1
|
Lv H, Zhang Q, Liu J, Si G, Gong Y, Zhong G, Zhang Y, Qiu CW, Ou Q, Yang Y. Tailoring Phonon Polaritons with a Single-Layer Photonics-Empowered Polaritonic Crystal. NANO LETTERS 2025; 25:4946-4953. [PMID: 40079332 DOI: 10.1021/acs.nanolett.5c00281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/15/2025]
Abstract
Photonic crystals (PhCs) are artificial periodic structures that can compress and control light at the nanoscale. Recently, the emerging van der Waals (vdW) materials with extreme anisotropy exhibit exotic hyperbolic phonon resonances and ray-like propagation. However, localization and manipulation of these hyperbolic phonon polaritons (PhPs) in polaritonic crystals (PoCs) on a scale deeply below the polariton wavelength have remained elusive so far. Here, we experimentally demonstrate tailored PhP localization in a single layer PoC of patterned α-MoO3. The biaxial PoCs have a rotation degree of freedom between the lattice orientation and the optical axis of α-MoO3. By tailoring the rotation angle, the bandgap exhibits a transition from open to closed at certain wavelengths. Two-dimensional localization of PhPs in these rotated PoCs have been directly revealed in real space by infrared nanoimaging. Our work provides a robust platform to construct polaritonic cavities for ultrastrong light-matter interactions and nanoscale polariton manipulation.
Collapse
Affiliation(s)
- Haoran Lv
- School of Physics, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Qing Zhang
- School of Physics, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Jingying Liu
- Macao Institute of Materials Science and Engineering (MIMSE), Faculty of Innovation Engineering, Macau University of Science and Technology, Taipa, Macao 999078, China
- Macau University of Science and Technology Zhuhai MUST Science and Technology Research Institute, Zhuhai, 519099, China
| | - Guangyuan Si
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria 3168, Australia
| | - Youning Gong
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Electronics and Information Engineering, Shenzhen University, Shenzhen 518060, China
| | - Gang Zhong
- Macao Institute of Materials Science and Engineering (MIMSE), Faculty of Innovation Engineering, Macau University of Science and Technology, Taipa, Macao 999078, China
| | - Yupeng Zhang
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Electronics and Information Engineering, Shenzhen University, Shenzhen 518060, China
| | - Cheng-Wei Qiu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117583, Singapore
| | - Qingdong Ou
- Macao Institute of Materials Science and Engineering (MIMSE), Faculty of Innovation Engineering, Macau University of Science and Technology, Taipa, Macao 999078, China
- Macau University of Science and Technology Zhuhai MUST Science and Technology Research Institute, Zhuhai, 519099, China
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Yuanjie Yang
- School of Physics, University of Electronic Science and Technology of China, Chengdu 611731, China
| |
Collapse
|
2
|
Ge Z, Zhu S, Xiao W, Chen H. Multiple hyperbolic waves. OPTICS LETTERS 2024; 49:1532-1535. [PMID: 38489443 DOI: 10.1364/ol.513530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/21/2024] [Indexed: 03/17/2024]
Abstract
This study presents a conceptual design for a hyperbolic material utilizing transformation optics. This material is designed to produce multiple hyperbolic wave fields or polaritons excited by a point source. The design dictates key parameters including branch number, propagation range, and overall propagation direction of deflection. Through this approach, the hyperbolic material demonstrates new effects compared to traditional hyperbolic materials. These advancements offer possibilities for the design and applications of photonic devices in other degrees of freedom.
Collapse
|
3
|
Schultz JF, Krylyuk S, Schwartz JJ, Davydov AV, Centrone A. Isotopic effects on in-plane hyperbolic phonon polaritons in MoO 3. NANOPHOTONICS 2024; 13:10.1515/nanoph-2023-0717. [PMID: 38846933 PMCID: PMC11155493 DOI: 10.1515/nanoph-2023-0717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2024]
Abstract
Hyperbolic phonon polaritons (HPhPs), hybrids of light and lattice vibrations in polar dielectric crystals, empower nanophotonic applications by enabling the confinement and manipulation of light at the nanoscale. Molybdenum trioxide (α-MoO3) is a naturally hyperbolic material, meaning that its dielectric function deterministically controls the directional propagation of in-plane HPhPs within its reststrahlen bands. Strategies such as substrate engineering, nano- and heterostructuring, and isotopic enrichment are being developed to alter the intrinsic die ectric functions of natural hyperbolic materials and to control the confinement and propagation of HPhPs. Since isotopic disorder can limit phonon-based processes such as HPhPs, here we synthesize isotopically enriched 92MoO3 (92Mo: 99.93 %) and 100MoO3 (100Mo: 99.01 %) crystals to tune the properties and dispersion of HPhPs with respect to natural α-MoO3, which is composed of seven stable Mo isotopes. Real-space, near-field maps measured with the photothermal induced resonance (PTIR) technique enable comparisons of inplane HPhPs in α-MoO3 and isotopically enriched analogues within a reststrahlen band (≈820 cm-1 to ≈ 972 cm-1). Results show that isotopic enrichment (e.g., 92MoO3 and 100MoO3) alters the dielectric function, shifting the HPhP dispersion (HPhP angular wavenumber × thickness vs IR frequency) by ≈-7% and ≈ +9 %, respectively, and changes the HPhP group velocities by ≈ ±12 %, while the lifetimes (≈ 3 ps) in 92MoO3 were found to be slightly improved (≈ 20 %). The latter improvement is attributed to a decrease in isotopic disorder. Altogether, isotopic enrichment was found to offer fine control over the properties that determine the anisotropic in-plane propagation of HPhPs in α-MoO3, which is essential to its implementation in nanophotonic applications.
Collapse
Affiliation(s)
- Jeremy F. Schultz
- Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - Sergiy Krylyuk
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - Jeffrey J. Schwartz
- Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA; and Department of Electrical and Computer Engineering, University of Maryland, College Park, Maryland 20742, USA
| | - Albert V. Davydov
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - Andrea Centrone
- Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| |
Collapse
|
4
|
Obst M, Nörenberg T, Álvarez-Pérez G, de Oliveira TVAG, Taboada-Gutiérrez J, Feres FH, Kaps FG, Hatem O, Luferau A, Nikitin AY, Klopf JM, Alonso-González P, Kehr SC, Eng LM. Terahertz Twistoptics-Engineering Canalized Phonon Polaritons. ACS NANO 2023; 17:19313-19322. [PMID: 37738305 DOI: 10.1021/acsnano.3c06477] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
The terahertz (THz) frequency range is key to studying collective excitations in many crystals and organic molecules. However, due to the large wavelength of THz radiation, the local probing of these excitations in smaller crystalline structures or few-molecule arrangements requires sophisticated methods to confine THz light down to the nanometer length scale, as well as to manipulate such a confined radiation. For this purpose, in recent years, taking advantage of hyperbolic phonon polaritons (HPhPs) in highly anisotropic van der Waals (vdW) materials has emerged as a promising approach, offering a multitude of manipulation options, such as control over the wavefront shape and propagation direction. Here, we demonstrate the THz application of twist-angle-induced HPhP manipulation, designing the propagation of confined THz radiation between 8.39 and 8.98 THz in the vdW material α-molybdenum trioxide (α-MoO3), hence extending twistoptics to this intriguing frequency range. Our images, recorded by near-field optical microscopy, show the frequency- and twist-angle-dependent changes between hyperbolic and elliptic polariton propagation, revealing a polaritonic transition at THz frequencies. As a result, we are able to allocate canalization (highly collimated propagation) of confined THz radiation by carefully adjusting these two parameters, i.e. frequency and twist angle. Specifically, we report polariton canalization in α-MoO3 at 8.67 THz for a twist angle of 50°. Our results demonstrate the precise control and manipulation of confined collective excitations at THz frequencies, particularly offering possibilities for nanophotonic applications.
Collapse
Affiliation(s)
- Maximilian Obst
- Institut für Angewandte Physik, Technische Universität Dresden, Dresden 01187, Germany
- Würzburg-Dresden Cluster of Excellence - EXC 2147 (ct.qmat), Dresden 01062, Germany
| | - Tobias Nörenberg
- Institut für Angewandte Physik, Technische Universität Dresden, Dresden 01187, Germany
- Würzburg-Dresden Cluster of Excellence - EXC 2147 (ct.qmat), Dresden 01062, Germany
| | - Gonzalo Álvarez-Pérez
- Department of Physics, University of Oviedo, Oviedo 33006, Spain
- Center of Research on Nanomaterials and Nanotechnology CINN (CSIC-Universidad de Oviedo), El Entrego 33940, Spain
| | - Thales V A G de Oliveira
- Institut für Angewandte Physik, Technische Universität Dresden, Dresden 01187, Germany
- Würzburg-Dresden Cluster of Excellence - EXC 2147 (ct.qmat), Dresden 01062, Germany
- Institute of Radiation Physics, Helmholtz-Zentrum Dresden-Rossendorf, Dresden 01328, Germany
| | - Javier Taboada-Gutiérrez
- Department of Quantum Matter Physics, Université de Genève, 24 Quai Ernest Ansermet, CH-1211, Geneva, Switzerland
| | - Flávio H Feres
- Gleb Wataghin Physics Institute, University of Campinas (Unicamp), Campinas, Sao Paulo 13083-859, Brazil
- Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Sao Paulo 13083-100, Brazil
| | - Felix G Kaps
- Institut für Angewandte Physik, Technische Universität Dresden, Dresden 01187, Germany
- Würzburg-Dresden Cluster of Excellence - EXC 2147 (ct.qmat), Dresden 01062, Germany
| | - Osama Hatem
- Institut für Angewandte Physik, Technische Universität Dresden, Dresden 01187, Germany
- Würzburg-Dresden Cluster of Excellence - EXC 2147 (ct.qmat), Dresden 01062, Germany
- Department of Engineering Physics and Mathematics, Faculty of Engineering, Tanta University, Tanta 31511, Egypt
| | - Andrei Luferau
- Institut für Angewandte Physik, Technische Universität Dresden, Dresden 01187, Germany
- Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf, Dresden 01328, Germany
| | - Alexey Y Nikitin
- Donostia International Physics Center (DIPC), Donostia/San Sebastián 20018, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao 48013, Spain
| | - J Michael Klopf
- Institute of Radiation Physics, Helmholtz-Zentrum Dresden-Rossendorf, Dresden 01328, Germany
| | - Pablo Alonso-González
- Department of Physics, University of Oviedo, Oviedo 33006, Spain
- Center of Research on Nanomaterials and Nanotechnology CINN (CSIC-Universidad de Oviedo), El Entrego 33940, Spain
| | - Susanne C Kehr
- Institut für Angewandte Physik, Technische Universität Dresden, Dresden 01187, Germany
- Würzburg-Dresden Cluster of Excellence - EXC 2147 (ct.qmat), Dresden 01062, Germany
| | - Lukas M Eng
- Institut für Angewandte Physik, Technische Universität Dresden, Dresden 01187, Germany
- Würzburg-Dresden Cluster of Excellence - EXC 2147 (ct.qmat), Dresden 01062, Germany
- Collaborative Research Center 1415, Technische Universität Dresden, Dresden 01069, Germany
| |
Collapse
|
5
|
Lv H, Bai Y, Zhang Q, Yang Y. Flatband polaritonic router in twisted bilayer van der Waals materials. OPTICS LETTERS 2023; 48:4073-4076. [PMID: 37527121 DOI: 10.1364/ol.496630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/05/2023] [Indexed: 08/03/2023]
Abstract
In recent years, van der Waals (vdW) polaritons excited by the hybrid of matter and photons have shown great promise for applications in nanoimaging, biosensing, and on-chip light guiding. In particular, polaritons with a flatband dispersion allow for mode canalization and diffractionless propagation, which showcase advantages for on-chip technologies requiring long-range transportation of optical information. Here, we propose a flatband polaritonic router based on twisted α-MoO3 bilayers, which allows for on-chip routing of highly confined and low-loss phonon polaritons (PhPs) along multichannel propagating paths under different circular polarized dipole excitations. Our work combines flatband physics and optical spin- orbit coupling, with potential applications in nanoscale light propagation, on-chip optical switching, and communication.
Collapse
|
6
|
Ni X, Carini G, Ma W, Renzi EM, Galiffi E, Wasserroth S, Wolf M, Li P, Paarmann A, Alù A. Observation of directional leaky polaritons at anisotropic crystal interfaces. Nat Commun 2023; 14:2845. [PMID: 37202412 DOI: 10.1038/s41467-023-38326-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 04/26/2023] [Indexed: 05/20/2023] Open
Abstract
Extreme anisotropy in some polaritonic materials enables light propagation with a hyperbolic dispersion, leading to enhanced light-matter interactions and directional transport. However, these features are typically associated with large momenta that make them sensitive to loss and poorly accessible from far-field, being bound to the material interface or volume-confined in thin films. Here, we demonstrate a new form of directional polaritons, leaky in nature and featuring lenticular dispersion contours that are neither elliptical nor hyperbolic. We show that these interface modes are strongly hybridized with propagating bulk states, sustaining directional, long-range, sub-diffractive propagation at the interface. We observe these features using polariton spectroscopy, far-field probing and near-field imaging, revealing their peculiar dispersion, and - despite their leaky nature - long modal lifetime. Our leaky polaritons (LPs) nontrivially merge sub-diffractive polaritonics with diffractive photonics onto a unified platform, unveiling opportunities that stem from the interplay of extreme anisotropic responses and radiation leakage.
Collapse
Affiliation(s)
- Xiang Ni
- Photonics Initiative, Advanced Science Research Center, City University of New York, New York, NY, 10031, USA
- School of Physics and Electronics, Central South University, Changsha, Hunan, 410083, China
| | - Giulia Carini
- Fritz Haber Institute of the Max Planck Society, Berlin, Germany
| | - Weiliang Ma
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics and Wuhan National high Magnetic Field Center, Huazhong University of Science and Technology, Wuhan, China
| | - Enrico Maria Renzi
- Photonics Initiative, Advanced Science Research Center, City University of New York, New York, NY, 10031, USA
| | - Emanuele Galiffi
- Photonics Initiative, Advanced Science Research Center, City University of New York, New York, NY, 10031, USA
| | - Sören Wasserroth
- Fritz Haber Institute of the Max Planck Society, Berlin, Germany
| | - Martin Wolf
- Fritz Haber Institute of the Max Planck Society, Berlin, Germany
| | - Peining Li
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics and Wuhan National high Magnetic Field Center, Huazhong University of Science and Technology, Wuhan, China.
- Optics Valley Laboratory, Hubei, 430074, China.
| | | | - Andrea Alù
- Photonics Initiative, Advanced Science Research Center, City University of New York, New York, NY, 10031, USA.
- Physics Program, Graduate Center, City University of New York, New York, NY, 10016, USA.
| |
Collapse
|
7
|
Huang W, Folland TG, Sun F, Zheng Z, Xu N, Xing Q, Jiang J, Chen H, Caldwell JD, Yan H, Deng S. In-plane hyperbolic polariton tuners in terahertz and long-wave infrared regimes. Nat Commun 2023; 14:2716. [PMID: 37169788 PMCID: PMC10175486 DOI: 10.1038/s41467-023-38214-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 04/21/2023] [Indexed: 05/13/2023] Open
Abstract
One of the main bottlenecks in the development of terahertz (THz) and long-wave infrared (LWIR) technologies is the limited intrinsic response of traditional materials. Hyperbolic phonon polaritons (HPhPs) of van der Waals semiconductors couple strongly with THz and LWIR radiation. However, the mismatch of photon - polariton momentum makes far-field excitation of HPhPs challenging. Here, we propose an In-Plane Hyperbolic Polariton Tuner that is based on patterning van der Waals semiconductors, here α-MoO3, into ribbon arrays. We demonstrate that such tuners respond directly to far-field excitation and give rise to LWIR and THz resonances with high quality factors up to 300, which are strongly dependent on in-plane hyperbolic polariton of the patterned α-MoO3. We further show that with this tuner, intensity regulation of reflected and transmitted electromagnetic waves, as well as their wavelength and polarization selection can be achieved. Our results can help the development of THz and LWIR miniaturized devices.
Collapse
Affiliation(s)
- Wuchao Huang
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Thomas G Folland
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN, 37235, USA
- Department of Physics and Astronomy, The University of Iowa, Iowa City, IA, 52245, USA
| | - Fengsheng Sun
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Zebo Zheng
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Ningsheng Xu
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510275, China
- The Frontier Institute of Chip and System, Fudan University, Shanghai, 200433, China
| | - Qiaoxia Xing
- State Key Laboratory of Surface Physics, Department of Physics, Key Laboratory of Micro and Nano-Photonic Structures (Ministry of Education), Fudan University, Shanghai, 200433, China
| | - Jingyao Jiang
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Huanjun Chen
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510275, China.
| | - Joshua D Caldwell
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN, 37235, USA.
| | - Hugen Yan
- State Key Laboratory of Surface Physics, Department of Physics, Key Laboratory of Micro and Nano-Photonic Structures (Ministry of Education), Fudan University, Shanghai, 200433, China.
| | - Shaozhi Deng
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510275, China.
| |
Collapse
|
8
|
Matveeva OG, Tresguerres-Mata AIF, Kirtaev RV, Voronin KV, Taboada-Gutiérrez J, Lanza C, Duan J, Martín-Sánchez J, Volkov VS, Alonso-González P, Nikitin AY. Twist-tunable polaritonic nanoresonators in a van der Waals crystal. NPJ 2D MATERIALS AND APPLICATIONS 2023; 7:31. [PMID: 38665481 PMCID: PMC11041695 DOI: 10.1038/s41699-023-00387-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 03/10/2023] [Indexed: 04/28/2024]
Abstract
Optical nanoresonators are key building blocks in various nanotechnological applications (e.g., spectroscopy) due to their ability to effectively confine light at the nanoscale. Recently, nanoresonators based on phonon polaritons (PhPs)-light coupled to lattice vibrations-in polar crystals (e.g., SiC, or h-BN) have attracted much attention due to their strong field confinement, high quality factors, and their potential to enhance the photonic density of states at mid-infrared (mid-IR) frequencies, where numerous molecular vibrations reside. Here, we introduce a new class of mid-IR nanoresonators that not only exhibit the extraordinary properties previously reported, but also incorporate a new degree of freedom: twist tuning, i.e., the possibility of controlling their spectral response by simply rotating the constituent material. To achieve this result, we place a pristine slab of the van der Waals (vdW) α-MoO3 crystal, which supports in-plane hyperbolic PhPs, on an array of metallic ribbons. This sample design based on electromagnetic engineering, not only allows the definition of α-MoO3 nanoresonators with low losses (quality factors, Q, up to 200), but also enables a broad spectral tuning of the polaritonic resonances (up to 32 cm-1, i.e., up to ~6 times their full width at half maximum, FWHM ~5 cm-1) by a simple in-plane rotation of the same slab (from 0 to 45°). These results open the door to the development of tunable and low-loss IR nanotechnologies, fundamental requirements for their implementation in molecular sensing, emission or photodetection applications.
Collapse
Affiliation(s)
- O. G. Matveeva
- Donostia International Physics Center (DIPC), 20018 Donostia/San Sebastián, Spain
| | | | - R. V. Kirtaev
- Donostia International Physics Center (DIPC), 20018 Donostia/San Sebastián, Spain
| | - K. V. Voronin
- Donostia International Physics Center (DIPC), 20018 Donostia/San Sebastián, Spain
| | - J. Taboada-Gutiérrez
- Department of Physics, University of Oviedo, 33006 Oviedo, Spain
- Center of Research on Nanomaterials and Nanotechnology, CINN (CSIC-Universidad de Oviedo), 33940 El Entrego, Spain
| | - C. Lanza
- Department of Physics, University of Oviedo, 33006 Oviedo, Spain
| | - J. Duan
- Department of Physics, University of Oviedo, 33006 Oviedo, Spain
- Center of Research on Nanomaterials and Nanotechnology, CINN (CSIC-Universidad de Oviedo), 33940 El Entrego, Spain
| | - J. Martín-Sánchez
- Department of Physics, University of Oviedo, 33006 Oviedo, Spain
- Center of Research on Nanomaterials and Nanotechnology, CINN (CSIC-Universidad de Oviedo), 33940 El Entrego, Spain
| | - V. S. Volkov
- XPANCEO, Bayan Business Center, DIP, 607-0406 Dubai, UAE
| | - P. Alonso-González
- Department of Physics, University of Oviedo, 33006 Oviedo, Spain
- Center of Research on Nanomaterials and Nanotechnology, CINN (CSIC-Universidad de Oviedo), 33940 El Entrego, Spain
| | - A. Y. Nikitin
- Donostia International Physics Center (DIPC), 20018 Donostia/San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain
| |
Collapse
|
9
|
Ge Z, Tao S, Chen H. Perfectly matched layer for biaxial hyperbolic materials. OPTICS EXPRESS 2023; 31:6965-6973. [PMID: 36823942 DOI: 10.1364/oe.483094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
Hyperbolic materials have attracted considerable interest for their unique open hyperbolic dispersion properties. These materials support high-momentum propagating modes and strong light confinement, leading to a wide range of applications including super-resolution technologies, negative refraction and long-life propagation. Even with these wonderful optical properties, hyperbolic materials, however, cause problems when applying perfectly matched layer (PML) boundary conditions in numerical simulation software such as COMSOL Multiphysics. Due to the unfit embedded attenuation function, the built-in PML of simulation software would result in a mass of reflections in the computational domain when the background medium is hyperbolic materials. Here, we take advantage of an imaginary coordinate mapping and the complex coordinate stretching of transformation optics theory to design a PML for biaxial hyperbolic materials, which avoids any reflections and can be tuned flexibly. The proposed recipe can provide antidote and new insights for hyperbolic material studies.
Collapse
|
10
|
Nörenberg T, Álvarez-Pérez G, Obst M, Wehmeier L, Hempel F, Klopf JM, Nikitin AY, Kehr SC, Eng LM, Alonso-González P, de Oliveira TVAG. Germanium Monosulfide as a Natural Platform for Highly Anisotropic THz Polaritons. ACS NANO 2022; 16:20174-20185. [PMID: 36446407 PMCID: PMC9799068 DOI: 10.1021/acsnano.2c05376] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 11/08/2022] [Indexed: 05/17/2023]
Abstract
Terahertz (THz) electromagnetic radiation is key to access collective excitations such as magnons (spins), plasmons (electrons), or phonons (atomic vibrations), thus bridging topics between optics and solid-state physics. Confinement of THz light to the nanometer length scale is desirable for local probing of such excitations in low-dimensional systems, thereby circumventing the large footprint and inherently low spectral power density of far-field THz radiation. For that purpose, phonon polaritons (PhPs) in anisotropic van der Waals (vdW) materials have recently emerged as a promising platform for THz nanooptics. Hence, there is a demand for the exploration of materials that feature not only THz PhPs at different spectral regimes but also host anisotropic (directional) electrical, thermoelectric, and vibronic properties. To that end, we introduce here the semiconducting vdW-material alpha-germanium(II) sulfide (GeS) as an intriguing candidate. By employing THz nanospectroscopy supported by theoretical analysis, we provide a thorough characterization of the different in-plane hyperbolic and elliptical PhP modes in GeS. We find not only PhPs with long lifetimes (τ > 2 ps) and excellent THz light confinement (λ0/λ > 45) but also an intrinsic, phonon-induced anomalous dispersion as well as signatures of naturally occurring, substrate-mediated PhP canalization within a single GeS slab.
Collapse
Affiliation(s)
- Tobias Nörenberg
- Institut für
Angewandte Physik, Technische Universität
Dresden, Dresden 01187, Germany
- Würzburg-Dresden
Cluster of Excellence - EXC 2147 (ct.qmat), Dresden 01062, Germany
- Institute of Radiation Physics, Helmholtz-Zentrum Dresden-Rossendorf, Dresden 01328, Germany
| | - Gonzalo Álvarez-Pérez
- Department of Physics, University
of Oviedo, Oviedo 33006, Spain
- Center of Research
on Nanomaterials and Nanotechnology CINN (CSIC−Universidad
de Oviedo), El Entrego 33940, Spain
| | - Maximilian Obst
- Institut für
Angewandte Physik, Technische Universität
Dresden, Dresden 01187, Germany
| | - Lukas Wehmeier
- Institut für
Angewandte Physik, Technische Universität
Dresden, Dresden 01187, Germany
- Würzburg-Dresden
Cluster of Excellence - EXC 2147 (ct.qmat), Dresden 01062, Germany
| | - Franz Hempel
- Institut für
Angewandte Physik, Technische Universität
Dresden, Dresden 01187, Germany
- Collaborative Research
Center 1415, Technische Universität
Dresden, Dresden 01069, Germany
| | - J. Michael Klopf
- Institute of Radiation Physics, Helmholtz-Zentrum Dresden-Rossendorf, Dresden 01328, Germany
| | - Alexey Y. Nikitin
- Donostia International
Physics Center (DIPC), Donostia-San
Sebastián 20018, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao 48013, Spain
| | - Susanne C. Kehr
- Institut für
Angewandte Physik, Technische Universität
Dresden, Dresden 01187, Germany
| | - Lukas M. Eng
- Institut für
Angewandte Physik, Technische Universität
Dresden, Dresden 01187, Germany
- Würzburg-Dresden
Cluster of Excellence - EXC 2147 (ct.qmat), Dresden 01062, Germany
- Collaborative Research
Center 1415, Technische Universität
Dresden, Dresden 01069, Germany
| | - Pablo Alonso-González
- Department of Physics, University
of Oviedo, Oviedo 33006, Spain
- Center of Research
on Nanomaterials and Nanotechnology CINN (CSIC−Universidad
de Oviedo), El Entrego 33940, Spain
| | - Thales V. A. G. de Oliveira
- Institut für
Angewandte Physik, Technische Universität
Dresden, Dresden 01187, Germany
- Würzburg-Dresden
Cluster of Excellence - EXC 2147 (ct.qmat), Dresden 01062, Germany
- Institute of Radiation Physics, Helmholtz-Zentrum Dresden-Rossendorf, Dresden 01328, Germany
| |
Collapse
|
11
|
Zhang Q, Ou Q, Si G, Hu G, Dong S, Chen Y, Ni J, Zhao C, Fuhrer MS, Yang Y, Alù A, Hillenbrand R, Qiu CW. Unidirectionally excited phonon polaritons in high-symmetry orthorhombic crystals. SCIENCE ADVANCES 2022; 8:eabn9774. [PMID: 35905184 PMCID: PMC9337755 DOI: 10.1126/sciadv.abn9774] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 06/14/2022] [Indexed: 05/28/2023]
Abstract
Advanced control over the excitation of ultraconfined polaritons-hybrid light and matter waves-empowers unique opportunities for many nanophotonic functionalities, e.g., on-chip circuits, quantum information processing, and controlling thermal radiation. Recent work has shown that highly asymmetric polaritons are directly governed by asymmetries in crystal structures. Here, we experimentally demonstrate extremely asymmetric and unidirectional phonon polariton (PhP) excitation via directly patterning high-symmetry orthorhombic van der Waals (vdW) crystal α-MoO3. This phenomenon results from symmetry breaking of momentum matching in polaritonic diffraction in vdW materials. We show that the propagation of PhPs can be versatile and robustly tailored via structural engineering, while PhPs in low-symmetry (e.g., monoclinic and triclinic) crystals are largely restricted by their naturally occurring permittivities. Our work synergizes grating diffraction phenomena with the extreme anisotropy of high-symmetry vdW materials, enabling unexpected control of infrared polaritons along different pathways and opening opportunities for applications ranging from on-chip photonics to directional heat dissipation.
Collapse
Affiliation(s)
- Qing Zhang
- School of Physics, University of Electronic Science and Technology of China, Chengdu, 611731, China
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Qingdong Ou
- ARC Centre of Excellence in Future Low-Energy Electronics Technologies, Monash University, Clayton, Victoria 3800, Australia
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
- Macao Institute of Materials Science and Engineering (MIMSE) , Macau University of Science and Technology, Taipa, Macau SAR 999078, China
| | - Guangyuan Si
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria 3800, Australia
| | - Guangwei Hu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- Advanced Science Research Center, City University of New York, New York, NY 10031, USA
| | - Shaohua Dong
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Yang Chen
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230027 China
| | - Jincheng Ni
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Chen Zhao
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Michael S. Fuhrer
- ARC Centre of Excellence in Future Low-Energy Electronics Technologies, Monash University, Clayton, Victoria 3800, Australia
- School of Physics and Astronomy, Monash University, Clayton, Victoria 3800, Australia
| | - Yuanjie Yang
- School of Physics, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Andrea Alù
- Advanced Science Research Center, City University of New York, New York, NY 10031, USA
- Physics Program, Graduate Center, City University of New York, New York, NY 10016, USA
| | - Rainer Hillenbrand
- CIC nanoGUNE BRTA and Department of Electricity and Electronics, UPV/EHU, 20018 Donostia-San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Cheng-Wei Qiu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
| |
Collapse
|
12
|
Ruta FL, Kim BSY, Sun Z, Rizzo DJ, McLeod AS, Rajendran A, Liu S, Millis AJ, Hone JC, Basov DN. Surface plasmons induce topological transition in graphene/α-MoO 3 heterostructures. Nat Commun 2022; 13:3719. [PMID: 35764651 PMCID: PMC9240047 DOI: 10.1038/s41467-022-31477-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 05/31/2022] [Indexed: 11/29/2022] Open
Abstract
Polaritons in hyperbolic van der Waals materials-where principal axes have permittivities of opposite signs-are light-matter modes with unique properties and promising applications. Isofrequency contours of hyperbolic polaritons may undergo topological transitions from open hyperbolas to closed ellipse-like curves, prompting an abrupt change in physical properties. Electronically-tunable topological transitions are especially desirable for future integrated technologies but have yet to be demonstrated. In this work, we present a doping-induced topological transition effected by plasmon-phonon hybridization in graphene/α-MoO3 heterostructures. Scanning near-field optical microscopy was used to image hybrid polaritons in graphene/α-MoO3. We demonstrate the topological transition and characterize hybrid modes, which can be tuned from surface waves to bulk waveguide modes, traversing an exceptional point arising from the anisotropic plasmon-phonon coupling. Graphene/α-MoO3 heterostructures offer the possibility to explore dynamical topological transitions and directional coupling that could inspire new nanophotonic and quantum devices.
Collapse
Affiliation(s)
- Francesco L Ruta
- Department of Physics, Columbia University, New York, NY, USA.
- Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY, USA.
| | - Brian S Y Kim
- Department of Mechanical Engineering, Columbia University, New York, NY, USA
| | - Zhiyuan Sun
- Department of Physics, Columbia University, New York, NY, USA
| | - Daniel J Rizzo
- Department of Physics, Columbia University, New York, NY, USA
| | | | - Anjaly Rajendran
- Department of Mechanical Engineering, Columbia University, New York, NY, USA
| | - Song Liu
- Department of Mechanical Engineering, Columbia University, New York, NY, USA
| | - Andrew J Millis
- Department of Physics, Columbia University, New York, NY, USA
- Center for Computational Quantum Physics, Flatiron Institute, New York, NY, USA
| | - James C Hone
- Department of Mechanical Engineering, Columbia University, New York, NY, USA
| | - D N Basov
- Department of Physics, Columbia University, New York, NY, USA.
| |
Collapse
|
13
|
Sang T, Pei Y, Mi Q, Li S, Yang C, Wang Y, Cao G. Lithography-free tunable absorber at visible region via one-dimensional photonic crystals consisting of an α-MoO 3 layer. OPTICS EXPRESS 2022; 30:14408-14420. [PMID: 35473184 DOI: 10.1364/oe.457528] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/04/2022] [Indexed: 06/14/2023]
Abstract
Flexible control of light absorption within the lithography-free nanostructure is crucial for many polarization-dependent optical devices. Herein, we demonstrated that the lithography-free tunable absorber (LTA) can be realized by using two one-dimensional (1D) photonic crystals (PCs) consisting of an α-MoO3 layer at visible region. The two 1D PCs have different bulk band properties, and the topological interface state-induced light absorption enhancement of α-MoO3 can be realized as the α-MoO3 thin film is inserted at the interface between the two 1D PCs. The resonant cavity model is proposed to evaluate the anisotropic absorption performances of the LTA, and the results are in good agreement with those of the transfer matrix method (TMM). The absorption efficiency of the LTA can be tailored by the number of the period of the two PCs, and the larger peak absorption is the direct consequence of the larger field enhancement factor (FEF) within the α-MoO3 layer. In addition, near-perfect absorption can be achieved as the LTA is operated at the over-coupled resonance. By varying the polarization angle, the absorption channels can be selected and the reflection response can be effectively modulated due to the excellent in-plane anisotropy of α-MoO3.
Collapse
|
14
|
He M, Iyer GRS, Aarav S, Sunku SS, Giles AJ, Folland TG, Sharac N, Sun X, Matson J, Liu S, Edgar JH, Fleischer JW, Basov DN, Caldwell JD. Ultrahigh-Resolution, Label-Free Hyperlens Imaging in the Mid-IR. NANO LETTERS 2021; 21:7921-7928. [PMID: 34534432 DOI: 10.1021/acs.nanolett.1c01808] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The hyperbolic phonon polaritons supported in hexagonal boron nitride (hBN) with long scattering lifetimes are advantageous for applications such as super-resolution imaging via hyperlensing. Yet, hyperlens imaging is challenging for distinguishing individual and closely spaced objects and for correlating the complicated hyperlens fields with the structure of an unknown object underneath. Here, we make significant strides to overcome each of these challenges. First, we demonstrate that monoisotopic h11BN provides significant improvements in spatial resolution, experimentally resolving structures as small as 44 nm and those with sub 25 nm spacings at 6.76 μm free-space wavelength. We also present an image reconstruction algorithm that provides a structurally accurate, visual representation of the embedded objects from the complex hyperlens field. Further, we offer additional insights into optimizing hyperlens performance on the basis of material properties, with an eye toward realizing far-field imaging modalities. Thus, our results significantly advance label-free, high-resolution, spectrally selective hyperlens imaging and image reconstruction methodologies.
Collapse
Affiliation(s)
- Mingze He
- Department of Mechanical Engineering, Vanderbilt University, Nashville, Tennessee 37212, United States
| | - Ganjigunte R S Iyer
- ASEE/NRC Postdoctoral Fellow residing at NRL, Washington D.C. 20375, United States
- U.S. Naval Research Laboratory, Washington D.C. 20375, United States
| | - Shaurya Aarav
- Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Sai S Sunku
- Department of Physics, Columbia University, New York, New York 10027, United States
| | - Alexander J Giles
- U.S. Naval Research Laboratory, Washington D.C. 20375, United States
| | - Thomas G Folland
- Department of Mechanical Engineering, Vanderbilt University, Nashville, Tennessee 37212, United States
- Department of Physics and Astronomy, The University of Iowa, Iowa City, Iowa 52242, United States
| | - Nicholas Sharac
- ASEE/NRC Postdoctoral Fellow residing at NRL, Washington D.C. 20375, United States
| | - Xiaohang Sun
- Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Joseph Matson
- Department of Mechanical Engineering, Vanderbilt University, Nashville, Tennessee 37212, United States
| | - Song Liu
- Tim Taylor Department of Chemical Engineering, Kansas State University, Manhattan, Kansas 66506, United States
| | - James H Edgar
- Tim Taylor Department of Chemical Engineering, Kansas State University, Manhattan, Kansas 66506, United States
| | - Jason W Fleischer
- Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - D N Basov
- Department of Physics, Columbia University, New York, New York 10027, United States
| | - Joshua D Caldwell
- Department of Mechanical Engineering, Vanderbilt University, Nashville, Tennessee 37212, United States
| |
Collapse
|
15
|
Martín-Sánchez J, Duan J, Taboada-Gutiérrez J, Álvarez-Pérez G, Voronin KV, Prieto I, Ma W, Bao Q, Volkov VS, Hillenbrand R, Nikitin AY, Alonso-González P. Focusing of in-plane hyperbolic polaritons in van der Waals crystals with tailored infrared nanoantennas. SCIENCE ADVANCES 2021; 7:eabj0127. [PMID: 34623915 PMCID: PMC8500510 DOI: 10.1126/sciadv.abj0127] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Phonon polaritons (PhPs)—light coupled to lattice vibrations—with in-plane hyperbolic dispersion exhibit ray-like propagation with large wave vectors and enhanced density of optical states along certain directions on a surface. As such, they have raised a surge of interest, promising unprecedented manipulation of infrared light at the nanoscale in a planar circuitry. Here, we demonstrate focusing of in-plane hyperbolic PhPs propagating along thin slabs of α-MoO3. To that end, we developed metallic nanoantennas of convex geometries for both efficient launching and focusing of the polaritons. The foci obtained exhibit enhanced near-field confinement and absorption compared to foci produced by in-plane isotropic PhPs. Foci sizes as small as λp/4.5 = λ0/50 were achieved (λp is the polariton wavelength and λ0 is the photon wavelength). Focusing of in-plane hyperbolic polaritons introduces a first and most basic building block developing planar polariton optics using in-plane anisotropic van der Waals materials.
Collapse
Affiliation(s)
- Javier Martín-Sánchez
- Department of Physics, University of Oviedo, Oviedo, Spain
- Center of Research on Nanomaterials and Nanotechnology, CINN (CSIC–University of Oviedo), El Entrego 33940, Spain
- Corresponding author. (J.M.-S.); (P.A.-G.)
| | - Jiahua Duan
- Department of Physics, University of Oviedo, Oviedo, Spain
- Center of Research on Nanomaterials and Nanotechnology, CINN (CSIC–University of Oviedo), El Entrego 33940, Spain
| | - Javier Taboada-Gutiérrez
- Department of Physics, University of Oviedo, Oviedo, Spain
- Center of Research on Nanomaterials and Nanotechnology, CINN (CSIC–University of Oviedo), El Entrego 33940, Spain
| | - Gonzalo Álvarez-Pérez
- Department of Physics, University of Oviedo, Oviedo, Spain
- Center of Research on Nanomaterials and Nanotechnology, CINN (CSIC–University of Oviedo), El Entrego 33940, Spain
| | - Kirill V. Voronin
- Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology, Dolgoprudny 141700, Russia
| | - Iván Prieto
- Institute of Science and Technology Austria IST, Am Campus 1, 3400 Klosterneuburg, Austria
| | - Weiliang Ma
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, China
| | - Qiaoliang Bao
- Department of Materials Science and Engineering and ARC Centre of Excellence in Future Low-Energy Electronics Technologies (FLEET), Monash University, Clayton, Victoria 3800, Australia
| | - Valentyn S. Volkov
- Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology, Dolgoprudny 141700, Russia
- GrapheneTek, Skolkovo Innovation Center, Moscow 143026, Russia
| | - Rainer Hillenbrand
- nanoGUNE BRTA and Department of Electricity and Electronics, UPV/EHU, Donostia-San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Alexey Y. Nikitin
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
- Donostia International Physics Center (DIPC), Donostia-San Sebastián, Spain
| | - Pablo Alonso-González
- Department of Physics, University of Oviedo, Oviedo, Spain
- Center of Research on Nanomaterials and Nanotechnology, CINN (CSIC–University of Oviedo), El Entrego 33940, Spain
- Corresponding author. (J.M.-S.); (P.A.-G.)
| |
Collapse
|
16
|
Interface nano-optics with van der Waals polaritons. Nature 2021; 597:187-195. [PMID: 34497390 DOI: 10.1038/s41586-021-03581-5] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 04/23/2021] [Indexed: 01/27/2023]
Abstract
Polaritons are hybrid excitations of matter and photons. In recent years, polaritons in van der Waals nanomaterials-known as van der Waals polaritons-have shown great promise to guide the flow of light at the nanoscale over spectral regions ranging from the visible to the terahertz. A vibrant research field based on manipulating strong light-matter interactions in the form of polaritons, supported by these atomically thin van der Waals nanomaterials, is emerging for advanced nanophotonic and opto-electronic applications. Here we provide an overview of the state of the art of exploiting interface optics-such as refractive optics, meta-optics and moiré engineering-for the control of van der Waals polaritons. This enhanced control over van der Waals polaritons at the nanoscale has not only unveiled many new phenomena, but has also inspired valuable applications-including new avenues for nano-imaging, sensing, on-chip optical circuitry, and potentially many others in the years to come.
Collapse
|
17
|
Zhang Q, Ou Q, Hu G, Liu J, Dai Z, Fuhrer MS, Bao Q, Qiu CW. Hybridized Hyperbolic Surface Phonon Polaritons at α-MoO 3 and Polar Dielectric Interfaces. NANO LETTERS 2021; 21:3112-3119. [PMID: 33764791 DOI: 10.1021/acs.nanolett.1c00281] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Surface phonon polaritons (SPhPs) in polar dielectrics offer new opportunities for infrared nanophotonics. However, bulk SPhPs inherently propagate isotropically with limited photon confinement, and how to collectively realize ultralarge confinement, in-plane hyperbolicity, and unidirectional propagation remains elusive. Here, we report an approach to solve the aforementioned issues of bulk SPhPs in one go by constructing a heterostructural interface between biaxial van der Waals material (e.g., α-MoO3) and bulk polar dielectric (e.g., SiC, AlN, and GaN). Because of anisotropy-oriented mode couplings, the hybridized SPhPs with a large confinement factor (>100) show in-plane hyperbolicity that has been switched to the orthogonal direction as compared to that in natural α-MoO3. More interestingly, this proof of concept allows steerable and unidirectional polariton excitation by suspending α-MoO3 on patterned SiC air cavities. Our finding exemplifies a generalizable framework to manipulate the flow of nanolight in many other hybrid systems consisting of anisotropic materials and polar dielectrics.
Collapse
Affiliation(s)
- Qing Zhang
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Qingdong Ou
- ARC Centre of Excellence in Future Low-Energy Electronics Technologies (FLEET), Monash University, Clayton, Victoria 3800, Australia
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Guangwei Hu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Jingying Liu
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Zhigao Dai
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, 388 Lumo Road, Wuhan 430074, China
| | - Michael S Fuhrer
- ARC Centre of Excellence in Future Low-Energy Electronics Technologies (FLEET), Monash University, Clayton, Victoria 3800, Australia
- School of Physics and Astronomy, Monash University, Clayton, Victoria 3800, Australia
| | - Qiaoliang Bao
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Cheng-Wei Qiu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
| |
Collapse
|