1
|
Sugawara Y, Yamaguchi T. Electrocatalysts for Hydrogen Production - Catalyst Design Strategies Based on Crystal Structures of Multimetal Oxides. CHEM REC 2025; 25:e202400246. [PMID: 39967406 DOI: 10.1002/tcr.202400246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 01/18/2025] [Indexed: 02/20/2025]
Abstract
Solid-state crystalline multimetal oxides have been widely studied for their applications as electrode materials, e. g., in fuel cells, water electrolyzer, lithium-ion batteries, and metal-air batteries. Particularly, hydrogen production via water electrolysis is considered a key technology for realizing a sustainable circular carbon society. Enhancing the activity of electrocatalysts is a critical challenge for improving the efficiency of the water electrolysis technology. Thus, strategies for designing prominent catalyst materials have drawn considerable attention. Our group has been conducting research aimed at establishing comprehensive design strategies for the rational and rapid development of highly active catalysts. In this Personal Account, we present our research efforts on enhancing the activity of cost-efficient nonprecious metal-based oxide catalysts for the oxygen evolution reaction at the anode of water electrolysis. Specifically, we propose design strategies based on crystal structures of multimetal oxides and demonstrate how these strategies have contributed to the development of highly active electrocatalysts.
Collapse
Affiliation(s)
- Yuuki Sugawara
- Laboratory of Chemistry and Life Science, Institute of Integrated Research, Institute of Science Tokyo, R1-17, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan
| | - Takeo Yamaguchi
- Laboratory of Chemistry and Life Science, Institute of Integrated Research, Institute of Science Tokyo, R1-17, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan
| |
Collapse
|
2
|
Li Q, Wu L, Pang Y, Liu B, Zhu X, Zhao C. Novel Fluorinated Anion Exchange Membranes Based on Poly(Pentafluorophenyl-Carbazole) with High Ionic Conductivity and Alkaline Stability for Fuel Cell Applications. Macromol Rapid Commun 2024; 45:e2300734. [PMID: 38361081 DOI: 10.1002/marc.202300734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/01/2024] [Indexed: 02/17/2024]
Abstract
Constructing good microphase separation structures by designing different polymer backbones and ion-conducting groups is an effective strategy for improving the ionic conductivity and chemical stability of anion exchange membranes (AEMs). In this study, a series of AEMs based on the poly(pentafluorophenylcarbazole) backbone grafted with different cationic groups are designed and prepared to construct well-defined microphase separation morphology and improve the trade-off between the properties of AEMs. Highly hydrophobic fluorinated backbone and alkyl spaces enhance phase separation and construct interconnected hydrophilic channels for anion transport. The ionic conductivity of the PC-PF-QA membrane is 123 mS cm-1 at 80 °C, and the ionic conductivity of the PC-PF-QA membrane decreased by only 6% after 960 h of immersion at 60 °C in 1 M NaOH aqueous solution. The maximum peak power density of the single cell based on PC-PF-QA is 214 mW cm-2 at 60 °C.
Collapse
Affiliation(s)
- Qijia Li
- Key Laboratory of High Performance Plastics, Ministry of Education, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Liming Wu
- Key Laboratory of High Performance Plastics, Ministry of Education, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Yang Pang
- Key Laboratory of High Performance Plastics, Ministry of Education, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Binghui Liu
- Key Laboratory of High Performance Plastics, Ministry of Education, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Xuanbo Zhu
- Key Laboratory of High Performance Plastics, Ministry of Education, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Chengji Zhao
- Key Laboratory of High Performance Plastics, Ministry of Education, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| |
Collapse
|
3
|
Kim YS. Hydrocarbon Ionomeric Binders for Fuel Cells and Electrolyzers. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303914. [PMID: 37814366 DOI: 10.1002/advs.202303914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/08/2023] [Indexed: 10/11/2023]
Abstract
Ionomeric binders in catalyst layers, abbreviated as ionomers, play an essential role in the performance of polymer-electrolyte membrane fuel cells and electrolyzers. Due to environmental issues associated with perfluoroalkyl substances, alternative hydrocarbon ionomers have drawn substantial attention over the past few years. This review surveys literature to discuss ionomer requirements for the electrodes of fuel cells and electrolyzers, highlighting design principles of hydrocarbon ionomers to guide the development of advanced hydrocarbon ionomers.
Collapse
Affiliation(s)
- Yu Seung Kim
- MPA-11: Materials Synthesis and Integrated Devices, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| |
Collapse
|
4
|
Hager L, Hegelheimer M, Stonawski J, Freiberg ATS, Jaramillo-Hernández C, Abellán G, Hutzler A, Böhm T, Thiele S, Kerres J. Novel side chain functionalized polystyrene/O-PBI blends with high alkaline stability for anion exchange membrane water electrolysis (AEMWE). JOURNAL OF MATERIALS CHEMISTRY. A 2023; 11:22347-22359. [PMID: 38013811 PMCID: PMC10597322 DOI: 10.1039/d3ta02978f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 10/05/2023] [Indexed: 11/29/2023]
Abstract
We report the synthesis of a polystyrene-based anion exchange polymer bearing the cationic charge at a C6-spacer. The polymer is prepared by a functionalized monomer strategy. First, a copper halide catalyzed C-C coupling reaction between a styryl Grignard and 1,6-dibromohexane is applied, followed by quaternization with N-methylpiperidine and free radical polymerization. The novel polymer is blended with the polybenzimidazole O-PBI to yield mechanically stable blend membranes representing a new class of anion exchange membranes. In this regard, the ratio of the novel anion exchange polymer to O-PBI is varied to study the influence on water uptake and ionic conductivity. Blend membranes with IECs between 1.58 meq. OH- g-1 and 2.20 meq. OH- g-1 are prepared. The latter shows excellent performance in AEMWE, reaching 2.0 A cm-2 below 1.8 V in 1 M KOH at 70 °C, with a minor degradation rate from the start. The blend membranes show no conductivity loss after immersion in 1 M KOH at 85 °C for six weeks indicating high alkaline stability.
Collapse
Affiliation(s)
- Linus Hager
- Forschungszentrum Jülich GmbH, Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IEK-11) Cauerstr. 1 91058 Erlangen Germany
- Department of Chemical and Biological Engineering, Friedrich Alexander Universität Erlangen-Nürnberg Egerlandstr. 3 91058 Erlangen Germany
| | - Manuel Hegelheimer
- Forschungszentrum Jülich GmbH, Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IEK-11) Cauerstr. 1 91058 Erlangen Germany
- Department of Chemical and Biological Engineering, Friedrich Alexander Universität Erlangen-Nürnberg Egerlandstr. 3 91058 Erlangen Germany
| | - Julian Stonawski
- Forschungszentrum Jülich GmbH, Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IEK-11) Cauerstr. 1 91058 Erlangen Germany
- Department of Chemical and Biological Engineering, Friedrich Alexander Universität Erlangen-Nürnberg Egerlandstr. 3 91058 Erlangen Germany
| | - Anna T S Freiberg
- Forschungszentrum Jülich GmbH, Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IEK-11) Cauerstr. 1 91058 Erlangen Germany
- Department of Chemical and Biological Engineering, Friedrich Alexander Universität Erlangen-Nürnberg Egerlandstr. 3 91058 Erlangen Germany
| | | | - Gonzalo Abellán
- Institute of Molecular Science, University of Valencia c/ Catedrático José Beltrán 2 Paterna Spain
| | - Andreas Hutzler
- Forschungszentrum Jülich GmbH, Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IEK-11) Cauerstr. 1 91058 Erlangen Germany
| | - Thomas Böhm
- Forschungszentrum Jülich GmbH, Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IEK-11) Cauerstr. 1 91058 Erlangen Germany
| | - Simon Thiele
- Forschungszentrum Jülich GmbH, Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IEK-11) Cauerstr. 1 91058 Erlangen Germany
- Department of Chemical and Biological Engineering, Friedrich Alexander Universität Erlangen-Nürnberg Egerlandstr. 3 91058 Erlangen Germany
| | - Jochen Kerres
- Forschungszentrum Jülich GmbH, Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IEK-11) Cauerstr. 1 91058 Erlangen Germany
- Chemical Resource Beneficiation Faculty of Natural Sciences, North-West University Potchefstroom 2520 South Africa
| |
Collapse
|
5
|
Min K, Chae JE, Lee Y, Kim HJ, Kim TH. Crosslinked poly(m-terphenyl N-methyl piperidinium)-SEBS membranes with aryl-ether free and kinked backbones as highly stable and conductive anion exchange membranes. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
6
|
Li D, Chu X, Liu L. 绿氢领域电解水制氢聚合物膜材料研究进展及发展建议. CHINESE SCIENCE BULLETIN-CHINESE 2022. [DOI: 10.1360/tb-2022-0246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
7
|
Nara Y, Tanaka M, Nagasawa K, Kuroda Y, Mitsushima S, Kawakami H. Development of highly alkaline stable anion conductive polymers with fluorene backbone for water electrolysis. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yuri Nara
- Department of Applied Chemistry Tokyo Metropolitan University Tokyo Japan
| | - Manabu Tanaka
- Department of Applied Chemistry Tokyo Metropolitan University Tokyo Japan
- Research Center for Hydrogen Energy‐based Society (ReHES) Tokyo Metropolitan University Tokyo Japan
| | - Kensaku Nagasawa
- Institute of Advanced Sciences Yokohama National University Yokohama Kanagawa Japan
| | - Yoshiyuki Kuroda
- Institute of Advanced Sciences Yokohama National University Yokohama Kanagawa Japan
- Graduate School of Engineering Science Yokohama National University Yokohama Kanagawa Japan
| | - Shigenori Mitsushima
- Institute of Advanced Sciences Yokohama National University Yokohama Kanagawa Japan
- Graduate School of Engineering Science Yokohama National University Yokohama Kanagawa Japan
| | - Hiroyoshi Kawakami
- Department of Applied Chemistry Tokyo Metropolitan University Tokyo Japan
- Research Center for Hydrogen Energy‐based Society (ReHES) Tokyo Metropolitan University Tokyo Japan
| |
Collapse
|
8
|
Zeng L, Yuan W, Ma X, He Q, Zhang L, Wang J, Wei Z. Dual-Cation Interpenetrating Polymer Network Anion Exchange Membrane for Fuel Cells and Water Electrolyzers. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c02600] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Lingping Zeng
- School of Chemistry & Chemical Engineering, Chongqing University, Chongqing 400044, P. R. China
| | - Wei Yuan
- School of Chemistry & Chemical Engineering, Chongqing University, Chongqing 400044, P. R. China
| | - Xiaoqin Ma
- School of Chemistry & Chemical Engineering, Chongqing University, Chongqing 400044, P. R. China
| | - Qian He
- School of Chemistry & Chemical Engineering, Chongqing University, Chongqing 400044, P. R. China
| | - Ling Zhang
- School of Chemistry & Chemical Engineering, Chongqing University, Chongqing 400044, P. R. China
| | - Jianchuan Wang
- School of Chemistry & Chemical Engineering, Chongqing University, Chongqing 400044, P. R. China
- State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, Chongqing 400044, P. R. China
| | - Zidong Wei
- School of Chemistry & Chemical Engineering, Chongqing University, Chongqing 400044, P. R. China
- State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, Chongqing 400044, P. R. China
| |
Collapse
|
9
|
Liu F, Wang D, Zhang M, Ma L, Yu CY, Wei H. Synthesis of enzyme-responsive theranostic amphiphilic conjugated bottlebrush copolymers for enhanced anticancer drug delivery. Acta Biomater 2022; 144:15-31. [PMID: 35306183 DOI: 10.1016/j.actbio.2022.03.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/09/2022] [Accepted: 03/13/2022] [Indexed: 12/17/2022]
Abstract
Synthesis of polyfluorene (PF) based theranostic amphiphilic copolymers with simultaneously high drug loading efficiency and tumor microenvironment-specific responsiveness for promoted intracellular drug release and enhanced cancer therapy has been rarely reported likely due to the lack of efficient synthetic approaches to integrate these desirable properties. In this work, we recorded the successful preparation of well-defined theranostic amphiliphilic bottlebrush copolymers composing of fluorescent backbone of PF and tunable enzyme-degradable side chains of polytyrosine (PTyr) and POEGMA by integrating Suzuki coupling, NCA ROP and ATRP techniques. Notably, the resulting copolymer, PF25-g-(PTyr26-b-(POEGMA28)2 (P4) with two branched POEGMA brushes tethered to one PTyr termini for each unit could form steady unimolecular micelles with higher fluorescence quantum yield of 18.3% in aqueous and greater entrapment efficiency (EE) of 91.0% for DOX ascribed to the efficient π-π stacking interactions between PTyr blocks and drug molecules and the unique structure of branched hydrophilic brushes with a moderate chain length. DOX@P4 micelles revealed visualization of intracellular trafficking and accelerated drug release due to the enzyme-triggered degradation of PTyr blocks with proteinase K and subsequent deshielding of POEGMA corona for micelle destruction. In vitro and In vivo animal study further verified the intensive therapeutic efficiency with attenuated systematic toxicity. Taken together, we provided a universal strategy toward multifunctional polymeric delivery vehicles based on conjugated PF and biocompatible and degradable polypeptide by integratied Suzuki coupling and NCA ROP, and identified the branched structure of hydrophilic brushes for better performance of bottlebrush copolymers-based micelles for drug delivery applications. STATEMENT OF SIGNIFICANCE: Synthesis of polyfluorene (PF)-based theranostic amphiphilic copolymers with simultaneously high drug loading efficiency and tumor microenvironment-specific responsiveness for promoted intracellular drug release and enhanced cancer therapy has been rarely reported likely due to the lack of efficient synthetic approaches to integrate these desirable properties. We reported herein successful preparation of enzyme-responsive theranostic amphiliphilic bottlebrush copolymers with simultaneously high drug loading efficiency and tumor microenvironment-specific responsiveness for enhanced chemotherapy in vivo. This study therefore not only developed a universal strategy for the construction of multifunction polymeric vehicles based on the conjugated polymer of PF and degradable polypeptide by integrated Suzuki coupling and NCA ROP, but also emphasized the better stability of micelles endowed by the branched hydrophilic brushes than linear ones.
Collapse
Affiliation(s)
- Fangjun Liu
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Dun Wang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study & Department of Pharmacy and Pharmacology, University of South China, Hengyang, 421001, China
| | - Miao Zhang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Liwei Ma
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China.
| | - Cui-Yun Yu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study & Department of Pharmacy and Pharmacology, University of South China, Hengyang, 421001, China.
| | - Hua Wei
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study & Department of Pharmacy and Pharmacology, University of South China, Hengyang, 421001, China.
| |
Collapse
|
10
|
Yang Y, Peltier CR, Zeng R, Schimmenti R, Li Q, Huang X, Yan Z, Potsi G, Selhorst R, Lu X, Xu W, Tader M, Soudackov AV, Zhang H, Krumov M, Murray E, Xu P, Hitt J, Xu L, Ko HY, Ernst BG, Bundschu C, Luo A, Markovich D, Hu M, He C, Wang H, Fang J, DiStasio RA, Kourkoutis LF, Singer A, Noonan KJT, Xiao L, Zhuang L, Pivovar BS, Zelenay P, Herrero E, Feliu JM, Suntivich J, Giannelis EP, Hammes-Schiffer S, Arias T, Mavrikakis M, Mallouk TE, Brock JD, Muller DA, DiSalvo FJ, Coates GW, Abruña HD. Electrocatalysis in Alkaline Media and Alkaline Membrane-Based Energy Technologies. Chem Rev 2022; 122:6117-6321. [PMID: 35133808 DOI: 10.1021/acs.chemrev.1c00331] [Citation(s) in RCA: 139] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Hydrogen energy-based electrochemical energy conversion technologies offer the promise of enabling a transition of the global energy landscape from fossil fuels to renewable energy. Here, we present a comprehensive review of the fundamentals of electrocatalysis in alkaline media and applications in alkaline-based energy technologies, particularly alkaline fuel cells and water electrolyzers. Anion exchange (alkaline) membrane fuel cells (AEMFCs) enable the use of nonprecious electrocatalysts for the sluggish oxygen reduction reaction (ORR), relative to proton exchange membrane fuel cells (PEMFCs), which require Pt-based electrocatalysts. However, the hydrogen oxidation reaction (HOR) kinetics is significantly slower in alkaline media than in acidic media. Understanding these phenomena requires applying theoretical and experimental methods to unravel molecular-level thermodynamics and kinetics of hydrogen and oxygen electrocatalysis and, particularly, the proton-coupled electron transfer (PCET) process that takes place in a proton-deficient alkaline media. Extensive electrochemical and spectroscopic studies, on single-crystal Pt and metal oxides, have contributed to the development of activity descriptors, as well as the identification of the nature of active sites, and the rate-determining steps of the HOR and ORR. Among these, the structure and reactivity of interfacial water serve as key potential and pH-dependent kinetic factors that are helping elucidate the origins of the HOR and ORR activity differences in acids and bases. Additionally, deliberately modulating and controlling catalyst-support interactions have provided valuable insights for enhancing catalyst accessibility and durability during operation. The design and synthesis of highly conductive and durable alkaline membranes/ionomers have enabled AEMFCs to reach initial performance metrics equal to or higher than those of PEMFCs. We emphasize the importance of using membrane electrode assemblies (MEAs) to integrate the often separately pursued/optimized electrocatalyst/support and membranes/ionomer components. Operando/in situ methods, at multiscales, and ab initio simulations provide a mechanistic understanding of electron, ion, and mass transport at catalyst/ionomer/membrane interfaces and the necessary guidance to achieve fuel cell operation in air over thousands of hours. We hope that this Review will serve as a roadmap for advancing the scientific understanding of the fundamental factors governing electrochemical energy conversion in alkaline media with the ultimate goal of achieving ultralow Pt or precious-metal-free high-performance and durable alkaline fuel cells and related technologies.
Collapse
Affiliation(s)
- Yao Yang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Cheyenne R Peltier
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Rui Zeng
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Roberto Schimmenti
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Qihao Li
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Xin Huang
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, United States
| | - Zhifei Yan
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Georgia Potsi
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Ryan Selhorst
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Xinyao Lu
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Weixuan Xu
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Mariel Tader
- Department of Physics, Cornell University, Ithaca, New York 14853, United States
| | - Alexander V Soudackov
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Hanguang Zhang
- Materials Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Mihail Krumov
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Ellen Murray
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Pengtao Xu
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Jeremy Hitt
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Linxi Xu
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Hsin-Yu Ko
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Brian G Ernst
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Colin Bundschu
- Department of Physics, Cornell University, Ithaca, New York 14853, United States
| | - Aileen Luo
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Danielle Markovich
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, United States
| | - Meixue Hu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Cheng He
- Chemical and Materials Science Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Hongsen Wang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Jiye Fang
- Department of Chemistry, State University of New York at Binghamton, Binghamton, New York 13902, United States
| | - Robert A DiStasio
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Lena F Kourkoutis
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, United States.,Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, New York 14853, United States
| | - Andrej Singer
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Kevin J T Noonan
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Li Xiao
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Lin Zhuang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Bryan S Pivovar
- Chemical and Materials Science Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Piotr Zelenay
- Materials Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Enrique Herrero
- Instituto de Electroquímica, Universidad de Alicante, Alicante E-03080, Spain
| | - Juan M Feliu
- Instituto de Electroquímica, Universidad de Alicante, Alicante E-03080, Spain
| | - Jin Suntivich
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States.,Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, New York 14853, United States
| | - Emmanuel P Giannelis
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
| | | | - Tomás Arias
- Department of Physics, Cornell University, Ithaca, New York 14853, United States
| | - Manos Mavrikakis
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Thomas E Mallouk
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Joel D Brock
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, United States
| | - David A Muller
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, United States.,Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, New York 14853, United States
| | - Francis J DiSalvo
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Geoffrey W Coates
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Héctor D Abruña
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States.,Center for Alkaline Based Energy Solutions (CABES), Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
11
|
Jang JH, Jeffery AA, Min J, Jung N, Yoo SJ. Emerging carbon shell-encapsulated metal nanocatalysts for fuel cells and water electrolysis. NANOSCALE 2021; 13:15116-15141. [PMID: 34554169 DOI: 10.1039/d1nr01328a] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The development of low-cost, high-efficiency electrocatalysts is of primary importance for hydrogen energy technology. Noble metal-based catalysts have been extensively studied for decades; however, activity and durability issues still remain a challenge. In recent years, carbon shell-encapsulated metal (M@C) catalysts have drawn great attention as novel materials for water electrolysis and fuel cell applications. These electrochemical reactions are governed mainly by interfacial charge transfer between the core metal and the outer carbon shell, which alters the electronic structure of the catalyst surface. Furthermore, the rationally designed and fine-tuned carbon shell plays a very interesting role as a protective layer or molecular sieve layer to improve the performance and durability of energy conversion systems. Herein, we review recent advances in the use of M@C type nanocatalysts for extensive applications in fuel cells and water electrolysis with a focus on the structural design and electronic structure modulation of carbon shell-encapsulated metal/alloys. Finally, we highlight the current challenges and future perspectives of these catalytic materials and related technologies in this field.
Collapse
Affiliation(s)
- Jue-Hyuk Jang
- Center for Hydrogen·Fuel Cell Research, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - A Anto Jeffery
- Graduate School of Energy Science and Technology (GEST), Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Republic of Korea
| | - Jiho Min
- Graduate School of Energy Science and Technology (GEST), Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Republic of Korea
| | - Namgee Jung
- Graduate School of Energy Science and Technology (GEST), Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Republic of Korea
| | - Sung Jong Yoo
- Center for Hydrogen·Fuel Cell Research, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Division of Energy & Environmental Technology, KIST school, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
12
|
Gohil JM, Dutta K. Structures and properties of polymers in ion exchange membranes for hydrogen generation by water electrolysis. POLYM ADVAN TECHNOL 2021. [DOI: 10.1002/pat.5482] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Jaydevsinh M. Gohil
- Advanced Polymer Design and Development Research Laboratory (APDDRL) School for Advanced Research in Petrochemicals (SARP), Central Institute of Petrochemicals Engineering and Technology (CIPET) Bengaluru Karnataka India
| | - Kingshuk Dutta
- Advanced Polymer Design and Development Research Laboratory (APDDRL) School for Advanced Research in Petrochemicals (SARP), Central Institute of Petrochemicals Engineering and Technology (CIPET) Bengaluru Karnataka India
| |
Collapse
|
13
|
Zhu H, Sun Z, Cao H, Wang B, Zhao J, Pan J, Xu G, Jin Z, Yan F. Highly Conductive and Dimensionally Stable Anion Exchange Membranes Based on Poly(dimethoxybenzene- co-methyl 4-formylbenzoate) Ionomers. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00704] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Hairong Zhu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Zhe Sun
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Huixing Cao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Bowen Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Junliang Zhao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Ji Pan
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Guodong Xu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Zhiyu Jin
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Feng Yan
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| |
Collapse
|
14
|
Zhao B, Liang Z, Zhang Y, Sui Y, Shi Y, Zhang X, Li M, Deng Y, Geng Y. Direct Arylation Polycondensation toward Water/Alcohol-Soluble Conjugated Polymers: Influence of Side Chain Functional Groups. ACS Macro Lett 2021; 10:419-425. [PMID: 35549230 DOI: 10.1021/acsmacrolett.1c00073] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Direct arylation of 2,7-dibromofluorene with n-octyl, 6-diethoxylphosphorylhexyl, 6-(N,N-diethylamino)hexyl or 6-bromohexyl side chains and 1,2,4,5-tetrafluorobenzene (TFB) were conducted to investigate the effect of side chain functional groups on the coupling, and the resulting TFB-substituted fluorene derivatives were used as C-H monomers for the synthesis of water/alcohol soluble conjugated polymers (WSCPs) by direct arylation polycondensation (DArP). The direct arylation and DArP of the monomers carrying phosphonate and amino groups went on smoothly in typical DArP conditions, that is, Pd(OAc)2/PtBu2Me-HBF4/base/DMAc and Pd2(dba)3·CHCl3/P(o-MeOPh)3/pivalic acid/base/THF, and high molecular weight polymers with these groups were successfully synthesized. However, for fluorene-monomers with bromohexyl side chains, the target products could not be obtained from the above conditions but could be prepared in the absence of carboxylic acid additives in low polar solvents. With the above DArP-made polymers as cathode interfacial layers, high performance organic solar cells (OSCs) were successfully fabricated.
Collapse
Affiliation(s)
- Bowen Zhao
- School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin 300072, People’s Republic of China
| | - Ziqi Liang
- School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin 300072, People’s Republic of China
| | - Ying Zhang
- School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin 300072, People’s Republic of China
| | - Ying Sui
- School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin 300072, People’s Republic of China
| | - Yibo Shi
- School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin 300072, People’s Republic of China
| | - Xuwen Zhang
- School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin 300072, People’s Republic of China
| | - Miaomiao Li
- School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin 300072, People’s Republic of China
| | - Yunfeng Deng
- School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin 300072, People’s Republic of China
| | - Yanhou Geng
- School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin 300072, People’s Republic of China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, People’s Republic of China
| |
Collapse
|