experiments, various pore designs, instrumentation, and the characteristics of nanopore signals. In the second part, we review a few nanopore experiments that solved research questions in protein science, and we compare nanopores to other single-molecule techniques. We hope to make electrical nanopore sensing more accessible to the biochemical community, and to inspire new creative solutions to resolve a variety of protein dynamics - one molecule at a time.
Collapse
|
20
|
Abstract
This work is aimed to give an electrochemical insight into the ionic transport phenomena in the cellular environment of organized brain tissue. The Nernst–Planck–Poisson (NPP) model is presented, and its applications in the description of electrodiffusion phenomena relevant in nanoscale neurophysiology are reviewed. These phenomena include: the signal propagation in neurons, the liquid junction potential in extracellular space, electrochemical transport in ion channels, the electrical potential distortions invisible to patch-clamp technique, and calcium transport through mitochondrial membrane. The limitations, as well as the extensions of the NPP model that allow us to overcome these limitations, are also discussed.
Collapse
|
21
|
Wloka C, Galenkamp NS, van der Heide NJ, Lucas FLR, Maglia G. Strategies for enzymological studies and measurements of biological molecules with the cytolysin A nanopore. Methods Enzymol 2021; 649:567-585. [PMID: 33712200 DOI: 10.1016/bs.mie.2021.01.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Pore-forming toxins are used in a variety of biotechnological applications. Typically, individual membrane proteins are reconstituted in artificial lipid bilayers where they form water-filled nanoscale apertures (nanopores). When a voltage is applied, the ionic current passing through a nanopore can be used for example to sequence biopolymers, identify molecules, or to study chemical or enzymatic reactions at the single-molecule level. Here we present strategies for studying individual enzymes and measuring molecules, also in highly complex biological samples such as blood.
Collapse
Affiliation(s)
- Carsten Wloka
- Groningen Biomolecular Sciences & Biotechnology Institute, University of Groningen, Groningen, The Netherlands.
| | - Nicole S Galenkamp
- Groningen Biomolecular Sciences & Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Nieck J van der Heide
- Groningen Biomolecular Sciences & Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Florian L R Lucas
- Groningen Biomolecular Sciences & Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Giovanni Maglia
- Groningen Biomolecular Sciences & Biotechnology Institute, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
22
|
Johnstone BA, Christie MP, Morton CJ, Parker MW. X-ray crystallography shines a light on pore-forming toxins. Methods Enzymol 2021; 649:1-46. [PMID: 33712183 DOI: 10.1016/bs.mie.2021.01.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
A common form of cellular attack by pathogenic bacteria is to secrete pore-forming toxins (PFTs). Capable of forming transmembrane pores in various biological membranes, PFTs have also been identified in a diverse range of other organisms such as sea anemones, earthworms and even mushrooms and trees. The mechanism of pore formation by PFTs is associated with substantial conformational changes in going from the water-soluble to transmembrane states of the protein. The determination of the crystal structures for numerous PFTs has shed much light on our understanding of these proteins. Other than elucidating the atomic structural details of PFTs and the conformational changes that must occur for pore formation, crystal structures have revealed structural homology that has led to the discovery of new PFTs and new PFT families. Here we review some key crystallographic results together with complimentary approaches for studying PFTs. We discuss how these studies have impacted our understanding of PFT function and guided research into biotechnical applications.
Collapse
Affiliation(s)
- Bronte A Johnstone
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Michelle P Christie
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Craig J Morton
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Michael W Parker
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia; St. Vincent's Institute of Medical Research, Fitzroy, VIC, Australia.
| |
Collapse
|
23
|
Bayoumi M, Nomidis SK, Willems K, Carlon E, Maglia G. Autonomous and Active Transport Operated by an Entropic DNA Piston. NANO LETTERS 2021; 21:762-768. [PMID: 33342212 PMCID: PMC7809690 DOI: 10.1021/acs.nanolett.0c04464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
We present a synthetic nanoscale piston that uses chemical energy to perform molecular transport against an applied bias. Such a device comprises a 13 by 5 nm protein cylinder, embedded in a biological membrane enclosing a single-stranded DNA (ssDNA) rod. Hybridization with DNA cargo rigidifies the rod, allowing for transport of a selected DNA molecule across the nanopore. A strand displacement reaction from ssDNA fuel on the other side of the membrane then liberates the DNA cargo back into solution and regenerates the initial configuration. The entropic penalty of ssDNA confinement inside the nanopore drives DNA transport regardless of the applied bias. Multiple automated and reciprocating cycles are observed, in which the DNA piston moves through the 10 nm length of the nanopore. In every cycle, a single DNA molecule is transported across the nanopore against an external bias force, which is the hallmark of biological transporters.
Collapse
Affiliation(s)
- Mariam Bayoumi
- Department
of Chemistry, KU Leuven, Celestijnenlaan 200G, Leuven 3001, Belgium
- Center for
Brain & Disease Research, VIB-KU Leuven, Leuven 3000, Belgium
| | - Stefanos K. Nomidis
- Flemish
Institute for Technological Research (VITO), Boeretang 200, Mol B-2400, Belgium
- KU Leuven, Soft Matter and Biophysics Unit,
Department of Physics
and Astronomy, Celestijnenlaan
200D, 3001 Leuven, Belgium
| | | | - Enrico Carlon
- KU Leuven, Soft Matter and Biophysics Unit,
Department of Physics
and Astronomy, Celestijnenlaan
200D, 3001 Leuven, Belgium
| | - Giovanni Maglia
- Groningen
Biomolecular Sciences & Biotechnology Institute, University of Groningen, Groningen 9747 AG , The Netherlands
- Department
of Chemistry, KU Leuven, Celestijnenlaan 200G, Leuven 3001, Belgium
| |
Collapse
|
24
|
Chinappi M, Yamaji M, Kawano R, Cecconi F. Analytical Model for Particle Capture in Nanopores Elucidates Competition among Electrophoresis, Electroosmosis, and Dielectrophoresis. ACS NANO 2020; 14:15816-15828. [PMID: 33170650 PMCID: PMC8016366 DOI: 10.1021/acsnano.0c06981] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 11/02/2020] [Indexed: 05/15/2023]
Abstract
The interaction between nanoparticles dispersed in a fluid and nanopores is governed by the interplay of hydrodynamical, electrical, and chemical effects. We developed a theory for particle capture in nanopores and derived analytical expressions for the capture rate under the concurrent action of electrical forces, fluid advection, and Brownian motion. Our approach naturally splits the average capture time in two terms, an approaching time due to the migration of particles from the bulk to the pore mouth and an entrance time associated with a free-energy barrier at the pore entrance. Within this theoretical framework, we described the standard experimental condition where a particle concentration is driven into the pore by an applied voltage, with specific focus on different capture mechanisms: under pure electrophoretic force, in the presence of a competition between electrophoresis and electroosmosis, and finally under dielectrophoretic reorientation of dipolar particles. Our theory predicts that dielectrophoresis is able to induce capture for both positive and negative voltages. We performed a dedicated experiment involving a biological nanopore (α-hemolysin) and a rigid dipolar dumbbell (realized with a β-hairpin peptide) that confirms the theoretically proposed capture mechanism.
Collapse
Affiliation(s)
- Mauro Chinappi
- Dipartimento
di Ingegneria Industriale, Università
di Roma Tor Vergata, Via del Politecnico 1, 00133 Rome, Italy
| | - Misa Yamaji
- Department
of Biotechnology and Life Science, Tokyo
University of Agriculture and Technology, Tokyo 184-8588, Japan
| | - Ryuji Kawano
- Department
of Biotechnology and Life Science, Tokyo
University of Agriculture and Technology, Tokyo 184-8588, Japan
| | - Fabio Cecconi
- CNR-Istituto
dei Sistemi Complessi, Via dei Taurini 19, I-00185 Rome, Italy
| |
Collapse
|