1
|
An JM, Lim YJ, Yeo SG, Kim YH, Kim D. Recent Advances of Nitrobenzoselenadiazole for Imaging and Therapy. ACS Sens 2025; 10:1709-1721. [PMID: 40063118 PMCID: PMC11959591 DOI: 10.1021/acssensors.4c03596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/26/2025] [Accepted: 02/24/2025] [Indexed: 03/29/2025]
Abstract
The development and practical applications of multifunctional organic fluorophores have garnered significant attention in translational research in recent years. Among the fluorophores, nitrobenzodioxazole (NBD) has been widely used in various fields due to its small size and neutral character, both of which are advantageous for biorelated applications. However, NBD presents some limitations, including (1) suboptimal photophysical properties for in vivo applications and (2) its monofunctional nature, which restricts its use in fluorescence-based bioimaging and sensing. To overcome these challenges, recent research has focused on the development of nitrobenzoselenadiazole (NBSD) derivatives, a selenium analog of NBD. In this review article, we systematically summarize recent advancements in the development of NBSD and highlight examples of its application in translational research as a multifunctional organic fluorophore. We also explore the potential applications of NBSD and present representative case studies, providing valuable context for the ongoing development of new NBSD derivatives in the field of fluorophore-related material science.
Collapse
Affiliation(s)
- Jong Min An
- Department
of Anatomy and Neurobiology, College of Medicine, Kyung Hee University, Seoul 02447, Republic
of Korea
| | - Yeon Jin Lim
- Department
of Precision Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic
of Korea
| | - Seung Geun Yeo
- Department
of Otorhinolaryngology, Head & Neck Surgery, Kyung Hee University, Seoul 02447, Republic
of Korea
| | - Yun Hak Kim
- Department
of Anatomy, School of Medicine, Pusan National
University, Yangsan 50612, Republic
of Korea
| | - Dokyoung Kim
- Department
of Anatomy and Neurobiology, College of Medicine, Kyung Hee University, Seoul 02447, Republic
of Korea
- Department
of Precision Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic
of Korea
- Department
of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic
of Korea
- KHU-KIST
Department of Converging Science and Technology, Kyung Hee University, Seoul 02447, Republic
of Korea
- Medical Research
Center for Bioreaction to Reactive Oxygen Species and Biomedical Science
Institute, Core Research Institute (CRI), Kyung Hee University, Seoul 02447, Republic
of Korea
| |
Collapse
|
2
|
Wada Y, Jang K, Ishii H, Watakabe Y, Tsutsumi M, Sako M, Takehara T, Suzuki T, Tsujino H, Tsutsumi Y, Nemoto T, Arisawa M. Absorption, Fluorescence, and Two-Photon Excitation Ability of 5-o-Tolyl-11 (or 13)-o-tolylisoindolo[2,1-a]quinolines Prepared by Ring-Closing Metathesis and [2+3] Cycloaddition. Chem Asian J 2025; 20:e202401073. [PMID: 39495489 DOI: 10.1002/asia.202401073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/27/2024] [Accepted: 11/04/2024] [Indexed: 11/05/2024]
Abstract
We have successfully improved the fluorescence quantum yield of isoindolo[2,1-a]quinoline derivatives by suppressing the rotation of the phenyl groups at positions 5 and 11 (or 13). Additionally, we found that the planarity of these phenyl groups at positions 5 and 11 (or 13) of isoindolo[2,1-a]quinoline derivatives is crucial for two-photon absorption properties.
Collapse
Affiliation(s)
- Yuki Wada
- Graduate School of Pharmaceutical Sciences, Osaka University, Yamada-oka 1-6, Suita, Osaka, 565-0871, Japan
| | - Kwangkyun Jang
- Graduate School of Pharmaceutical Sciences, Osaka University, Yamada-oka 1-6, Suita, Osaka, 565-0871, Japan
| | - Hirokazu Ishii
- Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Higashiyama5-1, Myodaiji, Okazaki, 444-8787, Japan
- National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences, Higashiyama5-1, Myodaiji, Okazaki, 444-8787, Japan
| | - Yuki Watakabe
- Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Higashiyama5-1, Myodaiji, Okazaki, 444-8787, Japan
- National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences, Higashiyama5-1, Myodaiji, Okazaki, 444-8787, Japan
| | - Motosuke Tsutsumi
- Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Higashiyama5-1, Myodaiji, Okazaki, 444-8787, Japan
- National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences, Higashiyama5-1, Myodaiji, Okazaki, 444-8787, Japan
| | - Makoto Sako
- Graduate School of Pharmaceutical Sciences, Osaka University, Yamada-oka 1-6, Suita, Osaka, 565-0871, Japan
| | - Tsunayoshi Takehara
- Comprehensive Analysis Center, SANKEN, Osaka University, Mihogaoka 8-1, Ibaraki, Osaka, 567-0047, Japan
| | - Takeyuki Suzuki
- Comprehensive Analysis Center, SANKEN, Osaka University, Mihogaoka 8-1, Ibaraki, Osaka, 567-0047, Japan
| | - Hirofumi Tsujino
- Graduate School of Pharmaceutical Sciences, Osaka University, Yamada-oka 1-6, Suita, Osaka, 565-0871, Japan
- The Museum of Osaka University, Osaka University, 1-13 Machikaneyamacho, Toyonaka, Osaka, 560-0043, Japan
| | - Yasuo Tsutsumi
- Graduate School of Pharmaceutical Sciences, Osaka University, Yamada-oka 1-6, Suita, Osaka, 565-0871, Japan
| | - Tomomi Nemoto
- Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Higashiyama5-1, Myodaiji, Okazaki, 444-8787, Japan
- National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences, Higashiyama5-1, Myodaiji, Okazaki, 444-8787, Japan
| | - Mitsuhiro Arisawa
- Graduate School of Pharmaceutical Sciences, Osaka University, Yamada-oka 1-6, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
3
|
Raghava T, Banerjee S. Amino-Terephthalonitrile and Amino-Terephthalate-Based Single Benzene Fluorophores - Compact Color Tunable Molecular Dyes for Bioimaging and Bioanalysis. Chem Asian J 2024; 19:e202400898. [PMID: 39240246 DOI: 10.1002/asia.202400898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/06/2024] [Accepted: 09/06/2024] [Indexed: 09/07/2024]
Abstract
This review article discusses the emerging amino-terephthalonitrile (Am-TN) and amino terephthalate-based single benzene fluorophores (SBFs) for their highly emissive nature and potential for numerous technical applications. Am-TN-SBFs are a new class of SBFs having amine as the electron donating (EDG) and dinitrile as the electron withdrawing group (EWG). The beauty of these Am-TN-SBFs lies in excellent intramolecular charge transfer between the EDG and EWG. The placement of two nitrile groups in para-position on the benzene ring allows better charge transfer from the donating amines to the linear nitrile group leading to the strongly emissive nature. We also outline here the latest developments in the well-known family of amino terephthalate SBFs reported in the last 2 to 3 years. Amino terephthalate SBFs have esters as the EWG and amine as the EDG. These have intramolecular H-bonding between the EDG and EWG which is responsible for their emissive behavior.
Collapse
Affiliation(s)
- Tanya Raghava
- Department of Chemistry, BITS Pilani K.K. Birla Goa Campus, NH 17B, Bypass Road, Zuarinagar, Goa, 403726, India
| | - Subhadeep Banerjee
- Department of Chemistry, BITS Pilani K.K. Birla Goa Campus, NH 17B, Bypass Road, Zuarinagar, Goa, 403726, India
| |
Collapse
|
4
|
Sirimatayanant S, Andruniów T. Tuning Two-Photon Absorption in Rhodopsin Chromophore via Backbone Modification: The Story Told by CC2 and TD-DFT. J Chem Theory Comput 2024. [PMID: 39269133 PMCID: PMC11428129 DOI: 10.1021/acs.jctc.4c00675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
We investigate here a systematic way to tune two-photon transition strengths (δ2PA) and two-photon absorption (2PA) cross sections (σ2PA) of the rhodopsin's chromophore 11-cis-retinal protonated Schiff base (RPSB) via the modulation of the methyl groups pattern along its polyene chain. Our team employed the resolution of identity, coupled cluster approximate second order (RI-CC2) method with Dunning's aug-cc-pVDZ basis set, to determine the structural impact on δ2PA, as well as its correlation to both transition dipole moments and permanent electric dipole moments. Seven structures were probed in vacuo, including five-double-bond-conjugated model of the native chromophore, shortened by the β-ionone ring (RPSB5), and its de/methylated analogues: 9-methyl, 13-methyl, planar and twisted models of 9,10-dimethyl and 9,10,13-trimethyl. Our results demonstrate that the magnitude of δ2PA is dictated by both the position and number of methylated groups attached to its polyene chain as well as the degree of dihedral twist that is introduced due to the de/methylation. In fact, a strong correlation between δ2PA enhancement and the presence of a C13-methyl group in the planar RPSB5 species is found. Trends in δ2PA values follow the trends observed in their corresponding changes in the permanent dipole moment upon the S0-S1 excitation nearly exactly. The assessment of four DFT functionals, i.e., M11, MN15, CAM-B3LYP, and BHandHLYP, previously found most successful in predicting 2PA properties in biological chromophores, points to a long-range-corrected hybrid meta-GGA M11 as the top-performing functional, albeit still delivering underestimated δ2PA and σ2PA values by a factor of 3.3-5.3 with respect to the CC2 results. In the case of global-hybrid meta-NGA (MN15), as well as CAM-B3LYP and BHandHLYP functionals, this factor deteriorates significantly to 6.7-20.9 and is mostly related to significantly lower quality of the ground- and excited-state dipole moments.
Collapse
Affiliation(s)
- Saruti Sirimatayanant
- Institute of Advanced Materials, Department of Chemistry, Wroclaw University of Science and Technology, Wyb. Wyspiańskiego 27, Wrocław 50-370, Poland
| | - Tadeusz Andruniów
- Institute of Advanced Materials, Department of Chemistry, Wroclaw University of Science and Technology, Wyb. Wyspiańskiego 27, Wrocław 50-370, Poland
| |
Collapse
|
5
|
Che S, Zhuge Y, Peng X, Fan X, Fan Y, Chen X, Fu H, She Y. An ion synergism fluorescence probe via Cu 2+ triggered competition interaction to detect glyphosate. Food Chem 2024; 448:139021. [PMID: 38574711 DOI: 10.1016/j.foodchem.2024.139021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/07/2024] [Accepted: 03/10/2024] [Indexed: 04/06/2024]
Abstract
The widespread use of glyphosate (Gly) poses significant risks to environmental and human health, underscoring the urgent need for its sensitive and rapid detection. In this work, we innovated by developing a novel material, ionic liquids, which formed the ionic probe "[P66614]2[2,3-DHN]-Cu2+ (PDHN-Cu2+)" through coordination with Cu2+. This probe capitalized on the distinctive fluorescence quenching properties of ionic liquids in the presence of Cu2+, driven by synergistic interactions between anions and cations. Glyphosate disrupted the PDHN-Cu2+ coordination structure due to its stronger affinity for Cu2+, triggering a "turn-on" fluorescence response. Impressively, PDHN-Cu2+ enabled the sensitive detection of glyphosate within just one minute, achieving a detection limit as low as 71.4 nM and excellent recovery rates of 97-103% in diverse samples. This groundbreaking approach, utilizing ionic probes, lays a robust foundation for the accurate and real-time monitoring of pesticides, employing a strategy based on synergism and competitive coordination.
Collapse
Affiliation(s)
- Siying Che
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yiwan Zhuge
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xiutan Peng
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xingxing Fan
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yao Fan
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xiahe Chen
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Haiyan Fu
- College of Pharmacy, South-Central University for Nationalities, Wuhan 430074, China
| | - Yuanbin She
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
6
|
Yan L, Tang L, Wu X, Li L. Recent Advances in Organic Small-Molecule Fluorescent Probes Based on Dicyanoisophorone Derivatives. Crit Rev Anal Chem 2024:1-28. [PMID: 38836446 DOI: 10.1080/10408347.2024.2354328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Fluorescent probe technology holds great promise in the fields of environmental monitoring and clinical diagnosis due to its inherent advantages, including easy operation, reliable detection signals, fast analysis speed, and in situ imaging capabilities. In recent years, a wide range of fluorescent probes based on diverse fluorophores have been developed for the analysis and detection of various analytes, yielding significant achievement. Among these fluorophores, the dicyanoisophorone-based fluorophores have garnered significant attention. Dicyanoisoporone exhibits minimal fluorescence, yet possesses a robust electron-withdrawing capability, rendering it suitable for constructing of D-π-A structured fluorophores. Leveraging the intramolecular charge transfer (ICT) effect, such fluorophores exhibit near-infrared (NIR) fluorescence emission with a large Stokes shift, thereby offering remarkable advantages in the design and development of NIR fluorescence probes. This review article primarily focus on small-molecule dicyanoisoporone-based probes from the past two years, elucidating their design strategies, detection performances, and applications. Additionally, we summarize current challenges while predicting future directions to provide valuable references for developing novel and advanced fluorescence probes based on dicyanoisoporone derivatives.
Collapse
Affiliation(s)
- Liqiang Yan
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, Guangxi, China
| | - Liting Tang
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, Guangxi, China
| | - Xiongzhi Wu
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, Guangxi, China
| | - Lin Li
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, Guangxi, China
| |
Collapse
|
7
|
Ma XX, Geng MH, Cheng XY, Zhang TS, Li ZL, Zhao K. Excellent ratiometric two-photon fluorescent probes for hydrogen sulfide detection based on the fluorescence resonance energy transfer mechanism. Phys Chem Chem Phys 2024; 26:6008-6021. [PMID: 38293905 DOI: 10.1039/d3cp05329f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Fluorescence resonance energy transfer (FRET) is an important mechanism to design ratiometric fluorescent probes that are able to detect analytes quantitatively according to the ratio of two well-resolved emission signals. Two-photon (TP) fluorescent probes can realize the detection in living cells and tissues with deeper penetration depth, higher resolution, and lower photodamage in contrast to one-photon fluorescent probes. However, to date, fabricating TP-FRET ratiometric fluorescent probes possessing large two-photon absorption (TPA), high fluorescence quantum yield and perfect FRET efficiency is still challenging. Consequently, to develop excellent TP-FRET ratiometric probes and explore the relationship between their molecular structures and TP fluorescence properties, in this paper, we designed a series of H2S-detecting TP fluorescent probes employing the FRET mechanism based on an experimental probe BCD. Thereafter, we comprehensively evaluated the TP sensing performance of these probes by means of time-dependent density functional theory and quadratic response theory. Furthermore, we determined energy transfer efficiency and fluorescence quantum yield. Significantly, through regulating benzene-fused positions, we successfully improved fluorescence quantum yield and TPA cross-section simultaneously. Large spectral overlap between energy donor emission and acceptor absorption was achieved and near perfect energy transfer efficiency was acquired for all the studied probes. We revealed that these probes exhibit two well-resolved TPA bands, which are contributed by FRET donors and acceptors, respectively. Especially, both the wavelengths and the cross-sections of the two TPA bands agree well with those of energy donors and acceptors, which is the unique TPA spectral profile of FRET probes and has never been previously reported. Moreover, we proposed an excellent TP-FRET probe BCD3 and its product molecule BCD3-H2S, which exhibit large Stokes (141 nm and 88 nm) and emission shifts (5931 cm-1), as well as greatly increased TP action cross-sections (24-fold and 60-fold) in the near-infrared region with respect to BCD and BCD-H2S. Our detailed study can give an insight into the efficient design of novel TP-FRET fluorescent probes.
Collapse
Affiliation(s)
- Xue-Xue Ma
- School of Physics and Electronics, Shandong Normal University, Jinan, 250358, People's Republic of China.
| | - Ming-Hui Geng
- School of Physics and Electronics, Shandong Normal University, Jinan, 250358, People's Republic of China.
| | - Xia-Yu Cheng
- School of Physics and Electronics, Shandong Normal University, Jinan, 250358, People's Republic of China.
| | - Tong-Shu Zhang
- School of Physics and Electronics, Shandong Normal University, Jinan, 250358, People's Republic of China.
| | - Zong-Liang Li
- School of Physics and Electronics, Shandong Normal University, Jinan, 250358, People's Republic of China.
| | - Ke Zhao
- School of Physics and Electronics, Shandong Normal University, Jinan, 250358, People's Republic of China.
| |
Collapse
|
8
|
Cai Y, Hu H, Wu Z, Yu C. A dual-lock-controlled mitochondria-targeted ratiometric fluorescence probe for simultaneous detection of atherosclerosis-related HClO and viscosity. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 303:123225. [PMID: 37586279 DOI: 10.1016/j.saa.2023.123225] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/22/2023] [Accepted: 08/01/2023] [Indexed: 08/18/2023]
Abstract
Precise detection of inflammatory microenvironment-related viscosity and hypochlorous acid (HClO) contributes to illuminating the pathogenesis and further diagnosing of atherosclerosis (AS). Herein, a dual-lock-controlled mitochondria-targeted fluorescence probe (NS) for simultaneous imaging of HClO and viscosity in AS-related foam cells is presented. NS performs linear increase in green-fluorescence along with increased viscosity (excited at 425 nm), permitting "off-on" fluorescence imaging of viscosity. Meanwhile, upon HClO activation, NS exhibits red-shifted and enhanced fluorescence in orange, thus leading to ratiometric fluorescence quantification of HClO (excited at 465 nm). Such dual-lock-controlled effect makes NS realize simultaneous imaging of viscosity and HClO with high sensitivity and selectivity via "off-on" and ratiometric fluorescence readouts, respectively. Besides, endowed with mitochondria-targeting capacity, NS achieves in situ imaging of mitochondria viscosity and HClO in living RAW264.7 cells. Importantly, for the first time, NS realizes simultaneous imaging of mitochondria viscosity and HClO in macrophage-derived foam cells, revealing the close association between HClO level and viscosity change in mitochondria during foaming translation of macrophages in atherogenesis. This work not only provides a novel strategy and tool to image organelle-located viscosity and HClO in living systems, but also holds great potential in early diagnosis of AS.
Collapse
Affiliation(s)
- Yang Cai
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing Pharmacodynamic Evaluation Engineering Technology Research Center, Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China
| | - Hui Hu
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing Pharmacodynamic Evaluation Engineering Technology Research Center, Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China
| | - Zhen Wu
- University of Science and Technology Beijing, School of Materials Science and Engineering, Beijing 100083, PR China
| | - Chao Yu
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing Pharmacodynamic Evaluation Engineering Technology Research Center, Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China.
| |
Collapse
|
9
|
Sirimatayanant S, Andruniów T. Benchmarking two-photon absorption strengths of rhodopsin chromophore models with CC3 and CCSD methodologies: An assessment of popular density functional approximations. J Chem Phys 2023; 158:094106. [PMID: 36889953 DOI: 10.1063/5.0135594] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
Abstract
This work presents the investigations of the impact of an increasing electron correlation in the hierarchy of coupled-cluster methods, i.e., CC2, CCSD, and CC3, on two-photon absorption (2PA) strengths for the lowest excited state of the minimal rhodopsin's chromophore model-cis-penta-2,4-dieniminium cation (PSB3). For a larger chromophore's model [4-cis-hepta-2,4,6-trieniminium cation (PSB4)], CC2 and CCSD calculations of 2PA strengths were performed. Additionally, 2PA strengths predicted by some popular density functional theory (DFT) functionals differing in HF exchange contribution were assessed against the reference CC3/CCSD data. For PSB3, the accuracy of 2PA strengths increases in the following order: CC2 < CCSD < CC3, with the CC2 deviation from both higher-level methods exceeding 10% at 6-31+G* basis sets and 2% at aug-cc-pVDZ basis set. However, for PSB4, this trend is reversed and CC2-based 2PA strength is larger than the corresponding CCSD value. Among the DFT functionals investigated, CAM-B3LYP and BHandHLYP provide 2PA strengths in best compliance with reference data, however, with the error approaching an order of magnitude.
Collapse
Affiliation(s)
- Saruti Sirimatayanant
- Institute of Advanced Materials, Department of Chemistry, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Tadeusz Andruniów
- Institute of Advanced Materials, Department of Chemistry, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland
| |
Collapse
|
10
|
Zeng C, Xu Z, Song C, Qin T, Jia T, Zhao C, Wang L, Liu B, Peng X. Naphthalene-based fluorescent probe for on-site detection of hydrazine in the environment. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130415. [PMID: 36455322 DOI: 10.1016/j.jhazmat.2022.130415] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/13/2022] [Accepted: 11/14/2022] [Indexed: 06/17/2023]
Abstract
The widespread occurrence of hydrazine residues in the environment, including in water, soil, and organisms, is a potential health threat to humans. Therefore, the development of an efficient method for the detection of hydrazine in environmental samples is highly desirable although it poses a significant challenge. In this study, we designed and synthesized a series of naphthalene-based fluorescent dyes through structural engineering and developed a novel probe for hydrazine detection. The probe could provide a distinct fluorescence response toward hydrazine in aqueous solution with high sensitivity and selectivity. Moreover, paper-based test strips can be easily fabricated using this probe, enabling the portable on-site detection of hydrazine with the aid of a smartphone. Furthermore, we demonstrated that this probe is capable of recognizing hydrazine in various environmental samples, including water, soil, plants, and zebrafish embryos. This research provides a promising tool for the detection of hydrazine in the environment.
Collapse
Affiliation(s)
- Conghui Zeng
- Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Material Science and Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Zhongyong Xu
- Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Material Science and Engineering, Shenzhen University, Shenzhen 518060, PR China.
| | - Chao Song
- Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Material Science and Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Tianyi Qin
- Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Material Science and Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Tianhao Jia
- Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou 510642, PR China
| | - Chen Zhao
- Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou 510642, PR China
| | - Lei Wang
- Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Material Science and Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Bin Liu
- Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Material Science and Engineering, Shenzhen University, Shenzhen 518060, PR China.
| | - Xiaojun Peng
- Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Material Science and Engineering, Shenzhen University, Shenzhen 518060, PR China; State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, PR China
| |
Collapse
|
11
|
Raghava T, Chattopadhyay A, Bhavana P, Banerjee S. Amino-Terephthalonitrile-Based Single Benzene Fluorophores with Large Stokes Shifts and Solvatochromic Behavior. Chem Asian J 2023; 18:e202201314. [PMID: 36892161 DOI: 10.1002/asia.202201314] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/25/2023] [Indexed: 03/03/2023]
Abstract
We have synthesized a small library of blue-to-green emissive single benzene-based fluorophores (SBFs) in a short synthetic sequence. The molecules exhibit good Stokes shift in the range of 60-110 nm and select examples also possess very high fluorescence quantum yields of up to 87%. Theoretical investigations into the ground state and excited state geometries of many of these compounds reveal that good degree of planarization between the electron donor secondary amines and electron accepting benzodinitrile units can be achieved under certain solvatochromic conditions, giving rise to the strongly fluorescent behavior. On the other hand, the excited state geometry which lacks co-planarity of the donor amine and the single benzene moiety can open up a non-fluorescent channel. Additionally, in molecules with a dinitrobenzene acceptor, the perpendicular nitro moieties render the molecules completely non-emissive.
Collapse
Affiliation(s)
- Tanya Raghava
- Department of Chemistry, BITS Pilani K.K. Birla Goa Campus, NH 17B, Bypass Road, Zuarinagar, Goa, 403726, India
| | - Anjan Chattopadhyay
- Department of Chemistry, BITS Pilani K.K. Birla Goa Campus, NH 17B, Bypass Road, Zuarinagar, Goa, 403726, India
| | - Purushothaman Bhavana
- Department of Chemistry, BITS Pilani K.K. Birla Goa Campus, NH 17B, Bypass Road, Zuarinagar, Goa, 403726, India
| | - Subhadeep Banerjee
- Department of Chemistry, BITS Pilani K.K. Birla Goa Campus, NH 17B, Bypass Road, Zuarinagar, Goa, 403726, India
| |
Collapse
|
12
|
Irshad R, Asim S, Mansha A, Arooj Y. Naphthalene and its Derivatives: Efficient Fluorescence Probes for Detecting and Imaging Purposes. J Fluoresc 2023:10.1007/s10895-023-03153-y. [PMID: 36735102 DOI: 10.1007/s10895-023-03153-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/19/2023] [Indexed: 02/04/2023]
Abstract
Naphthalene, white crystalline solid having polycyclic aromatic hydrocarbon with characteristic mothball order is naturally present in crucial oils of various plants. Naphthalene derivatives are extensive drug resources and are use as wetting agents, surfactants and as insecticides. These derivatives exhibit unique photo physical and chemical properties. These characteristics make them the most studied group of organic compounds. Naphthalene dyes have rigid plane and large π-electron conjugation. Therefor they have high quantum yield and excellent photostability. Naphthalene based fluorescence probes due to hydrophobic nature exhibit excellent sensing and selectivity properties towards anions and cations and also used as a part of target biomolecules. In conjugated probe system, introducing naphthalene moiety caused improvement in photo-stability. Therefore among various conjugated framework, naphthalene derivatives are considered excellent candidate for the construction of organic electronic appliances. These derivatives are useful for a variety of applications owing to their strong fluorescence, electroactivity and photostability. This article is based upon investigation of photophysical properties of naphthalene derivatives and fluorescence detecting probe of naphthalene. For photophysical properties the techniques under investigation are UV visible spectroscopy and fluorescence spectroscopy. Concentration dependent spectra and solvatochromic shifts on UV visible spectra are also part of discussion.
Collapse
Affiliation(s)
- Ruqaya Irshad
- Department of Physics, Government College Women University, Faisalabad, Pakistan
| | - Sadia Asim
- Department of Chemistry, Government College Women University, Faisalabad, Pakistan.
| | - Asim Mansha
- Department of Chemistry, Government College University, Faisalabad, Pakistan
| | - Yusra Arooj
- Department of Physics, Government College Women University, Faisalabad, Pakistan
| |
Collapse
|
13
|
Li X, Guo Y, Qiu Y, Luo X, Liu G, Han Y, Sun Q, Dong Q. A novel strategy of designing neutrophil elastase fluorescent probe based on self-immolative group and its application in bioimaging. Anal Chim Acta 2022; 1237:340617. [DOI: 10.1016/j.aca.2022.340617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 11/15/2022]
|
14
|
Shaya J, Corridon PR, Al-Omari B, Aoudi A, Shunnar A, Mohideen MIH, Qurashi A, Michel BY, Burger A. Design, photophysical properties, and applications of fluorene-based fluorophores in two-photon fluorescence bioimaging: A review. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C: PHOTOCHEMISTRY REVIEWS 2022; 52:100529. [DOI: 10.1016/j.jphotochemrev.2022.100529] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
15
|
Younus M, Valandro S, Gobeze HB, Ahmed S, Schanze KS. Wavelength and Solvent Controlled Energy and Charge Transfer in Donor-Acceptor Substituted Platinum Acetylide Complexes. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
16
|
Wang Z, Yamazaki S, Mikata Y, Oba M, Takashima H, Morimoto T, Ogawa A. Intramolecular Diels-Alder Reactions of α-Bromostyrene-Functionalized Unsaturated Carboxamides. J Org Chem 2022; 87:11148-11164. [PMID: 35944162 DOI: 10.1021/acs.joc.2c01417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Intramolecular cycloaddition reactions of α-bromostyrene-functionalized amides of monomethyl fumarate were investigated. The reaction of the amides with Et3N in toluene at 110 °C gave 1,4-dihydronaphthalenes. The 1,4-dihydronaphthalenes may be produced via the intramolecular Diels-Alder reaction, proton transfer, and dehydrobromination by a base, along with C═C bond isomerization by proton transfer. The reaction of amide derivatives with halogen on a benzene ring and alkali metal carbonates in toluene at 110 °C gave naphthalene derivatives directly. Dehydrogenation of various 1,4-dihydronaphthalenes with cesium or rubidium carbonate in toluene at 110 °C gave naphthalene derivatives. The retardation by TEMPO, acceleration by air for some substrates, and density functional theory calculations suggest a radical mechanism caused by intervention of molecular oxygen.
Collapse
Affiliation(s)
- Zhichao Wang
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, Gakuen-cho 1-1, Nakaku, Sakai, Osaka 599-8531, Japan
| | - Shoko Yamazaki
- Department of Chemistry, Nara University of Education, Takabatake-cho, Nara 630-8528, Japan
| | - Yuji Mikata
- Laboratory for Molecular and Functional Design, Department of Engineering, Nara Women's University Nara 630-8506, Japan
| | - Miho Oba
- Department of Chemistry, Faculty of Science, Nara Women's University, Nara 630-8506, Japan
| | - Hiroshi Takashima
- Department of Chemistry, Faculty of Science, Nara Women's University, Nara 630-8506, Japan
| | - Tsumoru Morimoto
- Graduate School of Materials Science, Nara Institute of Science and Technology (NAIST), Takayama, Ikoma, Nara 630-0192, Japan
| | - Akiya Ogawa
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, Gakuen-cho 1-1, Nakaku, Sakai, Osaka 599-8531, Japan
| |
Collapse
|
17
|
Coumarin-based two-photon AIE fluorophores: Photophysical properties and biological application. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
18
|
Busi KB, Kotha J, Bandaru S, Ghantasala JP, Haseena S, Bhamidipati K, Puvvada N, Ravva MK, Thondamal M, Chakrabortty S. Engineering colloidally stable, highly fluorescent and nontoxic Cu nanoclusters via reaction parameter optimization. RSC Adv 2022; 12:17585-17595. [PMID: 35765449 PMCID: PMC9194929 DOI: 10.1039/d2ra02819k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 05/27/2022] [Indexed: 12/29/2022] Open
Abstract
Metal nanoclusters (NCs) composed of the least number of atoms (a few to tens) have become very attractive for their emerging properties owing to their ultrasmall size. Preparing copper nanoclusters (Cu NCs) in an aqueous medium with high emission properties, strong colloidal stability, and low toxicity has been a long-standing challenge. Although Cu NCs are earth-abundant and inexpensive, they have been comparatively less explored due to their various limitations, such as ease of surface oxidation, poor colloidal stability, and high toxicity. To overcome these constraints, we established a facile synthetic route by optimizing the reaction parameters, especially altering the effective concentration of the reducing agent, to influence their optical characteristics. The improvement of the photoluminescence intensity and superior colloidal stability was modeled from a theoretical standpoint. Moreover, the as-synthesized Cu NCs showed a significant reduction of toxicity in both in vitro and in vivo models. The possibility of using such Cu NCs as a diagnostic probe toward C. elegans was explored. Also, the extension of our approach toward improving the photoluminescence intensity of the Cu NCs on other ligand systems was demonstrated.
Collapse
Affiliation(s)
- Kumar Babu Busi
- Department of Chemistry, SRM University AP Andhra Pradesh Andhra Pradesh 522240 India
| | - Jyothi Kotha
- Department of Biological Sciences, SRM University AP Andhra Pradesh Andhra Pradesh 522240 India
| | - Shamili Bandaru
- Department of Chemistry, SRM University AP Andhra Pradesh Andhra Pradesh 522240 India
| | | | - Sheik Haseena
- Department of Chemistry, SRM University AP Andhra Pradesh Andhra Pradesh 522240 India
| | - Keerti Bhamidipati
- Applied Biology Division CSIR-Indian Institute of Chemical Technology Hyderabad 500007 Telangana India
| | - Nagaprasad Puvvada
- Applied Biology Division CSIR-Indian Institute of Chemical Technology Hyderabad 500007 Telangana India
- Department of Chemistry, Indrashil University Rajpur Mehsana-382740 Gujarat India
| | - Mahesh Kumar Ravva
- Department of Chemistry, SRM University AP Andhra Pradesh Andhra Pradesh 522240 India
| | - Manjunatha Thondamal
- Department of Biological Sciences, SRM University AP Andhra Pradesh Andhra Pradesh 522240 India
| | | |
Collapse
|
19
|
Pirota V, Benassi A, Doria F. Lights on 2,5-diaryl tetrazoles: applications and limits of a versatile photoclick reaction. Photochem Photobiol Sci 2022; 21:879-898. [DOI: 10.1007/s43630-022-00173-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 01/13/2022] [Indexed: 01/14/2023]
Abstract
AbstractRecently, photoclick chemistry emerged as a powerful tool employed in several research fields, from medicinal chemistry and biology to material sciences. The growing interest in this type of chemical process is justified by the possibility to produce complex molecular systems using mild reaction conditions. However, the elevated spatio-temporal control offered by photoclick chemistry is highly intriguing, as it expands the range of applications. In this context, the light-triggered reaction of 2,5-diaryl tetrazoles with dipolarophiles emerged for its interesting features: excellent stability of the substrates, fast reaction kinetic, and the formation of a highly fluorescent product, fundamental for sensing applications. In the last years, 2,5-diaryl tetrazoles have been extensively employed, especially for bioorthogonal ligations, to label biomolecules and nucleic acids. In this review, we summarized recent applications of this interesting photoclick reaction, with a particular focus on biological fields. Moreover, we described the main limits that affect this system and current strategies proposed to overcome these issues. The general discussion here presented could prompt further optimization of the process and pave the way for the development of new original structures and innovative applications.
Graphical abstract
Collapse
|
20
|
Babu Busi K, Palanivel M, Kanta Ghosh K, Basu Ball W, Gulyás B, Padmanabhan P, Chakrabortty S. The Multifarious Applications of Copper Nanoclusters in Biosensing and Bioimaging and Their Translational Role in Early Disease Detection. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:301. [PMID: 35159648 PMCID: PMC8839130 DOI: 10.3390/nano12030301] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/30/2021] [Accepted: 01/14/2022] [Indexed: 02/04/2023]
Abstract
Nanoclusters possess an ultrasmall size, amongst other favorable attributes, such as a high fluorescence and long-term colloidal stability, and consequently, they carry several advantages when applied in biological systems for use in diagnosis and therapy. Particularly, the early diagnosis of diseases may be facilitated by the right combination of bioimaging modalities and suitable probes. Amongst several metallic nanoclusters, copper nanoclusters (Cu NCs) present advantages over gold or silver NCs, owing to their several advantages, such as high yield, raw abundance, low cost, and presence as an important trace element in biological systems. Additionally, their usage in diagnostics and therapeutic modalities is emerging. As a result, the fluorescent properties of Cu NCs are exploited for use in optical imaging technology, which is the most commonly used research tool in the field of biomedicine. Optical imaging technology presents a myriad of advantages over other bioimaging technologies, which are discussed in this review, and has a promising future, particularly in early cancer diagnosis and imaging-guided treatment. Furthermore, we have consolidated, to the best of our knowledge, the recent trends and applications of copper nanoclusters (Cu NCs), a class of metal nanoclusters that have been gaining much traction as ideal bioimaging probes, in this review. The potential modes in which the Cu NCs are used for bioimaging purposes (e.g., as a fluorescence, magnetic resonance imaging (MRI), two-photon imaging probe) are firstly delineated, followed by their applications as biosensors and bioimaging probes, with a focus on disease detection.
Collapse
Affiliation(s)
- Kumar Babu Busi
- Department of Chemistry, School of Engineering and Sciences, SRM University AP Andhra Pradesh, Gunntur, Andhra Pradesh 522502, India;
| | - Mathangi Palanivel
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 59 Nanyang Drive, Singapore 636921, Singapore; (M.P.); (K.K.G.); (B.G.)
| | - Krishna Kanta Ghosh
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 59 Nanyang Drive, Singapore 636921, Singapore; (M.P.); (K.K.G.); (B.G.)
| | - Writoban Basu Ball
- Department of Biological Sciences, School of Engineering and Sciences, SRM University AP Andhra Pradesh, Guntur, Andhra Pradesh 522502, India;
| | - Balázs Gulyás
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 59 Nanyang Drive, Singapore 636921, Singapore; (M.P.); (K.K.G.); (B.G.)
| | - Parasuraman Padmanabhan
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 59 Nanyang Drive, Singapore 636921, Singapore; (M.P.); (K.K.G.); (B.G.)
| | - Sabyasachi Chakrabortty
- Department of Chemistry, School of Engineering and Sciences, SRM University AP Andhra Pradesh, Gunntur, Andhra Pradesh 522502, India;
| |
Collapse
|
21
|
Ratiometric two-photon fluorescence probes for sensing, imaging and biomedicine applications at living cell and small animal levels. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214114] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
22
|
Abstract
In recent years, purely organic room-temperature phosphorescence (RTP) has aroused wide concern and promotes the development of the supramolecular phosphorescence. Different from organic crystallization, polymerization, or matrix rigidification, supramolecular strategy mainly takes advantage of the synergy between supramolecular co-assembly and strong binding by macrocyclic host compounds (cucurbit[n]urils, cyclodextrins, etc.) to overcome deficiencies such as poor processability and water solubility and improves RTP materials' quantum efficiency and lifetime in the solid state or in an aqueous solution. Meanwhile, it expands application, especially in aqueous solution, in cell imaging. Therefore, supramolecular phosphorescence will become a new growth point and will have broad application prospects in chemistry, biology, and material science.This Account focuses on the uniquely synergetic advantages of co-assembly and host-guest interaction from macrocyclic hosts for enhancing RTP. This Account starts with a brief introduction of the recent development of organic RTP materials as well as the host-guest interaction and co-assembly. Then, we introduce a supramolecular solid-state RTP strategy involving an ultrahigh phosphorescent quantum yield via the tight encapsulation of macrocyclic host cucurbit[6]uril, an ultralong lifetime via changing the substituents of phosphors, and long-lived and bright RTP by the synergy of host-guest interaction and polymerization. Meanwhile, the applications of solid-state RTP materials for anti-counterfeiting and data encryption are presented. The third part will be the water-phase supramolecular phosphorescence systems constructed by water-soluble macrocyclic host cucurbit[8]uril. Host-guest interaction and polymerization worked together toward efficient phosphorescence in aqueous solution, and the multi-stage assembly promoted phosphorescent applications such as cell targeted imaging and energy transfer. A humidity sensor and data encryption by the conversion of supramolecular hydrogels and xerogels are also involved. In the summary section, we present perspectives and possible research directions for supramolecular phosphorescence.Furthermore, on the basis of previous research, we would like to conclude and propose the developing concept of "macrocycles enhance guest's phosphorescence", and this concept not only means that the macrocyclic host limits the movement of the guest compound or promotes interactions between guest compounds but also involves the synergetic enhancement centered on macrocyclic compounds via multi-stage supramolecular assembly which further improves the efficiency of RTP, water solubility, and biocompatibility. And we believe that this concept will be able, together with theory of "assembly-induced emission" and "aggregation-induced emission", to accelerate the development of purely organic RTP materials.
Collapse
Affiliation(s)
- Xin-Kun Ma
- College of Chemistry, State Key Laboratory of Elemento Organic Chemistry, Nankai University, 94 Weijin Road, Nankai District, Tianjin 300071, P. R. China
| | - Yu Liu
- College of Chemistry, State Key Laboratory of Elemento Organic Chemistry, Nankai University, 94 Weijin Road, Nankai District, Tianjin 300071, P. R. China
| |
Collapse
|
23
|
An JM, Moon H, Verwilst P, Shin J, Kim BM, Park CK, Kim JS, Yeo SG, Kim HY, Kim D. Human Glioblastoma Visualization: Triple Receptor-Targeting Fluorescent Complex of Dye, SIWV Tetra-Peptide, and Serum Albumin Protein. ACS Sens 2021; 6:2270-2280. [PMID: 34100604 DOI: 10.1021/acssensors.1c00320] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Fluorescence guided surgery (FGS) has been highlighted in the clinical site for guiding surgical procedures and providing the surgeon with a real-time visualization of the operating field. FGS is a powerful technique for precise surgery, particularly tumor resection; however, clinically approved fluorescent dyes have often shown several limitations during FGS, such as non-tumor-targeting, low in vivo stability, insufficient emission intensity, and low blood-brain barrier penetration. In this study, we disclose a fluorescent dye complex, peptide, and protein for the targeted visualization of human glioblastoma (GBM) cells and tissues. Our noble triple receptor-targeting fluorescent complex (named BSA-OXN-SIWV) consists of (i) dipolar oxazepine dye (OXN), which has high stability, low cytotoxicity, bright fluorescence, and two-photon excitable, (ii) tetra-peptide (SIWV) for the targeting of the caveolin-1 receptor, and (iii) bovine serum-albumin (BSA) protein for the targeting of albondin (gp60) and secreted protein acidic and rich in cysteine receptor. The photophysical properties and binding mode of BSA-OXN-SIWV were analyzed, and the imaging of GBM cell lines and human clinical GBM tissues were successfully demonstrated in this study. Our findings hold great promise for the application of BSA-OXN-SIWV to GBM identification and the surgery at clinical sites, as a new FGS agent.
Collapse
Affiliation(s)
- Jong Min An
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Heejo Moon
- Department of Chemistry, College of Natural Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Peter Verwilst
- Rega Institute for Medical Research, Medicinal Chemistry, KU Leuven, 3000 Leuven, Belgium
| | - Jinwoo Shin
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - B. Moon Kim
- Department of Chemistry, College of Natural Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Chul-Kee Park
- Department of Neurosurgery, Seoul National University Hospital, Seoul National University, College of Medicine, Seoul 03080, Republic of Korea
| | - Jong Seung Kim
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Seung Geun Yeo
- Department of Otorhinolaryngology, Head & Neck Surgery, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hyo Young Kim
- R&D Division of Drug Discovery Department, SPARK Biopharma, Seoul 08791, Republic of Korea
| | - Dokyoung Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Anatomy and Neurobiology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Center for Converging Humanities, Kyung Hee University, Seoul 02447, Republic of Korea
- Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, School of Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
24
|
Dou Y, Zhu Q, Du K. Recent Advances in Two-Photon AIEgens and Their Application in Biological Systems. Chembiochem 2021; 22:1871-1883. [PMID: 33393721 DOI: 10.1002/cbic.202000709] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 12/28/2020] [Indexed: 12/21/2022]
Abstract
Two-photon fluorescence imaging technology has the advantages of high light stability, little light damage, and high spatiotemporal resolution, which make it a powerful biological analysis method. However, due to the high concentration or aggregation state of traditional organic light-emitting molecules, the fluorescence intensity is easily reduced or disappears completely, and is not conducive to optimal application. The concept of aggregation-induced emission (AIE) provides a solution to the problem of aggregation-induced luminescence quenching (ACQ), and realizes the high fluorescence quantum yield of luminescent molecules in the aggregation state. In addition, two-photon absorption properties can readily be improved just by increasing the loading content of AIE fluorogen (AIEgen). Therefore, the design and preparation of two-photon fluorescence probes based on AIEgen to achieve high-efficiency fluorescence imaging in vitro/in vivo has become a major research hotspot. This review aims to summarize representative two-photon AIEgens based on triphenylamine, tetraphenylethene, quinoline, naphthalene and other new structures from the past five years, and discuss their great potential in bioimaging applications.
Collapse
Affiliation(s)
- Yandong Dou
- Collaborative Innovation Center, Yangtze River Delta Region Green Pharmaceutical, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Qing Zhu
- Collaborative Innovation Center, Yangtze River Delta Region Green Pharmaceutical, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Kui Du
- School of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, P. R. China
| |
Collapse
|
25
|
Kim J, Oh JH, Kim D. Recent advances in single-benzene-based fluorophores: physicochemical properties and applications. Org Biomol Chem 2021; 19:933-946. [PMID: 33475119 DOI: 10.1039/d0ob02387f] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Fluorescence-based materials and associated techniques (analytical, imaging, and sensing techniques) have been highlighted over the last century throughout various basic research fields and industries. Organic molecule-based fluorophores, in particular, have ushered in a new era in biology and materials science. To date, hundreds of organic fluorophores have been developed, and many studies have introduced new rationales for the fluorophore design and the analysis of the relationship between its structure and photophysical properties both in the solution- and solid-state. In this review, we summarize the recent advances (mainly from 2015 to 2020) in single-benzene-based fluorophores (SBBFs), which have an electron-donor (D)-acceptor (A) type dipolar structure within a compact benzene backbone. We also present a systematic outline of the physicochemical properties of SBBFs and representative examples of their applications, which will provide useful context for the development of new SBBF derivatives in fluorophore-related materials science fields.
Collapse
Affiliation(s)
- Jaehoon Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea.
| | - Ji Hyeon Oh
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea.
| | - Dokyoung Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea. and Department of Anatomy and Neurobiology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea and Center for Converging Humanities, Kyung Hee University, Seoul 02447, Republic of Korea and Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
26
|
Jung Y, Kim BW, Jung J, Kim BM, Kim D. Liposomal‐Encapsulated Near‐Infrared Fluorophore Based on
π‐Extended
Dipolar Naphthalene Platform and Its Imaging Applications in Human Cancer Cells. B KOREAN CHEM SOC 2020. [DOI: 10.1002/bkcs.12169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yuna Jung
- Department of Biomedical Science, Graduate School Kyung Hee University Seoul 02447 Republic of Korea
| | - Byeong Wook Kim
- Department of Chemistry, College of Natural Sciences Seoul National University Seoul 08826 Republic of Korea
| | - Junyang Jung
- Department of Biomedical Science, Graduate School Kyung Hee University Seoul 02447 Republic of Korea
- Department of Anatomy and Neurobiology, College of Medicine Kyung Hee University Seoul 02447 Republic of Korea
| | - B. Moon Kim
- Department of Chemistry, College of Natural Sciences Seoul National University Seoul 08826 Republic of Korea
| | - Dokyoung Kim
- Department of Biomedical Science, Graduate School Kyung Hee University Seoul 02447 Republic of Korea
- Department of Anatomy and Neurobiology, College of Medicine Kyung Hee University Seoul 02447 Republic of Korea
- Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, School of Medicine, Graduate School, Kyung Hee University Seoul 02447 Republic of Korea
| |
Collapse
|
27
|
An JM, Moon H, Kim Y, Kang S, Kim Y, Jung Y, Park S, Verwilst P, Kim BM, Kang JS, Kim D. Visualizing mitochondria and mouse intestine with a fluorescent complex of a naphthalene-based dipolar dye and serum albumin. J Mater Chem B 2020; 8:7642-7651. [DOI: 10.1039/d0tb01314e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A fluorophore–protein complex for the visualization of mitochondria and the mouse intestine was developed. The complex formation of a naphthalene-based dipolar dye and serum albumin was identified and its imaging applications were investigated.
Collapse
|