1
|
Lan Y, Xie S, Liu B. Regioselective 1,2-Di(hetero)arylation of Activated and Unactivated Alkenes with (Hetero)aryl Chlorides. Org Lett 2025; 27:4952-4957. [PMID: 40310882 DOI: 10.1021/acs.orglett.5c01269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
Abstract
Aryl chlorides are more commercially available and lower cost compared with aryl bromides and iodides. However, the use of (hetero)aryl chlorides as aryl radical precursors for the di(hetero)arylation of alkenes remains an underdeveloped area. Furthermore, existing examples of theses reactions are predominantly confined to activated alkenes. In this study, we introduce a photoirradiation-promoted benzophenone-catalyzed 1,2-di(hetero)arylation process that is applicable to both activated and unactivated alkenes, utilizing (hetero)aryl chlorides and cyanoarenes as aryl sources. Importantly, this method allows for the simultaneous introduction of two heterocycles to alkenes with high regioselectivity.
Collapse
Affiliation(s)
- Yingjun Lan
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, P. R. China
| | - Siqi Xie
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, P. R. China
| | - Bin Liu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, P. R. China
| |
Collapse
|
2
|
Pfund B, Wenger OS. Excited Organic Radicals in Photoredox Catalysis. JACS AU 2025; 5:426-447. [PMID: 40017739 PMCID: PMC11862960 DOI: 10.1021/jacsau.4c00974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/21/2024] [Accepted: 12/27/2024] [Indexed: 03/01/2025]
Abstract
Many important synthetic-oriented works have proposed excited organic radicals as photoactive species, yet mechanistic studies raised doubts about whether they can truly function as photocatalysts. This skepticism originates from the formation of (photo)redox-active degradation products and the picosecond decay of electronically excited radicals, which is considered too short for diffusion-based photoinduced electron transfer reactions. From this perspective, we analyze important synthetic transformations where organic radicals have been proposed as photocatalysts, comparing their theoretical maximum excited state potentials with the potentials required for the observed photocatalytic reactivity. We summarize mechanistic studies of structurally similar photocatalysts indicating different reaction pathways for some catalytic systems, addressing cases where the proposed radical photocatalysts exceed their theoretical maximum reactivity. Additionally, we perform a kinetic analysis to explain the photoinduced electron transfer observed in excited radicals on subpicosecond time scales. We further rationalize the potential anti-Kasha reactivity from higher excited states with femtosecond lifetimes, highlighting how future photocatalysis advancements could unlock new photochemical pathways.
Collapse
Affiliation(s)
- Björn Pfund
- Department
of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Oliver S. Wenger
- Department
of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| |
Collapse
|
3
|
Calogero F, Wilczek L, Pinosa E, Gualandi A, Dorta R, Herrera A, Dai Y, Rossignol A, Negri F, Ziani Z, Fermi A, Ceroni P, Cozzi PG. Stable Meisenheimer Complexes as Powerful Photoreductants Readily Obtained from Aza-Hetero Aromatic Compounds. Angew Chem Int Ed Engl 2024; 63:e202411074. [PMID: 39078744 DOI: 10.1002/anie.202411074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Indexed: 10/25/2024]
Abstract
Excited states of radical anions derived from the photoreduction of stable organic molecules are suggested to serve as potent reductants. However, excited states of these species are too short-lived to allow bimolecular quenching processes. Recently, the singlet excited state of Meisenheimer complexes, which possess a long-lived excited state, was identified as the competent species for the reduction of challenging organic substrates (-2.63 V vs. SCE, saturated calomel electrode). To produce reasonably stable and simply accessible different Meisenheimer complexes, the addition of nBuLi to readily available aromatic heterocycles was investigated, and the photoreactivity of the generated species was studied. In this paper, we present the straightforward preparation of a family of powerful photoreductants (*Eox<-3 V vs. SCE in their excited states, determined by DFT and time-dependent TD-DFT calculations; DFT, density functional theory) that can induce dehalogenation of electron-rich aryl chlorides and to form C-C bond through radical cyclization. Photophysical analyses and computational studies in combination with experimental mechanistic investigations demonstrate the ability of the adduct to act as a strong electron donor under visible light irradiation.
Collapse
Affiliation(s)
- Francesco Calogero
- Dipartimento di Chimica "Giacomo Ciamician" Alma Mater Studiorum-, Università di Bologna, Via Gobetti 85, 40129, Bologna, Italy
- Center for Chemical Catalysis-C3 Alma Mater Studiorum-, Università di Bologna, Via Gobetti 85, 40129, Bologna, Italy
| | - Leonie Wilczek
- Dipartimento di Chimica "Giacomo Ciamician" Alma Mater Studiorum-, Università di Bologna, Via Gobetti 85, 40129, Bologna, Italy
- Institute of Organic Chemistry, University of Cologne, Greinstraße 4, 50939, Köln, Germany
| | - Emanuele Pinosa
- Dipartimento di Chimica "Giacomo Ciamician" Alma Mater Studiorum-, Università di Bologna, Via Gobetti 85, 40129, Bologna, Italy
- Center for Chemical Catalysis-C3 Alma Mater Studiorum-, Università di Bologna, Via Gobetti 85, 40129, Bologna, Italy
| | - Andrea Gualandi
- Dipartimento di Chimica "Giacomo Ciamician" Alma Mater Studiorum-, Università di Bologna, Via Gobetti 85, 40129, Bologna, Italy
- Center for Chemical Catalysis-C3 Alma Mater Studiorum-, Università di Bologna, Via Gobetti 85, 40129, Bologna, Italy
| | - Romano Dorta
- Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität, Egerlandstr. 1, 91058, Erlangen, Germany
| | - Alberto Herrera
- Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität, Egerlandstr. 1, 91058, Erlangen, Germany
| | - Yasi Dai
- Dipartimento di Chimica "Giacomo Ciamician" Alma Mater Studiorum-, Università di Bologna, Via Gobetti 85, 40129, Bologna, Italy
- Center for Chemical Catalysis-C3 Alma Mater Studiorum-, Università di Bologna, Via Gobetti 85, 40129, Bologna, Italy
| | - Arthur Rossignol
- Dipartimento di Chimica "Giacomo Ciamician" Alma Mater Studiorum-, Università di Bologna, Via Gobetti 85, 40129, Bologna, Italy
| | - Fabrizia Negri
- Dipartimento di Chimica "Giacomo Ciamician" Alma Mater Studiorum-, Università di Bologna, Via Gobetti 85, 40129, Bologna, Italy
- Center for Chemical Catalysis-C3 Alma Mater Studiorum-, Università di Bologna, Via Gobetti 85, 40129, Bologna, Italy
| | - Zakaria Ziani
- Dipartimento di Chimica "Giacomo Ciamician" Alma Mater Studiorum-, Università di Bologna, Via Gobetti 85, 40129, Bologna, Italy
| | - Andrea Fermi
- Dipartimento di Chimica "Giacomo Ciamician" Alma Mater Studiorum-, Università di Bologna, Via Gobetti 85, 40129, Bologna, Italy
- Center for Chemical Catalysis-C3 Alma Mater Studiorum-, Università di Bologna, Via Gobetti 85, 40129, Bologna, Italy
| | - Paola Ceroni
- Dipartimento di Chimica "Giacomo Ciamician" Alma Mater Studiorum-, Università di Bologna, Via Gobetti 85, 40129, Bologna, Italy
- Center for Chemical Catalysis-C3 Alma Mater Studiorum-, Università di Bologna, Via Gobetti 85, 40129, Bologna, Italy
| | - Pier Giorgio Cozzi
- Dipartimento di Chimica "Giacomo Ciamician" Alma Mater Studiorum-, Università di Bologna, Via Gobetti 85, 40129, Bologna, Italy
- Center for Chemical Catalysis-C3 Alma Mater Studiorum-, Università di Bologna, Via Gobetti 85, 40129, Bologna, Italy
| |
Collapse
|
4
|
Ruppert H, Meister A, Janßen P, Greb L. Conformational and Substitution Effects on the Donor and Reducing Strength of Tin(II) Porphyrinogens. Chemistry 2024; 30:e202401685. [PMID: 38803093 DOI: 10.1002/chem.202401685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 05/29/2024]
Abstract
Meso-octaalkylcalix[4]pyrrolates are a class of redox-active porphyrinogen ligands. They have been well established in d- and f-block chemistry for over three decades but have only recently been introduced as ligands for p-block elements. Here, we present a study on the influence of meso-substituents on the redox chemistry of calix[4]pyrrolato stannate(II) dianions [2R]2- (R=Me, Et). Expansion of the normal-mode structural decomposition (NSD) method, well known for porphyrin chemistry, provides insights into the ligand conformation of a calix[4]pyrrolato p-block complex. Combined with the results of spectroscopic donor scaling, electrochemical studies, and quantum mechanical bond analysis tools, subtle but significant substitution and conformational effects on the electronic structure are revealed. Exploiting this knowledge rationalizes the role of this class of tin(II) dianions to act as potent reducing agents, but can also be expanded for other central elements. Photoexcitation boosts this reactivity further, allowing for the reduction of even challenging chlorobenzene.
Collapse
Affiliation(s)
- Heiko Ruppert
- Anorganisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 275, 69120, Heidelberg, Germany
| | - Arne Meister
- Anorganisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 275, 69120, Heidelberg, Germany
| | - Paul Janßen
- Anorganisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 275, 69120, Heidelberg, Germany
| | - Lutz Greb
- Anorganisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 275, 69120, Heidelberg, Germany
| |
Collapse
|
5
|
Arena D, Verde-Sesto E, Rivilla I, Pomposo JA. Artificial Photosynthases: Single-Chain Nanoparticles with Manifold Visible-Light Photocatalytic Activity for Challenging "in Water" Organic Reactions. J Am Chem Soc 2024; 146:14397-14403. [PMID: 38639303 PMCID: PMC11140743 DOI: 10.1021/jacs.4c02718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 04/20/2024]
Abstract
Photocatalyzed reactions of organic substances in aqueous media are challenging transformations, often because of scarce solubility of substrates and catalyst deactivation. Herein, we report single-chain nanoparticles, SCNPs, capable of efficiently catalyzing four different "in water" organic reactions by employing visible light as the only external energy source. Specifically, we decorated a high-molecular-weight copolymer, poly(OEGMA300-r-AEMA), with iridium(III) cyclometalated complex pendants at varying content amounts. The isolated functionalized copolymers demonstrated self-assembly into noncovalent, amphiphilic SCNPs in water, which enabled efficient visible-light photocatalysis of two reactions unprecedentedly reported in water, namely, [2 + 2] photocycloaddition of vinyl arenes and α-arylation of N-arylamines. Additionally, aerobic oxidation of 9-substituted anthracenes and β-sulfonylation of α-methylstyrene were successfully carried out in aqueous media. Hence, by merging metal-mediated photocatalysis and SCNPs for the fabrication of artificial photoenzyme-like nano-objects─i.e., artificial photosynthases (APS)─our work broadens the possibilities for performing challenging "in water" organic transformations via visible-light photocatalysis.
Collapse
Affiliation(s)
- Davide Arena
- Centro
de Física de Materiales (CSIC-UPV/EHU)-Materials Physics Center
MPC, P° Manuel Lardizabal 5, E-20018 Donostia, Spain
| | - Ester Verde-Sesto
- Centro
de Física de Materiales (CSIC-UPV/EHU)-Materials Physics Center
MPC, P° Manuel Lardizabal 5, E-20018 Donostia, Spain
- IKERBASQUE-Basque
Foundation for Science, Plaza Euskadi 5, E-48009 Bilbao, Spain
| | - Iván Rivilla
- IKERBASQUE-Basque
Foundation for Science, Plaza Euskadi 5, E-48009 Bilbao, Spain
- Departamento
de Química Orgánica I, Centro de Innovación en
Química Avanzada (ORFEO−CINQA), University of the Basque Country (UPV/EHU), Faculty of Chemistry, P° Manuel Lardizabal 3, E-20018 Donostia, Spain
- Donostia
International Physics Center (DIPC), P° Manuel Lardizabal 4, E-20018 Donostia, Spain
| | - José A. Pomposo
- Centro
de Física de Materiales (CSIC-UPV/EHU)-Materials Physics Center
MPC, P° Manuel Lardizabal 5, E-20018 Donostia, Spain
- IKERBASQUE-Basque
Foundation for Science, Plaza Euskadi 5, E-48009 Bilbao, Spain
- Departamento
de Polímeros y Materiales Avanzados: Física, Química
y Tecnología, University of the Basque
Country (UPV/EHU), Faculty of Chemistry, P° Manuel Lardizabal 3, E-20018 Donostia, Spain
| |
Collapse
|
6
|
Zubkov MO, Dilman AD. Radical reactions enabled by polyfluoroaryl fragments: photocatalysis and beyond. Chem Soc Rev 2024; 53:4741-4785. [PMID: 38536104 DOI: 10.1039/d3cs00889d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Polyfluoroarenes have been known for a long time, but they are most often used as fluorinated building blocks for the synthesis of aromatic compounds. At the same time, due to peculiar fluorine effect, they have unique properties that provide applications in various fields ranging from synthesis to materials science. This review summarizes advances in the radical chemistry of polyfluoroarenes, which have become possible mainly with the advent of photocatalysis. Transformations of the fluorinated ring via the C-F bond activation, as well as use of fluoroaryl fragments as activating groups and hydrogen atom transfer agents are discussed. The ability of fluoroarenes to serve as catalysts is also considred.
Collapse
Affiliation(s)
- Mikhail O Zubkov
- N. D. Zelinsky Institute of Organic Chemistry, Leninsky prosp. 47, 119991 Moscow, Russian Federation.
| | - Alexander D Dilman
- N. D. Zelinsky Institute of Organic Chemistry, Leninsky prosp. 47, 119991 Moscow, Russian Federation.
| |
Collapse
|
7
|
Tian X, Liu Y, Yakubov S, Schütte J, Chiba S, Barham JP. Photo- and electro-chemical strategies for the activations of strong chemical bonds. Chem Soc Rev 2024; 53:263-316. [PMID: 38059728 DOI: 10.1039/d2cs00581f] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
The employment of light and/or electricity - alternatively to conventional thermal energy - unlocks new reactivity paradigms as tools for chemical substrate activations. This leads to the development of new synthetic reactions and a vast expansion of chemical spaces. This review summarizes recent developments in photo- and/or electrochemical activation strategies for the functionalization of strong bonds - particularly carbon-heteroatom (C-X) bonds - via: (1) direct photoexcitation by high energy UV light; (2) activation via photoredox catalysis under irradiation with relatively lower energy UVA or blue light; (3) electrochemical reduction; (4) combination of photocatalysis and electrochemistry. Based on the types of the targeted C-X bonds, various transformations ranging from hydrodefunctionalization to cross-coupling are covered with detailed discussions of their reaction mechanisms.
Collapse
Affiliation(s)
- Xianhai Tian
- Fakultät für Chemie und Pharmazie, Universität Regensburg, 93040 Regensburg, Germany.
| | - Yuliang Liu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore.
| | - Shahboz Yakubov
- Fakultät für Chemie und Pharmazie, Universität Regensburg, 93040 Regensburg, Germany.
| | - Jonathan Schütte
- Fakultät für Chemie und Pharmazie, Universität Regensburg, 93040 Regensburg, Germany.
| | - Shunsuke Chiba
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore.
| | - Joshua P Barham
- Fakultät für Chemie und Pharmazie, Universität Regensburg, 93040 Regensburg, Germany.
| |
Collapse
|
8
|
Halder S, Mandal S, Kundu A, Mandal B, Adhikari D. Super-Reducing Behavior of Benzo[ b]phenothiazine Anion Under Visible-Light Photoredox Condition. J Am Chem Soc 2023; 145:22403-22412. [PMID: 37788971 DOI: 10.1021/jacs.3c05787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Herein we describe the anion of benzo[b]phenothiazine as a super reductant species upon excitation by visible light. In contrary to N-substituted phenothiazines or benzophenothiazines, this molecule holds extreme reducing power to promote single electron transfer-based reductive cleavage at a potential of -3.51 V vs SCE. As a proof, a plethora of aryl chloride substrates have been reductively cleaved to fabricate molecules of the class isoindolinone and oxindole. Moreover, an aryl-chloride bond has been homolytically cleaved to generate aryl radicals that have been utilized for C-C cross-coupling or C-P bond formation reactions. To prove its extreme reducing ability, some of the aryl fluoride bonds have been cleaved to generate aryl radicals. A detailed photophysical study including steady-state and time-resolved spectroscopic techniques explain the molecule's behavior upon light excitation, and that correlates with its reactivity pattern. Theoretical calculations disclose the benzophenothiazine anion to be slightly puckered at the ground state as the molecule is antiaromatic in nature. In contrast, the excited-state geometry is planar, which is also close to that of the intermediate after one electron transfer. Abating the antiaromaticity of the anionic species is partially responsible for its highly reducing behavior.
Collapse
Affiliation(s)
- Supriya Halder
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, SAS Nagar 140306, India
| | - Sourav Mandal
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, SAS Nagar 140306, India
| | - Abhishek Kundu
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, SAS Nagar 140306, India
| | - Baishanal Mandal
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, SAS Nagar 140306, India
| | - Debashis Adhikari
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, SAS Nagar 140306, India
| |
Collapse
|
9
|
Lowe GA. Enabling artificial photosynthesis systems with molecular recycling: A review of photo- and electrochemical methods for regenerating organic sacrificial electron donors. Beilstein J Org Chem 2023; 19:1198-1215. [PMID: 37592934 PMCID: PMC10428615 DOI: 10.3762/bjoc.19.88] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/17/2023] [Indexed: 08/19/2023] Open
Abstract
This review surveys advances in the literature that impact organic sacrificial electron donor recycling in artificial photosynthesis. Systems for photocatalytic carbon dioxide reduction are optimized using sacrificial electron donors. One strategy for coupling carbon dioxide reduction and water oxidation to achieve artificial photosynthesis is to use a redox mediator, or recyclable electron donor. This review highlights photo- and electrochemical methods for recycling amines and NADH analogues that can be used as electron donors in artificial photosynthesis. Important properties of sacrificial donors and recycling strategies are also discussed. Compounds from other fields, such as redox flow batteries and decoupled water splitting research, are introduced as alternative recyclable sacrificial electron donors and their oxidation potentials are compared to the redox potentials of some model photosensitizers. The aim of this review is to act as a reference for researchers developing photocatalytic systems with sacrificial electron donors, and for researchers interested in designing new redox mediator and recyclable electron donor species.
Collapse
Affiliation(s)
- Grace A Lowe
- van ’t Hoff Institute for Molecular Sciences (HIMS), Universiteit van Amsterdam (UvA), Science Park 904, Amsterdam, 1098 XH, The Netherlands
| |
Collapse
|
10
|
Sheng H, Liu Q, Zhang BB, Wang ZX, Chen XY. Visible-Light-Induced N-Heterocyclic Carbene-Catalyzed Single Electron Reduction of Mono-Fluoroarenes. Angew Chem Int Ed Engl 2023; 62:e202218468. [PMID: 36633173 DOI: 10.1002/anie.202218468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/13/2023]
Abstract
Fluoroarenes are abundant and readily available feedstocks. However, due to the high reduction potentials of mono-fluoroarenes, their photoreduction remains a continuing challenge, motivating the development of efficient activation modes to address this issue. This report presents the blue light-induced N-heterocyclic carbene (NHC)-catalyzed single electron reduction of mono-fluoroarenes for biaryl cross-couplings. We discovered that under blue light irradiation, NHC/tBuOK combination could construct powerful photoactive architectures to promote single electron transfer for Caryl -F bond reduction via forming highly reducing NHC radical anion. Notably, the strategy was also successful to reduce Caryl -O, Caryl -N, and Caryl -S bonds for biaryl cross-couplings.
Collapse
Affiliation(s)
- He Sheng
- School of Chemical Sciences, University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiang Liu
- School of Chemical Sciences, University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Bei-Bei Zhang
- School of Chemical Sciences, University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhi-Xiang Wang
- School of Chemical Sciences, University of the Chinese Academy of Sciences, Beijing, 100049, China.,Binzhou Institute of Technology, Weiqiao-UCAS Science and Technology Park, Binzhou, Shandong Province, 256606, China
| | - Xiang-Yu Chen
- School of Chemical Sciences, University of the Chinese Academy of Sciences, Beijing, 100049, China.,Binzhou Institute of Technology, Weiqiao-UCAS Science and Technology Park, Binzhou, Shandong Province, 256606, China
| |
Collapse
|
11
|
Schmid L, Fokin I, Brändlin M, Wagner D, Siewert I, Wenger OS. Accumulation of Four Electrons on a Terphenyl (Bis)disulfide. Chemistry 2022; 28:e202202386. [PMID: 36351246 PMCID: PMC10098965 DOI: 10.1002/chem.202202386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Indexed: 11/11/2022]
Abstract
The activation of N2 , CO2 or H2 O to energy-rich products relies on multi-electron transfer reactions, and consequently it seems desirable to understand the basics of light-driven accumulation of multiple redox equivalents. Most of the previously reported molecular acceptors merely allow the storage of up to two electrons. We report on a terphenyl compound including two disulfide bridges, which undergoes four-electron reduction in two separate electrochemical steps, aided by a combination of potential compression and inversion. Under visible-light irradiation using the organic super-electron donor tetrakis(dimethylamino)ethylene, a cascade of light-induced reaction steps is observed, leading to the cleavage of both disulfide bonds. Whereas one of them undergoes extrusion of sulfur to result in a thiophene, the other disulfide is converted to a dithiolate. These insights seem relevant to enhance the current fundamental understanding of photochemical energy storage.
Collapse
Affiliation(s)
- Lucius Schmid
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056, Basel, Switzerland
| | - Igor Fokin
- University of Göttingen, Institute of Inorganic Chemistry, Tammannstrasse 4, 37077, Göttingen, Germany
| | - Mathis Brändlin
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056, Basel, Switzerland
| | - Dorothee Wagner
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056, Basel, Switzerland
| | - Inke Siewert
- University of Göttingen, Institute of Inorganic Chemistry, Tammannstrasse 4, 37077, Göttingen, Germany
| | - Oliver S Wenger
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056, Basel, Switzerland
| |
Collapse
|
12
|
Glaser F, Wenger OS. Sensitizer-controlled photochemical reactivity via upconversion of red light. Chem Sci 2022; 14:149-161. [PMID: 36605743 PMCID: PMC9769107 DOI: 10.1039/d2sc05229f] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/21/2022] [Indexed: 12/02/2022] Open
Abstract
By combining the energy input from two red photons, chemical reactions that would normally require blue or ultraviolet irradiation become accessible. Key advantages of this biphotonic excitation strategy are that red light usually penetrates deeper into complex reaction mixtures and causes less photo-damage than direct illumination in the blue or ultraviolet. Here, we demonstrate that the primary light-absorber of a dual photocatalytic system comprised of a transition metal-based photosensitizer and an organic co-catalyst can completely alter the reaction outcome. Photochemical reductions are achieved with a copper(i) complex in the presence of a sacrificial electron donor, whereas oxidative substrate activation occurs with an osmium(ii) photosensitizer. Based on time-resolved laser spectroscopy, this changeover in photochemical reactivity is due to different underlying biphotonic mechanisms. Following triplet energy transfer from the osmium(ii) photosensitizer to 9,10-dicyanoanthracene (DCA) and subsequent triplet-triplet annihilation upconversion, the fluorescent singlet excited state of DCA triggers oxidative substrate activation, which initiates the cis to trans isomerization of an olefin, a [2 + 2] cycloaddition, an aryl ether to ester rearrangement, and a Newman-Kwart rearrangement. This oxidative substrate activation stands in contrast to the reactivity with a copper(i) photosensitizer, where photoinduced electron transfer generates the DCA radical anion, which upon further excitation triggers reductive dehalogenations and detosylations. Our study provides the proof-of-concept for controlling the outcome of a red-light driven biphotonic reaction by altering the photosensitizer, and this seems relevant in the greater context of tailoring photochemical reactivities.
Collapse
Affiliation(s)
- Felix Glaser
- Department of Chemistry, University of Basel St. Johanns-Ring 19 4056 Basel Switzerland
| | - Oliver S Wenger
- Department of Chemistry, University of Basel St. Johanns-Ring 19 4056 Basel Switzerland
| |
Collapse
|
13
|
Moore JT, Dorantes MJ, Pengmei Z, Schwartz TM, Schaffner J, Apps SL, Gaggioli CA, Das U, Gagliardi L, Blank DA, Lu CC. Light-Driven Hydrodefluorination of Electron-Rich Aryl Fluorides by an Anionic Rhodium-Gallium Photoredox Catalyst. Angew Chem Int Ed Engl 2022; 61:e202205575. [PMID: 36017770 PMCID: PMC9826370 DOI: 10.1002/anie.202205575] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Indexed: 01/11/2023]
Abstract
An anionic Rh-Ga complex catalyzed the hydrodefluorination of challenging C-F bonds in electron-rich aryl fluorides and trifluoromethylarenes when irradiated with violet light in the presence of H2 , a stoichiometric alkoxide base, and a crown-ether additive. Based on theoretical calculations, the lowest unoccupied molecular orbital (LUMO), which is delocalized across both the Rh and Ga atoms, becomes singly occupied upon excitation, thereby poising the Rh-Ga complex for photoinduced single-electron transfer (SET). Stoichiometric and control reactions support that the C-F activation is mediated by the excited anionic Rh-Ga complex. After SET, the proposed neutral Rh0 intermediate was detected by EPR spectroscopy, which matched the spectrum of an independently synthesized sample. Deuterium-labeling studies corroborate the generation of aryl radicals during catalysis and their subsequent hydrogen-atom abstraction from the THF solvent to generate the hydrodefluorinated arene products. Altogether, the combined experimental and theoretical data support an unconventional bimetallic excitation that achieves the activation of strong C-F bonds and uses H2 and base as the terminal reductant.
Collapse
Affiliation(s)
- James T. Moore
- Department of ChemistryUniversity of Minnesota207 Pleasant Street SEMinneapolisMinnesota55455-0431USA
| | - Michael J. Dorantes
- Department of ChemistryUniversity of Minnesota207 Pleasant Street SEMinneapolisMinnesota55455-0431USA
| | - Zihan Pengmei
- Department of ChemistryUniversity of Minnesota207 Pleasant Street SEMinneapolisMinnesota55455-0431USA
| | - Timothy M. Schwartz
- Department of ChemistryUniversity of Minnesota207 Pleasant Street SEMinneapolisMinnesota55455-0431USA,Institut für Anorganische ChemieUniversität BonnGerhard-Domagk-Str. 1Bonn53121Deutschland
| | - Jacob Schaffner
- Department of ChemistryUniversity of Minnesota207 Pleasant Street SEMinneapolisMinnesota55455-0431USA
| | - Samantha L. Apps
- Department of ChemistryUniversity of Minnesota207 Pleasant Street SEMinneapolisMinnesota55455-0431USA
| | - Carlo A. Gaggioli
- Department of ChemistryUniversity of Chicago5735 S Ellis Ave.ChicagoIllinois60637USA
| | - Ujjal Das
- Institut für Anorganische ChemieUniversität BonnGerhard-Domagk-Str. 1Bonn53121Deutschland
| | - Laura Gagliardi
- Department of ChemistryUniversity of Chicago5735 S Ellis Ave.ChicagoIllinois60637USA
| | - David A. Blank
- Department of ChemistryUniversity of Minnesota207 Pleasant Street SEMinneapolisMinnesota55455-0431USA
| | - Connie C. Lu
- Department of ChemistryUniversity of Minnesota207 Pleasant Street SEMinneapolisMinnesota55455-0431USA,Institut für Anorganische ChemieUniversität BonnGerhard-Domagk-Str. 1Bonn53121Deutschland
| |
Collapse
|
14
|
Zott MD, Canestraight VM, Peters JC. Mechanism of a Luminescent Dicopper System That Facilitates Electrophotochemical Coupling of Benzyl Chlorides via a Strongly Reducing Excited State. ACS Catal 2022; 12:10781-10786. [PMID: 37388409 PMCID: PMC10306173 DOI: 10.1021/acscatal.2c03215] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Photochemical radical generation has become a modern staple in chemical synthesis and methodology. Herein, we detail the photochemistry of a highly reducing, highly luminescent dicopper system [Cu2] (Eox* ≈ -2.7 V vs SCE; τ0 ≈ 10 μs) within the context of a model reaction: single-electron reduction of benzyl chlorides. The dicopper system is mechanistically well defined. As we show, it is the [Cu2]* excited state that serves as the outer-sphere photoreductant of benzyl chloride substrates; the ground-state oxidized byproduct, [Cu2]+, is electrochemically recycled, demonstrating a catalytic electrophotochemical C-C coupling process.
Collapse
Affiliation(s)
- Michael D Zott
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Virginia M Canestraight
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Jonas C Peters
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
15
|
Moore JT, Dorantes MJ, Pengmei Z, Schwartz TM, Schaffner J, Apps SL, Gaggioli CA, Das U, Gagliardi L, Blank DA, Lu CC. Light‐Driven Hydrodefluorination of Electron‐Rich Aryl Fluorides by an Anionic Rhodium‐Gallium Photoredox Catalyst. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- James T. Moore
- University of Minnesota College of Science and Engineering Chemistry UNITED STATES
| | - Michael J. Dorantes
- University of Minnesota College of Science and Engineering Chemistry UNITED STATES
| | - Zihan Pengmei
- University of Chicago Department of Chemistry Chemistry UNITED STATES
| | - Timothy M. Schwartz
- University of Bonn: Rheinische Friedrich-Wilhelms-Universitat Bonn Inorganic Chemistry GERMANY
| | - Jacob Schaffner
- University of Minnesota College of Science and Engineering Chemistry UNITED STATES
| | - Samantha L. Apps
- University of Minnesota College of Science and Engineering Chemistry UNITED STATES
| | - Carlo A. Gaggioli
- University of Chicago Department of Chemistry Chemistry UNITED STATES
| | - Ujjal Das
- University of Bonn: Rheinische Friedrich-Wilhelms-Universitat Bonn Inorganic Chemistry GERMANY
| | - Laura Gagliardi
- University of Chicago Department of Chemistry Chemistry UNITED STATES
| | - David A. Blank
- University of Minnesota College of Science and Engineering Chemistry UNITED STATES
| | - Connie C. Lu
- University of Minnesota College of Science and Engineering Chemistry Gerhard-Domagk-Straße 1 53121 Bonn GERMANY
| |
Collapse
|
16
|
Visible-Light Photocatalytic Reduction of Aryl Halides as a Source of Aryl Radicals. Molecules 2022; 27:molecules27175364. [PMID: 36080129 PMCID: PMC9458128 DOI: 10.3390/molecules27175364] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/19/2022] [Accepted: 08/20/2022] [Indexed: 11/17/2022] Open
Abstract
Aryl- and heteroaryl units are present in a wide variety of natural products, pharmaceuticals, and functional materials. The method for reduction of aryl halides with ubiquitous distribution is highly sought after for late-stage construction of various aromatic compounds. The visible-light-driven reduction of aryl halides to aryl radicals by electron transfer provides an efficient, simple, and environmentally friendly method for the construction of aromatic compounds. This review summarizes the recent progress in the generation of aryl radicals by visible-light-driven reduction of aryl halides with metal complexes, organic compounds, semiconductors as catalysts, and alkali-assisted reaction system. The ability and mechanism of reduction of aromatic halides in various visible light induced systems are summarized, intending to illustrate a comprehensive introduction of this research topic to the readers.
Collapse
|
17
|
Pavlovska T, Král Lesný D, Svobodová E, Hoskovcová I, Archipowa N, Kutta RJ, Cibulka R. Tuning Deazaflavins Towards Highly Potent Reducing Photocatalysts Guided by Mechanistic Understanding - Enhancement of the Key Step by the Internal Heavy Atom Effect. Chemistry 2022; 28:e202200768. [PMID: 35538649 PMCID: PMC9541856 DOI: 10.1002/chem.202200768] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Indexed: 11/11/2022]
Abstract
Deazaflavins are well suited for reductive chemistry acting via a consecutive photo-induced electron transfer, in which their triplet state and semiquinone - the latter is formed from the former after electron transfer from a sacrificial electron donor - are key intermediates. Guided by mechanistic investigations aiming to increase intersystem crossing by the internal heavy atom effect and optimising the concentration conditions to avoid unproductive excited singlet reactions, we synthesised 5-aryldeazaflavins with Br or Cl substituents on different structural positions via a three-component reaction. Bromination of the deazaisoalloxazine core leads to almost 100 % triplet yield but causes photo-instability and enhances unproductive side reactions. Bromine on the 5-phenyl group in ortho position does not affect the photostability, increases the triplet yield, and allows its efficient usage in the photocatalytic dehalogenation of bromo- and chloroarenes with electron-donating methoxy and alkyl groups even under aerobic conditions. Reductive powers comparable to lithium are achieved.
Collapse
Affiliation(s)
- Tetiana Pavlovska
- Department of Organic ChemistryUniversity of Chemistry and Technology, PragueTechnická 5166 28Prague 6Czech Republic
| | - David Král Lesný
- Department of Organic ChemistryUniversity of Chemistry and Technology, PragueTechnická 5166 28Prague 6Czech Republic
| | - Eva Svobodová
- Department of Organic ChemistryUniversity of Chemistry and Technology, PragueTechnická 5166 28Prague 6Czech Republic
| | - Irena Hoskovcová
- Department of Inorganic ChemistryUniversity of Chemistry and Technology, PragueTechnická 5166 28Prague 6Czech Republic
| | - Nataliya Archipowa
- Institute for Biophysics and Physical BiochemistryUniversity of RegensburgD-93053RegensburgGermany
| | - Roger Jan Kutta
- Institute of Physical and Theoretical ChemistryUniversity of RegensburgD-93053RegensburgGermany
| | - Radek Cibulka
- Department of Organic ChemistryUniversity of Chemistry and Technology, PragueTechnická 5166 28Prague 6Czech Republic
| |
Collapse
|
18
|
Taponard A, Jarrosson T, Khrouz L, Médebielle M, Broggi J, Tlili A. Metal-Free SF 6 Activation: A New SF 5 -Based Reagent Enables Deoxyfluorination and Pentafluorosulfanylation Reactions. Angew Chem Int Ed Engl 2022; 61:e202204623. [PMID: 35471641 DOI: 10.1002/anie.202204623] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Indexed: 12/13/2022]
Abstract
The activation of SF6 , a potent greenhouse gas, under metal-free and visible light conditions is reported. Herein, mechanistic investigations including EPR spectroscopy, NMR studies and cyclic voltammetry allowed the rational design of a new fluorinating reagent which was synthesized from the 2-electron activation of SF6 with commercially available TDAE. This new SF5 -based reagent was efficiently employed for the deoxyfluorination of CO2 and the fluorinative desulfurization of CS2 allowing the formation of useful fluorinated amines. Moreover, for the first time we demonstrated that our SF5 -based reagent could afford the mild generation of Cl-SF5 gas. This finding was exploited for the chloro-pentafluorosulfanylation of alkynes and alkenes.
Collapse
Affiliation(s)
- Alexis Taponard
- Institute of Chemistry and Biochemistry (ICBMS-UMR CNRS 5246), Univ Lyon, Université Lyon 1, CNRS, CPE-Lyon, INSA, 43 Bd du 11 Novembre 1918, 69622, Villeurbanne, France
| | - Tristan Jarrosson
- Institute of Chemistry and Biochemistry (ICBMS-UMR CNRS 5246), Univ Lyon, Université Lyon 1, CNRS, CPE-Lyon, INSA, 43 Bd du 11 Novembre 1918, 69622, Villeurbanne, France
| | - Lhoussain Khrouz
- ENSL, CNRS, Laboratoire de Chimie UMR 5182, 46 allée d'Italie, 69364, Lyon, France
| | - Maurice Médebielle
- Institute of Chemistry and Biochemistry (ICBMS-UMR CNRS 5246), Univ Lyon, Université Lyon 1, CNRS, CPE-Lyon, INSA, 43 Bd du 11 Novembre 1918, 69622, Villeurbanne, France
| | - Julie Broggi
- Aix Marseille Univ, CNRS, Institut de Chimie Radicalaire (ICR)ICR UMR 7273, Faculty of Pharmacy, 27 Bd Jean Moulin, 13385, Marseille, France
| | - Anis Tlili
- Institute of Chemistry and Biochemistry (ICBMS-UMR CNRS 5246), Univ Lyon, Université Lyon 1, CNRS, CPE-Lyon, INSA, 43 Bd du 11 Novembre 1918, 69622, Villeurbanne, France
| |
Collapse
|
19
|
Glaser F, Wenger OS. Red Light-Based Dual Photoredox Strategy Resembling the Z-Scheme of Natural Photosynthesis. JACS AU 2022; 2:1488-1503. [PMID: 35783177 PMCID: PMC9241018 DOI: 10.1021/jacsau.2c00265] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/30/2022] [Accepted: 05/31/2022] [Indexed: 05/11/2023]
Abstract
Photoredox catalysis typically relies on the use of single chromophores, whereas strategies, in which two different light absorbers are combined, are rare. In photosystems I and II of green plants, the two separate chromophores P680 and P700 both absorb light independently of one another, and then their excitation energy is combined in the so-called Z-scheme, to drive an overall reaction that is thermodynamically very demanding. Here, we adapt this concept to perform photoredox reactions on organic substrates with the combined energy input of two red photons instead of blue or UV light. Specifically, a CuI bis(α-diimine) complex in combination with in situ formed 9,10-dicyanoanthracenyl radical anion in the presence of excess diisopropylethylamine catalyzes ca. 50 dehalogenation and detosylation reactions. This dual photoredox approach seems useful because red light is less damaging and has a greater penetration depth than blue or UV radiation. UV-vis transient absorption spectroscopy reveals that the subtle change in solvent from acetonitrile to acetone induces a changeover in the reaction mechanism, involving either a dominant photoinduced electron transfer or a dominant triplet-triplet energy transfer pathway. Our study illustrates the mechanistic complexity in systems operating under multiphotonic excitation conditions, and it provides insights into how the competition between desirable and unwanted reaction steps can become more controllable.
Collapse
|
20
|
Yan G. Photochemical and Electrochemical Strategies for Hydrodefluorination of Fluorinated Organic Compounds. Chemistry 2022; 28:e202200231. [PMID: 35301767 DOI: 10.1002/chem.202200231] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Indexed: 12/20/2022]
Abstract
Hydrodefluorination (HDF) is a very important fundamental transformation for conversion of the C-F bond into the C-H bond in organic synthesis. In the past decade, much progress has been achieved with HDF through the utility of low-valent metals, transition-metal complexes and main-group Lewis acids. Recently, novel methods have been introduced for this purpose through photo- and electrochemical pathways, which are of great significance, due to their considerable environmental and economical advantages. This Review highlights the HDF of fluorinated organic compounds (FOCs) through photo- and electrochemical strategies, along with mechanistic insights.
Collapse
Affiliation(s)
- Guobing Yan
- Department of Chemistry, College of Jiyang, Zhejiang A&F University, Zhuji, Zhejiang, 311800, P. R. China
| |
Collapse
|
21
|
Taponard A, Jarrosson T, Khrouz L, Médebielle M, Broggi J, Tlili A. Metal‐Free SF
6
Activation: A New SF
5
‐Based Reagent Enables Deoxyfluorination and Pentafluorosulfanylation Reactions. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204623] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Alexis Taponard
- Institute of Chemistry and Biochemistry (ICBMS-UMR CNRS 5246) Univ Lyon, Université Lyon 1, CNRS, CPE-Lyon, INSA 43 Bd du 11 Novembre 1918 69622 Villeurbanne France
| | - Tristan Jarrosson
- Institute of Chemistry and Biochemistry (ICBMS-UMR CNRS 5246) Univ Lyon, Université Lyon 1, CNRS, CPE-Lyon, INSA 43 Bd du 11 Novembre 1918 69622 Villeurbanne France
| | - Lhoussain Khrouz
- ENSL, CNRS, Laboratoire de Chimie UMR 5182 46 allée d'Italie 69364 Lyon France
| | - Maurice Médebielle
- Institute of Chemistry and Biochemistry (ICBMS-UMR CNRS 5246) Univ Lyon, Université Lyon 1, CNRS, CPE-Lyon, INSA 43 Bd du 11 Novembre 1918 69622 Villeurbanne France
| | - Julie Broggi
- Aix Marseille Univ, CNRS Institut de Chimie Radicalaire (ICR)ICR UMR 7273 Faculty of Pharmacy 27 Bd Jean Moulin 13385 Marseille France
| | - Anis Tlili
- Institute of Chemistry and Biochemistry (ICBMS-UMR CNRS 5246) Univ Lyon, Université Lyon 1, CNRS, CPE-Lyon, INSA 43 Bd du 11 Novembre 1918 69622 Villeurbanne France
| |
Collapse
|
22
|
Zhao Z, Niu F, Li P, Wang H, Zhang Z, Meyer GJ, Hu K. Visible Light Generation of a Microsecond Long-Lived Potent Reducing Agent. J Am Chem Soc 2022; 144:7043-7047. [PMID: 35271254 DOI: 10.1021/jacs.2c00422] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Photoexcitation of molecular radicals can produce strong reducing agents; however, the limited lifetimes of the doublet excited states preclude many applications. Herein, we propose and demonstrate a general strategy to translate a highly energetic electron from a doublet excited state to a ZrO2 insulator, thereby increasing the lifetime by about 6 orders of magnitude while maintaining a reducing potential less than -2.4 V vs SCE. Specifically, red light excitation of a salicylic acid modified perylene diimide radical anion PDI•- anchored to a ZrO2 insulator yields a ZrO2(e-)|PDI charge separated state with an ∼10 μs lifetime in 23% yield. The ZrO2(e-)s were shown to drive CO2 → CO reduction with a Re catalyst present in micromolar concentrations. More broadly, this strategy provides new opportunities to reduce important reagents and catalysts at low concentrations through diffusional electron transfer.
Collapse
Affiliation(s)
- Zijian Zhao
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 220 Handan Road, Shanghai 200433, PR China
| | - Fushuang Niu
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 220 Handan Road, Shanghai 200433, PR China
| | - Pengju Li
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 220 Handan Road, Shanghai 200433, PR China
| | - Hanqi Wang
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 220 Handan Road, Shanghai 200433, PR China
| | - Zhenghao Zhang
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 220 Handan Road, Shanghai 200433, PR China
| | - Gerald J Meyer
- Department of Chemistry, University of North Carolina at Chapel Hill, Murray Hall 2202B, Chapel Hill, North Carolina 27599-3290, United States
| | - Ke Hu
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 220 Handan Road, Shanghai 200433, PR China
| |
Collapse
|
23
|
Spitz C, Bertrand M, Remusat V, Terme T, Vanelle P. Addition of Benzyl Halides to Aldehydes and Imines Using Photoactivated TDAE: Access to 3,4-Dihydroisocoumarins, 1,2-Diarylethanols, and 1,2-Diarylcarbamates under Metal-Free Conditions. J Org Chem 2022; 87:4483-4488. [PMID: 35258309 DOI: 10.1021/acs.joc.2c00074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We describe herein the intermolecular addition reaction of benzyl halides to aldehydes and imines using photoactivated tetrakis(dimethylamino)ethylene (TDAE) as superphotoreductant. 3,4-Dihydroisocoumarins, 1,2-diarylethanols, and 1,2-diarylcarbamates were obtained with good functional group tolerance using simple, mild, and metal-free conditions.
Collapse
Affiliation(s)
- Cédric Spitz
- Aix Marseille Univ, CNRS, ICR UMR CNRS 7273, Equipe Pharmaco-Chimie Radicalaire, Faculté de Pharmacie, 27 Boulevard Jean Moulin - CS 30064, Cedex 05, 13385 Marseille, France
| | - Morgane Bertrand
- Aix Marseille Univ, CNRS, ICR UMR CNRS 7273, Equipe Pharmaco-Chimie Radicalaire, Faculté de Pharmacie, 27 Boulevard Jean Moulin - CS 30064, Cedex 05, 13385 Marseille, France
| | - Vincent Remusat
- Aix Marseille Univ, CNRS, ICR UMR CNRS 7273, Equipe Pharmaco-Chimie Radicalaire, Faculté de Pharmacie, 27 Boulevard Jean Moulin - CS 30064, Cedex 05, 13385 Marseille, France
| | - Thierry Terme
- Aix Marseille Univ, CNRS, ICR UMR CNRS 7273, Equipe Pharmaco-Chimie Radicalaire, Faculté de Pharmacie, 27 Boulevard Jean Moulin - CS 30064, Cedex 05, 13385 Marseille, France
| | - Patrice Vanelle
- Aix Marseille Univ, CNRS, ICR UMR CNRS 7273, Equipe Pharmaco-Chimie Radicalaire, Faculté de Pharmacie, 27 Boulevard Jean Moulin - CS 30064, Cedex 05, 13385 Marseille, France
| |
Collapse
|
24
|
Oßwald S, Zippel C, Hassan Z, Nieger M, Bräse S. C-P bond formation of cyclophanyl-, and aryl halides via a UV-induced photo Arbuzov reaction: a versatile portal to phosphonate-grafted scaffolds. RSC Adv 2022; 12:3309-3312. [PMID: 35425357 PMCID: PMC8979280 DOI: 10.1039/d2ra00094f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 01/17/2022] [Indexed: 01/13/2023] Open
Abstract
A new versatile method for the C–P bond formation of (hetero)aryl halides with trimethyl phosphite via a UV-induced photo-Arbuzov reaction, accessing diverse phosphonate-grafted arenes, heteroarenes and co-facially stacked cyclophanes under mild reaction conditions without the need for catalyst, additives, or base is developed. The UV-induced photo-Arbuzov protocol has a wide synthetic scope with large functional group compatibility exemplified by over 30 derivatives. Besides mono-phosphonates, di- and tri-phosphonates are accessible in good to excellent yields. Mild and transition metal-free reaction conditions consolidate this method's potential for synthesizing pharmaceutically relevant compounds and precursors of supramolecular nanostructured materials. UV-induced C–P bond formation of aryl halides via photo Arbuzov reaction: a versatile portal to phosphonate-grafted scaffolds.![]()
Collapse
Affiliation(s)
- Simon Oßwald
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT) Fritz-Haber-Weg 6 76131 Karlsruhe Germany
| | - Christoph Zippel
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT) Fritz-Haber-Weg 6 76131 Karlsruhe Germany
| | - Zahid Hassan
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT) Fritz-Haber-Weg 6 76131 Karlsruhe Germany
| | - Martin Nieger
- Department of Chemistry, University of Helsinki P.O. Box 55 00014 Helsinki Finland
| | - Stefan Bräse
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT) Fritz-Haber-Weg 6 76131 Karlsruhe Germany .,Institute of Biological and Chemical Systems-Functional Molecular Systems, Karlsruhe Institute of Technology (KIT) Herman-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen Germany
| |
Collapse
|
25
|
Yi S, Morson N, Edwards EA, Yang D, Liu R, Zhu L, Mabury SA. Anaerobic Microbial Dechlorination of 6:2 Chlorinated Polyfluorooctane Ether Sulfonate and the Underlying Mechanisms. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:907-916. [PMID: 34978445 DOI: 10.1021/acs.est.1c05475] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The microbial transformation potential of 6:2 chlorinated polyfluorooctane ether sulfonate (6:2 Cl-PFESA) was explored in anaerobic microbial systems. Microbial communities from anaerobic wastewater sludge, an anaerobic digester, and anaerobic dechlorinating cultures enriched from aquifer materials reductively dechlorinated 6:2 Cl-PFESA to 6:2 hydrogen-substituted polyfluorooctane ether sulfonate (6:2 H-PFESA), which was identified as the sole metabolite by non-target analysis. Rapid and complete reductive dechlorination of 6:2 Cl-PFESA was achieved by the anaerobic dechlorinating cultures. The microbial community of the anaerobic dechlorinating cultures was impacted by 6:2 Cl-PFESA exposure. Organohalide-respiring bacteria originally present in the anaerobic dechlorinating cultures, including Geobacter, Dehalobacter, and Dehalococcoides, decreased in relative abundance over time. As the relative abundance of organohalide-respiring bacteria decreased, the rates of 6:2 Cl-PFESA dechlorination decreased, suggesting that the most likely mechanism for reductive dechlorination of 6:2 Cl-PFESA was co-metabolism rather than organohalide respiration. Reductive defluorination of 6:2 Cl-PFESA was not observed. Furthermore, 6:2 H-PFESA exhibited 5.5 times lower sorption affinity to the suspended biosolids than 6:2 Cl-PFESA, with the prospect of increased mobility in the environment. These results show the susceptibility of 6:2 Cl-PFESA to microbially mediated reductive dechlorination and the likely persistence of the product, 6:2 H-PFESA, in anaerobic environments.
Collapse
Affiliation(s)
- Shujun Yi
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
- Department of Chemistry, University of Toronto, Toronto M5S 3H6, Ontario, Canada
| | - Nadia Morson
- Department of Chemical Engineering and Applied Chemistry and BioZone, University of Toronto, Toronto M5S 3E5, Ontario, Canada
| | - Elizabeth A Edwards
- Department of Chemical Engineering and Applied Chemistry and BioZone, University of Toronto, Toronto M5S 3E5, Ontario, Canada
| | - Diwen Yang
- Department of Chemistry, University of Toronto, Toronto M5S 3H6, Ontario, Canada
| | - Runzeng Liu
- Department of Chemistry, University of Toronto, Toronto M5S 3H6, Ontario, Canada
| | - Lingyan Zhu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Scott A Mabury
- Department of Chemistry, University of Toronto, Toronto M5S 3H6, Ontario, Canada
| |
Collapse
|
26
|
Till M, Streitferdt V, Scott DJ, Mende M, Gschwind RM, Wolf R. Photochemical transformation of chlorobenzenes and white phosphorus into arylphosphines and phosphonium salts. Chem Commun (Camb) 2021; 58:1100-1103. [PMID: 34889916 PMCID: PMC8788315 DOI: 10.1039/d1cc05691c] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Chlorobenzenes are important starting materials for the preparation of commercially valuable triarylphosphines and tetraarylphosphonium salts, but their use for the direct arylation of elemental phosphorus has been elusive. Here we describe a simple photochemical route toward such products. UV-LED irradiation (365 nm) of chlorobenzenes, white phosphorus (P4) and the organic superphotoreductant tetrakis(dimethylamino)ethylene (TDAE) affords the desired arylphosphorus compounds in a single reaction step.
Collapse
Affiliation(s)
- Marion Till
- Universität Regensburg, Institut für Anorganische Chemie, Regensburg 93040, Germany.
| | - Verena Streitferdt
- Universität Regensburg, Institut für Organische Chemie, Regensburg 93040, Germany
| | - Daniel J Scott
- Universität Regensburg, Institut für Anorganische Chemie, Regensburg 93040, Germany.
| | - Michael Mende
- Universität Regensburg, Institut für Anorganische Chemie, Regensburg 93040, Germany.
| | - Ruth M Gschwind
- Universität Regensburg, Institut für Organische Chemie, Regensburg 93040, Germany
| | - Robert Wolf
- Universität Regensburg, Institut für Anorganische Chemie, Regensburg 93040, Germany.
| |
Collapse
|
27
|
Yu D, To WP, Liu Y, Wu LL, You T, Ling J, Che CM. Direct photo-induced reductive Heck cyclization of indoles for the efficient preparation of polycyclic indolinyl compounds. Chem Sci 2021; 12:14050-14058. [PMID: 34760188 PMCID: PMC8565399 DOI: 10.1039/d1sc04258k] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 09/16/2021] [Indexed: 12/15/2022] Open
Abstract
The photo-induced cleavage of C(sp2)-Cl bonds is an appealing synthetic tool in organic synthesis, but usually requires the use of high UV light, photocatalysts and/or photosensitizers. Herein is described a direct photo-induced chloroarene activation with UVA/blue LEDs that can be used in the reductive Heck cyclization of indoles and without the use of a photocatalyst or photosensitizer. The indole compounds examined display room-temperature phosphorescence. The photochemical reaction tolerates a panel of functional groups including esters, alcohols, amides, cyano and alkenes (27 examples, 50-88% yields), and can be used to prepare polycyclic compounds and perform the functionalization of natural product analogues in moderate to good yields. Mechanistic experiments, including time-resolved absorption spectroscopy, are supportive of photo-induced electron transfer between the indole substrate and DIPEA, with the formation of radical intermediates in the photo-induced dearomatization reaction.
Collapse
Affiliation(s)
- Daohong Yu
- Department of Chemistry, Southern University of Science and Technology Shenzhen Guangdong 518055 China
- State Key Laboratory of Synthetic Chemistry, HKU-CAS Joint Laboratory on New Materials, Department of Chemistry, The University of Hong Kong Pokfulam Road Hong Kong China
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University Ganzhou 341000 China
| | - Wai-Pong To
- State Key Laboratory of Synthetic Chemistry, HKU-CAS Joint Laboratory on New Materials, Department of Chemistry, The University of Hong Kong Pokfulam Road Hong Kong China
| | - Yungen Liu
- Department of Chemistry, Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Liang-Liang Wu
- State Key Laboratory of Synthetic Chemistry, HKU-CAS Joint Laboratory on New Materials, Department of Chemistry, The University of Hong Kong Pokfulam Road Hong Kong China
| | - Tingjie You
- State Key Laboratory of Synthetic Chemistry, HKU-CAS Joint Laboratory on New Materials, Department of Chemistry, The University of Hong Kong Pokfulam Road Hong Kong China
| | - Jesse Ling
- Laboratory for Synthetic Chemistry and Chemical Biology Limited Units 1503-1511, 15/F, Building 17W, Hong Kong Science Park New Territories Hong Kong China
| | - Chi-Ming Che
- Department of Chemistry, Southern University of Science and Technology Shenzhen Guangdong 518055 China
- State Key Laboratory of Synthetic Chemistry, HKU-CAS Joint Laboratory on New Materials, Department of Chemistry, The University of Hong Kong Pokfulam Road Hong Kong China
- HKU Shenzhen Institute of Research and Innovation Shenzhen Guangdong 518057 China
- Laboratory for Synthetic Chemistry and Chemical Biology Limited Units 1503-1511, 15/F, Building 17W, Hong Kong Science Park New Territories Hong Kong China
| |
Collapse
|
28
|
Toriumi N, Yamashita K, Iwasawa N. Metal-Free Photoredox-Catalyzed Hydrodefluorination of Fluoroarenes Utilizing Amide Solvent as Reductant. Chemistry 2021; 27:12635-12641. [PMID: 34190366 DOI: 10.1002/chem.202101813] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Indexed: 12/15/2022]
Abstract
A metal-free photoredox-catalyzed hydrodefluorination of fluoroarenes was achieved by using N,N,N',N'-tetramethyl-para-phenylenediamine (1) as a strong photoreduction catalyst. This reaction was applicable not only to electron-rich monofluoroarenes but also to polyfluoroarenes to afford non-fluorinated arenes. The experimental mechanistic studies indicated that the amide solvent NMP plays an important role for regeneration of the photocatalyst, enabling additive-free photoreduction catalysis.
Collapse
Affiliation(s)
- Naoyuki Toriumi
- Department of Chemistry, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo, 152-8551, Japan
| | - Kazuya Yamashita
- Department of Chemistry, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo, 152-8551, Japan
| | - Nobuharu Iwasawa
- Department of Chemistry, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo, 152-8551, Japan
| |
Collapse
|
29
|
He J, Yan B, Meng J, Ran M, Zhou Y, Deng J, Li C, Yao Q. Study of Rhodamine‐Based Fluorescent Probes for Organic Radical Intermediates. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jiaxin He
- Department of Pharmacy Zunyi Medical University 6 Xuefu Road West Zunyi 563000 China
| | - Boyu Yan
- Department of Pharmacy Zunyi Medical University 6 Xuefu Road West Zunyi 563000 China
| | - Jiangtao Meng
- Department of Pharmacy Zunyi Medical University 6 Xuefu Road West Zunyi 563000 China
| | - Maogang Ran
- Department of Pharmacy Zunyi Medical University 6 Xuefu Road West Zunyi 563000 China
| | - Yutong Zhou
- Department of Pharmacy Zunyi Medical University 6 Xuefu Road West Zunyi 563000 China
| | - Jinfei Deng
- Department of Pharmacy Zunyi Medical University 6 Xuefu Road West Zunyi 563000 China
| | - Chao‐Jun Li
- Department of Chemistry McGill University 801 Sherbrooke Street West Montreal Quebec H3A 0B8 Canada
| | - Qiuli Yao
- Department of Pharmacy Zunyi Medical University 6 Xuefu Road West Zunyi 563000 China
- Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources Qinghai Institute of Salt Lakes Chinese Academy of Sciences Xining Qinghai 810008 China
| |
Collapse
|
30
|
Chmiel AF, Williams OP, Chernowsky CP, Yeung CS, Wickens ZK. Non-innocent Radical Ion Intermediates in Photoredox Catalysis: Parallel Reduction Modes Enable Coupling of Diverse Aryl Chlorides. J Am Chem Soc 2021; 143:10882-10889. [PMID: 34255971 DOI: 10.1021/jacs.1c05988] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We describe a photocatalytic system that elicits potent photoreductant activity from conventional photocatalysts by leveraging radical anion intermediates generated in situ. The combination of an isophthalonitrile photocatalyst and sodium formate promotes diverse aryl radical coupling reactions from abundant but difficult to reduce aryl chloride substrates. Mechanistic studies reveal two parallel pathways for substrate reduction both enabled by a key terminal reductant byproduct, carbon dioxide radical anion.
Collapse
Affiliation(s)
- Alyah F Chmiel
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Oliver P Williams
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Colleen P Chernowsky
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Charles S Yeung
- Discovery Chemistry, Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Zachary K Wickens
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
31
|
Glaser F, Kerzig C, Wenger OS. Sensitization-initiated electron transfer via upconversion: mechanism and photocatalytic applications. Chem Sci 2021; 12:9922-9933. [PMID: 34349964 PMCID: PMC8317647 DOI: 10.1039/d1sc02085d] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 06/16/2021] [Indexed: 12/12/2022] Open
Abstract
Sensitization-initiated electron transfer (SenI-ET) describes a recently discovered photoredox strategy that relies on two consecutive light absorption events, triggering a sequence of energy and electron transfer steps. The cumulative energy input from two visible photons gives access to thermodynamically demanding reactions, which would be unattainable by single excitation with visible light. For this reason, SenI-ET has become a very useful strategy in synthetic photochemistry, but the mechanism has been difficult to clarify due to its complexity. We demonstrate that SenI-ET can operate via sensitized triplet-triplet annihilation upconversion, and we provide the first direct spectroscopic evidence for the catalytically active species. In our system comprised of fac-[Ir(ppy)3] as a light absorber, 2,7-di-tert-butylpyrene as an annihilator, and N,N-dimethylaniline as a sacrificial reductant, all photochemical reaction steps proceed with remarkable rates and efficiencies, and this system is furthermore suitable for photocatalytic aryl dehalogenations, pinacol couplings and detosylation reactions. The insights presented here are relevant for the further rational development of photoredox processes based on multi-photon excitation, and they could have important implications in the greater contexts of synthetic photochemistry and solar energy conversion.
Collapse
Affiliation(s)
- Felix Glaser
- Department of Chemistry, University of Basel St. Johanns-Ring 19 4056 Basel Switzerland
| | - Christoph Kerzig
- Department of Chemistry, University of Basel St. Johanns-Ring 19 4056 Basel Switzerland
| | - Oliver S Wenger
- Department of Chemistry, University of Basel St. Johanns-Ring 19 4056 Basel Switzerland
| |
Collapse
|
32
|
Frenette BL, Arsenault N, Walker SL, Decken A, Dyker CA. Bis(Iminophosphorano)-Substituted Pyridinium Ions and their Corresponding Bispyridinylidene Organic Electron Donors. Chemistry 2021; 27:8528-8536. [PMID: 33834560 DOI: 10.1002/chem.202100318] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Indexed: 12/22/2022]
Abstract
Optimized synthetic procedures for pyridinium ions featuring iminophosphorano (-N=PR3 ; R=Ph, Cy) π-donor substituents in the 2- and 4- positions are described. Crystallographic and theoretical studies reveal that the strongly donating substituents severely polarize the π-electrons of the pyridyl ring at the expense of aromaticity. Moreover, the pyridinium ions are readily deprotonated to generate powerful bispyridinylidene (BPY) organic electron donors. Electrochemical studies show exceptionally low redox potentials for the two-electron BPY/BPY2+ couples, ranging from -1.71 V vs the saturated calomel electrode for 3PhPh (with four Ph3 P=N- groups) to -1.85 V for 3CyCy (with four Cy3 P=N- groups). These new compounds represent the most reducing neutral organic electron donors (OEDs) currently known. Some preliminary reductions involving 3CyCy showed enhanced capability owing to its low redox potential, such as the thermally activated reduction of an aryl chloride, but purification challenges were often encountered.
Collapse
Affiliation(s)
- Brandon L Frenette
- Department of Chemistry, University of New Brunswick, Fredericton, New Brunswick, E3B 5A3, Canada
| | - Nadine Arsenault
- Department of Chemistry, University of New Brunswick, Fredericton, New Brunswick, E3B 5A3, Canada
| | - Sarah L Walker
- Department of Chemistry, University of New Brunswick, Fredericton, New Brunswick, E3B 5A3, Canada
| | - Andreas Decken
- Department of Chemistry, University of New Brunswick, Fredericton, New Brunswick, E3B 5A3, Canada
| | - C Adam Dyker
- Department of Chemistry, University of New Brunswick, Fredericton, New Brunswick, E3B 5A3, Canada
| |
Collapse
|
33
|
Kammer LM, Badir SO, Hu RM, Molander GA. Photoactive electron donor-acceptor complex platform for Ni-mediated C(sp 3)-C(sp 2) bond formation. Chem Sci 2021; 12:5450-5457. [PMID: 34168786 PMCID: PMC8179655 DOI: 10.1039/d1sc00943e] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 03/04/2021] [Indexed: 12/14/2022] Open
Abstract
A dual photochemical/nickel-mediated decarboxylative strategy for the assembly of C(sp3)-C(sp2) linkages is disclosed. Under light irradiation at 390 nm, commercially available and inexpensive Hantzsch ester (HE) functions as a potent organic photoreductant to deliver catalytically active Ni(0) species through single-electron transfer (SET) manifolds. As part of its dual role, the Hantzsch ester effects a decarboxylative-based radical generation through electron donor-acceptor (EDA) complex activation. This homogeneous, net-reductive platform bypasses the need for exogenous photocatalysts, stoichiometric metal reductants, and additives. Under this cross-electrophile paradigm, the coupling of diverse C(sp3)-centered radical architectures (including primary, secondary, stabilized benzylic, α-oxy, and α-amino systems) with (hetero)aryl bromides has been accomplished. The protocol proceeds under mild reaction conditions in the presence of sensitive functional groups and pharmaceutically relevant cores.
Collapse
Affiliation(s)
- Lisa Marie Kammer
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania 231 South 34th Street Philadelphia Pennsylvania 19104-6323 USA
| | - Shorouk O Badir
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania 231 South 34th Street Philadelphia Pennsylvania 19104-6323 USA
| | - Ren-Ming Hu
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania 231 South 34th Street Philadelphia Pennsylvania 19104-6323 USA
| | - Gary A Molander
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania 231 South 34th Street Philadelphia Pennsylvania 19104-6323 USA
| |
Collapse
|
34
|
Hasegawa E, Nakamura S, Oomori K, Tanaka T, Iwamoto H, Wakamatsu K. Competitive Desulfonylative Reduction and Oxidation of α-Sulfonylketones Promoted by Photoinduced Electron Transfer with 2-Hydroxyaryl-1,3-dimethylbenzimidazolines under Air. J Org Chem 2021; 86:2556-2569. [PMID: 33492136 DOI: 10.1021/acs.joc.0c02666] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Desulfonylation reactions of α-sulfonylketones promoted by photoinduced electron transfer with 2-hydroxyarylbenzimidazolines (BIH-ArOH) were investigated. Under aerobic conditions, photoexcited 2-hydroxynaphthylbenzimidazoline (BIH-NapOH) promotes competitive reduction (forming alkylketones) and oxidation (producing α-hydroxyketones) of sulfonylketones through pathways involving the intermediacy of α-ketoalkyl radicals. The results of an examination of the effects of solvents, radical trapping reagents, substituents of sulfonylketones, and a variety of hydroxyaryl- and aryl-benzimidazolines (BIH-ArOH and BIH-Ar) suggest that the oxidation products are produced by dissociation of α-ketoalkyl radicals from the initially formed solvent-caged radical ion pairs followed by reaction with molecular oxygen. In addition, the observations indicate that the reduction products are generated by proton or hydrogen atom transfer in solvent-caged radical ion pairs derived from benzimidazolines and sulfonylketones. The results also suggest that arylsulfinate anions arising by carbon-sulfur bond cleavage of sulfonylketone radical anions act as reductants in the oxidation pathway to convert initially formed α-hydroperoxyketones to α-hydroxyketones. Finally, density functional theory calculations were performed to explore the structures and properties of radical ions of sulfonylketones as well as BIH-NapOH.
Collapse
Affiliation(s)
- Eietsu Hasegawa
- Department of Chemistry, Faculty of Science, Niigata University, 8050 Ikarashi-2, Nishi-ku, Niigata 950-2181, Japan
| | - Shyota Nakamura
- Department of Chemistry, Faculty of Science, Niigata University, 8050 Ikarashi-2, Nishi-ku, Niigata 950-2181, Japan
| | - Kazuki Oomori
- Department of Chemistry, Faculty of Science, Niigata University, 8050 Ikarashi-2, Nishi-ku, Niigata 950-2181, Japan
| | - Tsukasa Tanaka
- Department of Chemistry, Faculty of Science, Niigata University, 8050 Ikarashi-2, Nishi-ku, Niigata 950-2181, Japan
| | - Hajime Iwamoto
- Department of Chemistry, Faculty of Science, Niigata University, 8050 Ikarashi-2, Nishi-ku, Niigata 950-2181, Japan
| | - Kan Wakamatsu
- Department of Chemistry, Faculty of Science, Okayama University of Science, 1-1 Ridaicho, Kita-ku, Okayama 700-0005, Japan
| |
Collapse
|
35
|
Yan B, Zhou Y, Wu J, Ran M, Li H, Yao Q. Catalyst-free reductive hydrogenation or deuteration of aryl–heteroatom bonds induced by light. Org Chem Front 2021. [DOI: 10.1039/d1qo00978h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The photoinduced hydrogenation or deuteration of quaternary arylammonium salts, aryl triflates, and aryl halides under catalyst-free conditions was achieved.
Collapse
Affiliation(s)
- Boyu Yan
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Department of Pharmacy, Zunyi Medical University, 6 Xuefu Road West, Zunyi, 563000, China
| | - Yutong Zhou
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Department of Pharmacy, Zunyi Medical University, 6 Xuefu Road West, Zunyi, 563000, China
| | - Jieliang Wu
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Department of Pharmacy, Zunyi Medical University, 6 Xuefu Road West, Zunyi, 563000, China
| | - Maogang Ran
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Department of Pharmacy, Zunyi Medical University, 6 Xuefu Road West, Zunyi, 563000, China
| | - Huihui Li
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Department of Pharmacy, Zunyi Medical University, 6 Xuefu Road West, Zunyi, 563000, China
| | - Qiuli Yao
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Department of Pharmacy, Zunyi Medical University, 6 Xuefu Road West, Zunyi, 563000, China
- Qinghai Provincial Key Laboratory of Resources and Chemistry of Salt Lakes, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, Qinghai, 810008, China
| |
Collapse
|
36
|
Spitz C, Matteudi M, Tintori G, Broggi J, Terme T, Vanelle P. Metal-Free Addition of Benzyl Halides to Aldehydes Using Super Electron Donors: Access to 3,4-Dihydroisocoumarins and 1,2-Diarylethanols. J Org Chem 2020; 85:15736-15742. [DOI: 10.1021/acs.joc.0c02374] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Cédric Spitz
- Aix Marseille Univ, CNRS, ICR UMR CNRS 7273, Equipe Pharmaco-Chimie Radicalaire, Faculté de Pharmacie, 27 Boulevard Jean Moulin, CS 30064, Cedex 05 13385 Marseille, France
| | - Mélanie Matteudi
- Aix Marseille Univ, CNRS, ICR UMR CNRS 7273, Equipe Pharmaco-Chimie Radicalaire, Faculté de Pharmacie, 27 Boulevard Jean Moulin, CS 30064, Cedex 05 13385 Marseille, France
| | - Guillaume Tintori
- Aix Marseille Univ, CNRS, ICR UMR CNRS 7273, Equipe Pharmaco-Chimie Radicalaire, Faculté de Pharmacie, 27 Boulevard Jean Moulin, CS 30064, Cedex 05 13385 Marseille, France
| | - Julie Broggi
- Aix Marseille Univ, CNRS, ICR UMR CNRS 7273, Equipe Pharmaco-Chimie Radicalaire, Faculté de Pharmacie, 27 Boulevard Jean Moulin, CS 30064, Cedex 05 13385 Marseille, France
| | - Thierry Terme
- Aix Marseille Univ, CNRS, ICR UMR CNRS 7273, Equipe Pharmaco-Chimie Radicalaire, Faculté de Pharmacie, 27 Boulevard Jean Moulin, CS 30064, Cedex 05 13385 Marseille, France
| | - Patrice Vanelle
- Aix Marseille Univ, CNRS, ICR UMR CNRS 7273, Equipe Pharmaco-Chimie Radicalaire, Faculté de Pharmacie, 27 Boulevard Jean Moulin, CS 30064, Cedex 05 13385 Marseille, France
| |
Collapse
|