1
|
Galdino FE, Rabelo RS, Scarpa I, Yoneda JS, Consonni SR, Paes Leme AF, Smith AM, Harkiolaki M, Cardoso MB. Internalization and Cellular Fate of Protein Corona-Coated Nanoparticles by Multimodal Multi-Scale Microscopy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2409065. [PMID: 39648571 DOI: 10.1002/smll.202409065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/25/2024] [Indexed: 12/10/2024]
Abstract
Upon exposure to biological environments, nanoparticles are rapidly coated with biomolecules, predominantly proteins, which alter their colloidal stability, biodistribution, and cell interactions. Despite extensive efforts to investigate the nanoparticles' fate, only a few studies use high-resolution characterization methods that allow in-depth characterization, and the existing methodologies are unable to differentiate particles internalized at the onset of incubation from those taken up toward the end of an incubation period. In this study, these limitations related to incubation disparities are overcame and precisely monitored the spatiotemporal displacement of colloidally stable protein corona-coated nanoparticles within cells. An unprecedented application of cryogenic X-ray nanotomography, combined with high-resolution, super-resolution, and correlative microscopy techniques, revealed the migration of nanoparticles to the perinuclear region while monitoring the evolution of cellular organelles in fully hydrated cells under near-native conditions, without the need for contrasting agents. Notably, this tracking indicates the progressive fusion of vesicles carrying the nanoparticles intracellularly. This strategy demonstrates the potential for uncovering the temporal aspects of nanoparticle behavior within cells and can be adaptable to a wide range of nanoparticles and cell types, offering a versatile and powerful tool to follow nanoparticles in cellular environments.
Collapse
Affiliation(s)
- Flávia E Galdino
- Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, 13083-970, Brazil
- Institute of Chemistry, University of Campinas (UNICAMP), Campinas, São Paulo, 13083-970, Brazil
| | - Renata S Rabelo
- Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, 13083-970, Brazil
| | - Isabella Scarpa
- Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, 13083-970, Brazil
- "Gleb Wataghin" Institute of Physics, University of Campinas (UNICAMP), Campinas, São Paulo, 13083-970, Brazil
| | - Juliana S Yoneda
- Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, 13083-970, Brazil
| | - Sílvio R Consonni
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, 13083-970, Brazil
| | - Adriana F Paes Leme
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, 13083-970, Brazil
| | - Andrew M Smith
- Department of Bioengineering and Department of Materials Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Maria Harkiolaki
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0DE, UK
| | - Mateus B Cardoso
- Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, 13083-970, Brazil
- Institute of Chemistry, University of Campinas (UNICAMP), Campinas, São Paulo, 13083-970, Brazil
- "Gleb Wataghin" Institute of Physics, University of Campinas (UNICAMP), Campinas, São Paulo, 13083-970, Brazil
| |
Collapse
|
2
|
Wang J, Xu Y, Zhou Y, Zhang J, Jia J, Jiao P, Liu Y, Su G. Modulating the toxicity of engineered nanoparticles by controlling protein corona formation: Recent advances and future prospects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169590. [PMID: 38154635 DOI: 10.1016/j.scitotenv.2023.169590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/11/2023] [Accepted: 12/17/2023] [Indexed: 12/30/2023]
Abstract
With the rapid development and widespread application of engineered nanoparticles (ENPs), understanding the fundamental interactions between ENPs and biological systems is essential to assess and predict the fate of ENPs in vivo. When ENPs are exposed to complex physiological environments, biomolecules quickly and inevitably adsorb to ENPs to form a biomolecule corona, such as a protein corona (PC). The formed PC has a significant effect on the physicochemical properties of ENPs and gives them a brand new identity in the biological environment, which determines the subsequent ENP-cell/tissue/organ interactions. Controlling the formation of PCs is therefore of utmost importance to accurately predict and optimize the behavior of ENPs within living organisms, as well as ensure the safety of their applications. In this review, we provide an overview of the fundamental aspects of the PC, including the formation mechanism, composition, and frequently used characterization techniques. We comprehensively discuss the potential impact of the PC on ENP toxicity, including cytotoxicity, immune response, and so on. Additionally, we summarize recent advancements in manipulating PC formation on ENPs to achieve the desired biological outcomes. We further discuss the challenges and prospects, aiming to provide valuable insights for a better understanding and prediction of ENP behaviors in vivo, as well as the development of low-toxicity ENPs.
Collapse
Affiliation(s)
- Jiali Wang
- School of Pharmacy, Nantong University, Nantong 226019, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
| | - Yuhang Xu
- School of Pharmacy, Nantong University, Nantong 226019, China
| | - Yun Zhou
- School of Pharmacy, Nantong University, Nantong 226019, China
| | - Jian Zhang
- Digestive Diseases Center, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 510001, China; Center for Gastrointestinal Surgery, the First Affiliated Hospital, Sun Yat-sen University, 510001 Guangzhou, China
| | - Jianbo Jia
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Peifu Jiao
- School of Chemistry and Chemical Engineering, Qilu Normal University, Jinan 250200, China
| | - Yin Liu
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China.
| | - Gaoxing Su
- School of Pharmacy, Nantong University, Nantong 226019, China.
| |
Collapse
|
3
|
Gahtori P, Gunwant V, Pandey R. How Does pH Affect the Adsorption of Human Serum Protein in the Presence of Hydrophobic and Hydrophilic Nanoparticles at Air-Water and Lipid-Water Interfaces? LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:15487-15498. [PMID: 37878019 DOI: 10.1021/acs.langmuir.3c01755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
This study investigates interaction between hydrophilic (11-mercaptoundecanoic acid (MUA)) and hydrophobic (1-undecanethiol (UDT)) gold nanoparticles (GNPs) with human serum albumin (HSA) protein on air-water and lipid-water interfaces at pH 3 and 7. Vibrational sum frequency generation (VSFG) spectroscopy is used to analyze changes in the intensity of interfacial water molecules and the C-H group of the protein. At the air-water interface, the hydrophobic interaction between the HSA protein and hydrophobic GNPs at pH 3 leads to their accumulation at the interface, resulting in an increased C-H intensity of the protein with a slight decrease in water intensity. Whereas, at pH 7, where the negative charge of the protein results in the reduced surface activity of the HSA compared to pH 3, the interaction between alkyl chain of the hydrophobic GNPs and alkyl group of the protein results in the adsorption of the protein-capped GNPs at the interface. This leads to an increased intensity of the C-H group of protein and water molecules. However, negatively charged hydrophilic GNPs do not induce significant changes in the interfacial water structure or the C-H group of the protein due to the electrostatic force of repulsion with the negatively charged HSA at pH 7. In contrast, at the lipid-water interface, both hydrophobic and hydrophilic GNPs interact with HSA protein, causing disordering of interfacial water molecules at pH 3 and ordering at pH 7. Interestingly, similar behavior of the protein with both types of GNPs results in comparable ordering/disordering at the interface depending on the pH of solution. Furthermore, the VSFG results obtained with the deuterated lipid suggest that changes in ordering and disorder occur due to increased protein adsorption in the presence of GNPs, causing alterations in the membrane structure. These findings give a better understanding of the mechanisms that govern protein-nanoparticle interaction and their consequential effects on the structure, function, and behavior of molecules at the biological membrane interface, which is crucial for developing safe and effective nanoparticle-based therapeutics.
Collapse
Affiliation(s)
- Preeti Gahtori
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Vineet Gunwant
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Ravindra Pandey
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| |
Collapse
|
4
|
Feng Y, Kochovski Z, Arenz C, Lu Y, Kneipp J. Structure and Interaction of Ceramide-Containing Liposomes with Gold Nanoparticles as Characterized by SERS and Cryo-EM. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2022; 126:13237-13246. [PMID: 35983312 PMCID: PMC9377338 DOI: 10.1021/acs.jpcc.2c01930] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 06/15/2022] [Indexed: 06/15/2023]
Abstract
Due to the great potential of surface-enhanced Raman scattering (SERS) as local vibrational probe of lipid-nanostructure interaction in lipid bilayers, it is important to characterize these interactions in detail. The interpretation of SERS data of lipids in living cells requires an understanding of how the molecules interact with gold nanostructures and how intermolecular interactions influence the proximity and contact between lipids and nanoparticles. Ceramide, a sphingolipid that acts as important structural component and regulator of biological function, therefore of interest to probing, lacks a phosphocholine head group that is common to many lipids used in liposome models. SERS spectra of liposomes of a mixture of ceramide, phosphatidic acid, and phosphatidylcholine, as well as of pure ceramide and of the phospholipid mixture are reported. Distinct groups of SERS spectra represent varied contributions of the choline, sphingosine, and phosphate head groups and the structures of the acyl chains. Spectral bands related to the state of order of the membrane and moreover to the amide function of the sphingosine head groups indicate that the gold nanoparticles interact with molecules involved in different intermolecular relations. While cryogenic electron microscopy shows the formation of bilayer liposomes in all preparations, pure ceramide was found to also form supramolecular, concentric stacked and densely packed lamellar, nonliposomal structures. That the formation of such supramolecular assemblies supports the intermolecular interactions of ceramide is indicated by the SERS data. The unique spectral features that are assigned to the ceramide-containing lipid model systems here enable an identification of these molecules in biological systems and allow us to obtain information on their structure and interaction by SERS.
Collapse
Affiliation(s)
- Yiqing Feng
- Department
of Chemistry, Humboldt-Universität
zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany
- Einstein
Center of Catalysis (EC2/BIG-NSE), Technische
Universität Berlin, Marchstraße 6-8, 10587 Berlin, Germany
| | - Zdravko Kochovski
- Department
of Electrochemical Energy Storage, Helmholtz-Zentrum
Berlin für Materialien und Energie, 14109 Berlin, Germany
| | - Christoph Arenz
- Department
of Chemistry, Humboldt-Universität
zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany
| | - Yan Lu
- Department
of Electrochemical Energy Storage, Helmholtz-Zentrum
Berlin für Materialien und Energie, 14109 Berlin, Germany
- Institute
of Chemistry, University of Potsdam, 14467 Potsdam, Germany
| | - Janina Kneipp
- Department
of Chemistry, Humboldt-Universität
zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany
| |
Collapse
|
5
|
Yan C, Gu J, Zhang Y, Ma K, Lee RJ. Efficient delivery of the Bcl-2 antisense oligonucleotide G3139 via nucleus-targeted aCD33-NKSN nanoparticles. Int J Pharm 2022; 625:122074. [PMID: 35932928 DOI: 10.1016/j.ijpharm.2022.122074] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 07/06/2022] [Accepted: 07/31/2022] [Indexed: 10/16/2022]
Abstract
G3139 is an antisense oligodeoxyribonucleotide (ODN) developed as a Bcl-2 down-regulating agent for the treatment of acute myelogenous leukemia (AML). However, the clinical efficacy of G3139 has been shown to be limited due to its rapid plasma clearance and low permeability. To enhance the effective delivery of G3139, this work prepared a novel nano gene delivery vector (aCD33-NKSN) consisting of a CD33 antigbody (aCD33), a nuclear localization signal (NLS), gene fusion peptides (KALA), and stearic acid (SA) for CD33 antigen targeting and nuclear localization. The aCD33-NKSN/G3139 nanoparticles were spherical and uniformly sized with a positive charge and sustained release. They had an excellent G3139 loading capacity and colloidal stability. The aCD33-NKSN/G3139 delivered G3139 into the nucleus of Kasumi-1 cells and aCD33-NKSN/G3139 could more effectively inhibited Bcl-2 expression and induced apoptosis in Kasumi-1 cells versus free G3139. The aCD33-NKSN/G3139 administration was more effective at inhibiting tumor growth, and significantly prolonged the survival time of mice in contrast to free G3139. The results illustrate that aCD33-NKSN/G3139 nanoparticles could improve the antitumor activity of encapsulated G3139 due to aCD33 targeting and the ability to perform nuclear localization, The results offer a promising clinical application potential for the treatment of acute myeloid leukemia.
Collapse
Affiliation(s)
- Chengyun Yan
- College of Pharmacy, Guilin Medical University, Guilin 541199, China.
| | - Jiwei Gu
- First Affiliated Hospital of Jiamusi University, Jiamusi of University, Jiamusi 154003, China
| | - Yuan Zhang
- College of Pharmacy, Guilin Medical University, Guilin 541199, China
| | - Kailun Ma
- College of Pharmacy, Guilin Medical University, Guilin 541199, China
| | - Robert J Lee
- Division of Pharmaceutics, College of Pharmacy, The Ohio State University, Columbus 43210, USA
| |
Collapse
|
6
|
Zou W, Zhao C, Zhang X, Jin C, Jiang K, Zhou Q. Mitigation Effects and Associated Mechanisms of Environmentally Relevant Thiols on the Phytotoxicity of Molybdenum Disulfide Nanosheets. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:9556-9568. [PMID: 35576172 DOI: 10.1021/acs.est.1c08534] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Thorough investigations of the environmental fate and risks are necessary for the safe application of engineered nanomaterials. Nevertheless, the current understanding of potential transformations of MoS2 (an intensively studied two-dimensional nanosheet) upon interactions with ubiquitous environmentally relevant thiols (ERTs) in water is limited. This study revealed that two ERTs, l-cysteine and mercaptoacetic acid, could modify MoS2 by covalently grafting thiol groups on S atoms of 1T phases, improving the colloidal persistence and chemical stability of MoS2. Compared with the pristine form, MoS2-thiols with higher dispersity exhibited significantly mitigated envelopment and ultrastructural damage to microalgae. MoS2-triggered growth inhibition, upregulation of reactive oxygen species, photosynthetic injury, and metabolic perturbation in algae were remarkably attenuated by ERTs. The diminished capability for MoS2 to generate reactive intermediates and glutathione oxidation driven by ERTs caused the weakness of oxidative stress and negative effects. Additionally, molecular dynamics simulations demonstrated that ERTs altered the extent of the influence of MoS2 on the secondary structures and functions of adsorbed intracellular proteins, which also contributed to the lower phytotoxicity of MoS2. Our findings provide evidence for the crucial role of specific organic ligands in the risk of MoS2 in aquatic environments.
Collapse
Affiliation(s)
- Wei Zou
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Normal University, Xinxiang 453007, China
| | - Chenxu Zhao
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Normal University, Xinxiang 453007, China
| | - Xingli Zhang
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Normal University, Xinxiang 453007, China
| | - Caixia Jin
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Normal University, Xinxiang 453007, China
| | - Kai Jiang
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Normal University, Xinxiang 453007, China
| | - Qixing Zhou
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
7
|
Vanslembrouck B, Chen JH, Larabell C, van Hengel J. Microscopic Visualization of Cell-Cell Adhesion Complexes at Micro and Nanoscale. Front Cell Dev Biol 2022; 10:819534. [PMID: 35517500 PMCID: PMC9065677 DOI: 10.3389/fcell.2022.819534] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 03/21/2022] [Indexed: 12/25/2022] Open
Abstract
Considerable progress has been made in our knowledge of the morphological and functional varieties of anchoring junctions. Cell-cell adhesion contacts consist of discrete junctional structures responsible for the mechanical coupling of cytoskeletons and allow the transmission of mechanical signals across the cell collective. The three main adhesion complexes are adherens junctions, tight junctions, and desmosomes. Microscopy has played a fundamental role in understanding these adhesion complexes on different levels in both physiological and pathological conditions. In this review, we discuss the main light and electron microscopy techniques used to unravel the structure and composition of the three cell-cell contacts in epithelial and endothelial cells. It functions as a guide to pick the appropriate imaging technique(s) for the adhesion complexes of interest. We also point out the latest techniques that have emerged. At the end, we discuss the problems investigators encounter during their cell-cell adhesion research using microscopic techniques.
Collapse
Affiliation(s)
- Bieke Vanslembrouck
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
- Department of Anatomy, University of San Francisco, San Francisco, CA, United States
- *Correspondence: Bieke Vanslembrouck, ; Jolanda van Hengel,
| | - Jian-hua Chen
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
- Department of Anatomy, University of San Francisco, San Francisco, CA, United States
| | - Carolyn Larabell
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
- Department of Anatomy, University of San Francisco, San Francisco, CA, United States
| | - Jolanda van Hengel
- Medical Cell Biology Research Group, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- *Correspondence: Bieke Vanslembrouck, ; Jolanda van Hengel,
| |
Collapse
|
8
|
Spedalieri C, Kneipp J. Surface enhanced Raman scattering for probing cellular biochemistry. NANOSCALE 2022; 14:5314-5328. [PMID: 35315478 PMCID: PMC8988265 DOI: 10.1039/d2nr00449f] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 03/15/2022] [Indexed: 06/12/2023]
Abstract
Surface enhanced Raman scattering (SERS) from biomolecules in living cells enables the sensitive, but also very selective, probing of their biochemical composition. This minireview discusses the developments of SERS probing in cells over the past years from the proof-of-principle to observe a biochemical status to the characterization of molecule-nanostructure and molecule-molecule interactions and cellular processes that involve a wide variety of biomolecules and cellular compartments. Progress in applying SERS as a bioanalytical tool in living cells, to gain a better understanding of cellular physiology and to harness the selectivity of SERS, has been achieved by a combination of live cell SERS with several different approaches. They range from organelle targeting, spectroscopy of relevant molecular models, and the optimization of plasmonic nanostructures to the application of machine learning and help us to unify the information from defined biomolecules and from the cell as an extremely complex system.
Collapse
Affiliation(s)
- Cecilia Spedalieri
- Humboldt-Universität zu Berlin, Department of Chemistry, Brook-Taylor-Str. 2, 12489 Berlin, Germany.
| | - Janina Kneipp
- Humboldt-Universität zu Berlin, Department of Chemistry, Brook-Taylor-Str. 2, 12489 Berlin, Germany.
| |
Collapse
|
9
|
Wang X, Zhang W. The Janus of Protein Corona on nanoparticles for tumor targeting, immunotherapy and diagnosis. J Control Release 2022; 345:832-850. [PMID: 35367478 DOI: 10.1016/j.jconrel.2022.03.056] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 12/11/2022]
Abstract
The therapeutics based on nanoparticles (NPs) are considered as the promising strategy for tumor detection and treatment. However, one of the most challenges is the adsorption of biomolecules on NPs after their exposition to biological medium, leading unpredictable in vivo behaviors. The interactions caused by protein corona (PC) will influence the biological fate of NPs in either negative or positive ways, including (i) blood circulation, accumulation and penetration of NPs at targeting sites, and further cellular uptake in tumor targeting delivery; (ii) interactions between NPs and receptors on immune cells for immunotherapy. Besides, PC on NPs could be utilized as new biomarker in tumor diagnosis by identifying the minor change of protein concentration led by tumor growth and invasion in blood. Herein, the mechanisms of these PC-mediated effects will be introduced. Moreover, the recent advances about the strategies will be reviewed to reduce negative effects caused by PC and/or utilize positive effects of PC on tumor targeting, immunotherapy and diagnosis, aiming to provide a reasonable perspective to recognize PC with their applications.
Collapse
Affiliation(s)
- Xiaobo Wang
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Wenli Zhang
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China.
| |
Collapse
|
10
|
Kenry, Eschle BK, Andreiuk B, Gokhale PC, Mitragotri S. Differential Macrophage Responses to Gold Nanostars and Their Implication for Cancer Immunotherapy. ADVANCED THERAPEUTICS 2022. [DOI: 10.1002/adtp.202100198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Kenry
- Harvard John A. Paulson School of Engineering and Applied Sciences Harvard University Cambridge MA 02138 USA
- Department of Imaging Dana‐Farber Cancer Institute and Harvard Medical School Boston MA 02215 USA
| | - Benjamin K. Eschle
- Experimental Therapeutics Core and Belfer Center for Applied Cancer Science Dana‐Farber Cancer Institute Boston MA 02215 USA
| | - Bohdan Andreiuk
- Department of Imaging Dana‐Farber Cancer Institute and Harvard Medical School Boston MA 02215 USA
- Department of Cancer Immunology and Virology Dana‐Farber Cancer Institute and Harvard Medical School Boston MA 02215 USA
| | - Prafulla C. Gokhale
- Experimental Therapeutics Core and Belfer Center for Applied Cancer Science Dana‐Farber Cancer Institute Boston MA 02215 USA
| | - Samir Mitragotri
- Harvard John A. Paulson School of Engineering and Applied Sciences Harvard University Cambridge MA 02138 USA
- Wyss Institute for Biologically Inspired Engineering Harvard University Boston MA 02115 USA
| |
Collapse
|
11
|
Drescher D, Büchner T, Schrade P, Traub H, Werner S, Guttmann P, Bachmann S, Kneipp J. Influence of Nuclear Localization Sequences on the Intracellular Fate of Gold Nanoparticles. ACS NANO 2021; 15:14838-14849. [PMID: 34460234 DOI: 10.1021/acsnano.1c04925] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Directing nanoparticles to the nucleus by attachment of nuclear localization sequences (NLS) is an aim in many applications. Gold nanoparticles modified with two different NLS were studied while crossing barriers of intact cells, including uptake, endosomal escape, and nuclear translocation. By imaging of the nanoparticles and by characterization of their molecular interactions with surface-enhanced Raman scattering (SERS), it is shown that nuclear translocation strongly depends on the particular incubation conditions. After an 1 h of incubation followed by a 24 h chase time, 14 nm gold particles carrying an adenoviral NLS are localized in endosomes, in the cytoplasm, and in the nucleus of fibroblast cells. In contrast, the cells display no nanoparticles in the cytoplasm or nucleus when continuously incubated with the nanoparticles for 24 h. The ultrastructural and spectroscopic data indicate different processing of NLS-functionalized particles in endosomes compared to unmodified particles. NLS-functionalized nanoparticles form larger intraendosomal aggregates than unmodified gold nanoparticles. SERS spectra of cells with NLS-functionalized gold nanoparticles contain bands assigned to DNA and were clearly different from those with unmodified gold nanoparticles. The different processing in the presence of an NLS is influenced by a continuous exposure of the cells to nanoparticles and an ongoing nanoparticle uptake. This is supported by mass-spectrometry-based quantification that indicates enhanced uptake of NLS-functionalized nanoparticles compared to unmodified particles under the same conditions. The results contribute to the optimization of nanoparticle analysis in cells in a variety of applications, e.g., in theranostics, biotechnology, and bioanalytics.
Collapse
Affiliation(s)
- Daniela Drescher
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany
| | - Tina Büchner
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany
| | - Petra Schrade
- Core Facility für Elektronenmikroskopie, Charité Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Heike Traub
- Bundesanstalt für Materialforschung und -prüfung (BAM), Richard-Willstätter-Straße 11, 12489 Berlin, Germany
| | - Stephan Werner
- Department of X-ray Microscopy, Helmholtz-Zentrum Berlin für Materialien und Energie, BESSY II, Albert-Einstein-Straße 15, 12489 Berlin, Germany
| | - Peter Guttmann
- Department of X-ray Microscopy, Helmholtz-Zentrum Berlin für Materialien und Energie, BESSY II, Albert-Einstein-Straße 15, 12489 Berlin, Germany
| | - Sebastian Bachmann
- Core Facility für Elektronenmikroskopie, Charité Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
- Department of Anatomy, Charité Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Janina Kneipp
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany
| |
Collapse
|
12
|
Spedalieri C, Szekeres GP, Werner S, Guttmann P, Kneipp J. Probing the Intracellular Bio-Nano Interface in Different Cell Lines with Gold Nanostars. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1183. [PMID: 33946192 PMCID: PMC8145934 DOI: 10.3390/nano11051183] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 02/07/2023]
Abstract
Gold nanostars are a versatile plasmonic nanomaterial with many applications in bioanalysis. Their interactions with animal cells of three different cell lines are studied here at the molecular and ultrastructural level at an early stage of endolysosomal processing. Using the gold nanostars themselves as substrate for surface-enhanced Raman scattering, their protein corona and the molecules in the endolysosomal environment were characterized. Localization, morphology, and size of the nanostar aggregates in the endolysosomal compartment of the cells were probed by cryo soft-X-ray nanotomography. The processing of the nanostars by macrophages of cell line J774 differed greatly from that in the fibroblast cell line 3T3 and in the epithelial cell line HCT-116, and the structure and composition of the biomolecular corona was found to resemble that of spherical gold nanoparticles in the same cells. Data obtained with gold nanostars of varied morphology indicate that the biomolecular interactions at the surface in vivo are influenced by the spike length, with increased interaction with hydrophobic groups of proteins and lipids for longer spike lengths, and independent of the cell line. The results will support optimized nanostar synthesis and delivery for sensing, imaging, and theranostics.
Collapse
Affiliation(s)
- Cecilia Spedalieri
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489 Berlin, Germany; (C.S.); (G.P.S.)
| | - Gergo Péter Szekeres
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489 Berlin, Germany; (C.S.); (G.P.S.)
- School of Analytical Sciences Adlershof, Humboldt-Universität zu Berlin, Albert-Einstein-Str. 5-9, 12489 Berlin, Germany
| | - Stephan Werner
- Department X-ray Microscopy, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Str. 15, 12489 Berlin, Germany; (S.W.); (P.G.)
| | - Peter Guttmann
- Department X-ray Microscopy, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Str. 15, 12489 Berlin, Germany; (S.W.); (P.G.)
| | - Janina Kneipp
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489 Berlin, Germany; (C.S.); (G.P.S.)
- School of Analytical Sciences Adlershof, Humboldt-Universität zu Berlin, Albert-Einstein-Str. 5-9, 12489 Berlin, Germany
| |
Collapse
|
13
|
Bai X, Wang J, Mu Q, Su G. In vivo Protein Corona Formation: Characterizations, Effects on Engineered Nanoparticles' Biobehaviors, and Applications. Front Bioeng Biotechnol 2021; 9:646708. [PMID: 33869157 PMCID: PMC8044820 DOI: 10.3389/fbioe.2021.646708] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 03/16/2021] [Indexed: 12/17/2022] Open
Abstract
Understanding the basic interactions between engineered nanoparticles (ENPs) and biological systems is essential for evaluating ENPs’ safety and developing better nanomedicine. Profound interactions between ENPs and biomolecules such as proteins are inevitable to occur when ENPs are administered or exposed to biological systems, for example, through intravenous injection, oral, or respiration. As a key component of these interactions, protein corona (PC) is immediately formed surrounding the outlayer of ENPs. PC formation is crucial because it gives ENPs a new biological identity by altering not only the physiochemical properties, but also the biobehaviors of ENPs. In the past two decades, most investigations about PC formation were carried out with in vitro systems which could not represent the true events occurring within in vivo systems. Most recently, studies of in vivo PC formation were reported, and it was found that the protein compositions and structures were very different from those formed in vitro. Herein, we provide an in-time review of the recent investigations of this in vivo PC formation of ENPs. In this review, commonly used characterization methods and compositions of in vivo PC are summarized firstly. Next, we highlight the impacts of the in vivo PC formation on absorption, blood circulation, biodistribution, metabolism, and toxicity of administered ENPs. We also introduce the applications of modulating in vivo PC formation in nanomedicine. We further discuss the challenges and future perspectives.
Collapse
Affiliation(s)
- Xue Bai
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jiali Wang
- School of Pharmacy, Nantong University, Nantong, China
| | - Qingxin Mu
- Department of Pharmaceutics, University of Washington, Seattle, WA, United States
| | - Gaoxing Su
- School of Pharmacy, Nantong University, Nantong, China
| |
Collapse
|
14
|
Spedalieri C, Szekeres GP, Werner S, Guttmann P, Kneipp J. Intracellular optical probing with gold nanostars. NANOSCALE 2021; 13:968-979. [PMID: 33367430 DOI: 10.1039/d0nr07031a] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Gold nanostars are important nanoscopic tools in biophotonics and theranostics. To understand the fate of such nanostructures in the endolysosomal system of living cells as an important processing route in biotechnological approaches, un-labelled, non-targeted gold nanostars synthesized using HEPES buffer were studied in two cell lines. The uptake of the gold nanostructures leads to cell line-dependent intra-endolysosomal agglomeration, which results in a greater enhancement of the local optical fields than those around individual nanostars and near aggregates of spherical gold nanoparticles of the same size. As demonstrated by non-resonant surface-enhanced Raman scattering (SERS) spectra in the presence and absence of aggregation, the spectroscopic signals of molecules are of very similar strength over a wide range of concentrations, which is ideal for label-free vibrational characterization of cells and other complex environments. In 3T3 and HCT-116 cells, SERS data were analyzed together with the properties of the intracellular nanostar agglomerates. Vibrational spectra indicate that the processing of nanostars by cells and their interaction with the surrounding endolysosomal compartment is connected to their morphological properties through differences in the structure and interactions in their intracellular protein corona. Specifically, different intracellular processing was found to result from a different extent of hydrophobic interactions at the pristine gold surface, which varies for nanostars of different spike lengths. The sensitive optical monitoring of surroundings of nanostars and their intracellular processing makes them a very useful tool for optical bionanosensing and therapy.
Collapse
Affiliation(s)
- Cecilia Spedalieri
- Humboldt-Universität zu Berlin, Department of Chemistry, Brook-Taylor-Str. 2, 12489 Berlin, Germany.
| | | | | | | | | |
Collapse
|