1
|
Guo X, Ahmed H, Xu G, Wang Q. Catalyst Improved Stereoselectivity and Regioselectivity Control to Access Completely Alternating Poly(lactic-co-glycolic acid) with Enhanced Properties. Angew Chem Int Ed Engl 2025; 64:e202417075. [PMID: 39719855 DOI: 10.1002/anie.202417075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/29/2024] [Accepted: 12/23/2024] [Indexed: 12/26/2024]
Abstract
The poly(lactic-co-glycolic acid) (PLGA) with completely alternating sequence has attracted growing attention as an ideal candidate in controlled drug delivery. However, the approach to completely alternating PLGA remains a challenge. Herein, we report the successful synthesis of completely alternating PLGA via highly regioselective and stereoselective ring-opening polymerization. The chiral (BisSalen)Al catalyst promoted a robust polymerization of enantiopure 3-methyl glycolide (MeG) with highly glycolyl site selectivity, affording alternating PLGA with regioselectivity up to more than 99 %. Impressively, the completely alternating PLGA exhibited a well-defined melting temperature Tm of 143.1 °C. Moreover, a stereocomplex between PLLGA and PDLGA was also formed with the improved Tm of 211.8 °C. The In vitro degradation and drug release experiments revealed the linear degradation and controlled drug release behavior of completely alternating PLGA, which can be used as an ideal carrier for mild long-acting drug delivery. Meanwhile, the reason of the high regioselectivity was investigated through the control experiments and DFT calculation. This highly regioselective (BisSalen)Al catalyst opens a door to providing completely alternating polymers.
Collapse
Affiliation(s)
- Xuanhua Guo
- Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, 266042, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hassan Ahmed
- Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, 266042, China
| | - Guangqiang Xu
- Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, 266042, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qinggang Wang
- Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, 266042, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
2
|
Huang YT, Huang HY, Cheng JL, Xie M, Feng LW, Cai Z, Zhu JB. A Regio- and Stereoselective Ring-Opening Polymerization Approach to Isotactic Alternating Poly(lactic-co-glycolic acid) with Stereocomplexation. Angew Chem Int Ed Engl 2025; 64:e202422147. [PMID: 39831782 DOI: 10.1002/anie.202422147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/03/2025] [Accepted: 01/20/2025] [Indexed: 01/22/2025]
Abstract
Poly(lactic-co-glycolic acid) (PLGA) has been widely employed for various biomedical applications owing to its biodegradability and biocompatibility. The discovery of the stereocomplex formation between enantiomeric alternating PLGA pairs underscored its potential as high-performance biodegradable materials with diverse material properties and biodegradability. Herein, we have established a regio- and stereoselective ring-opening polymerization approach for the synthesis of stereocomplexed isoenriched alternating PLGA from racemic methyl-glycolide (rac-MG). The high sequence and tacticity control was accomplished by an optimized enantiopure scandium catalyst bearing a spiro-salen scaffold. Varying polymer stereoregularity Pm from 0.4 to 0.91 led to a transformation of the resulting alternating PLGA from amorphous to semicrystalline materials. Notably, the stereocomplexed alternating PLGA demonstrated enhanced melting transition temperature (Tm up to 191 °C) and crystallization rate. This regio- and stereocontrolled polymerization represented a versatile approach for the preparation of high-performance biodegradable PLGA materials.
Collapse
Affiliation(s)
- Yu-Ting Huang
- National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, 29 Wangjiang Rd, Chengdu, 610064, P. R. China
| | - Hao-Yi Huang
- National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, 29 Wangjiang Rd, Chengdu, 610064, P. R. China
| | - Jing-Liang Cheng
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Rd, Chengdu, 610064, P. R. China
| | - Min Xie
- National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, 29 Wangjiang Rd, Chengdu, 610064, P. R. China
| | - Liang-Wen Feng
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Rd, Chengdu, 610064, P. R. China
| | - Zhongzheng Cai
- National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, 29 Wangjiang Rd, Chengdu, 610064, P. R. China
| | - Jian-Bo Zhu
- National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, 29 Wangjiang Rd, Chengdu, 610064, P. R. China
| |
Collapse
|
3
|
Alagi P, Nikam SB, Gopalsamy K, Bashihab L, Szekely G, Hadjichristidis N. Controlled Ring-Opening Polymerization of Methyl Glycolide with Bifunctional Organocatalyst. Angew Chem Int Ed Engl 2024; 63:e202411809. [PMID: 39259566 DOI: 10.1002/anie.202411809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/08/2024] [Accepted: 09/11/2024] [Indexed: 09/13/2024]
Abstract
A bifunctional thiourea-amine-based organocatalyst (Takemoto's catalyst), employing a metal-free approach, is presented for the regioselective ring-opening polymerization (ROP) of optically active (D and L) methyl glycolide (MG). In this study, a chiral version of Takemoto's catalyst efficiently promotes the ROP of MG at room temperature, yielding poly(lactic-co-glycolic acids) (PLGAs) with predicted molecular weights and narrow polydispersity indices (PDI≤1.2). These PLGAs exhibit highly alternating structures without transesterification, as confirmed by 1H NMR, SEC, and MALDI-TOF analyses. Additionally, various macromolecular architectures, including linear and star-shaped PLGAs, were successfully synthesized using the corresponding multi-functional alcohol initiators while maintaining the same alternating structures and regioselectivity with PLGA obtained from benzyl alcohol as initiator. Computational studies were conducted to elucidate the mechanism of alternating PLGA formation, revealing two key transition states (TSs): TS-1, which implicates the nucleophilic attack of the hydroxyl group of the initiator or propagating chain on the carbonyl carbon of MG, and TS-2, which involves the subsequent ring-opening of the cyclic ester. The results indicate that ring-opening occurs at both the glycolyl and lactyl sites, with a preference for the glycolyl site, as supported by experimental results. The resulting atactic PLGAs are amorphous, rendering them suitable for drug delivery applications.
Collapse
Affiliation(s)
- Prakash Alagi
- Polymer Synthesis Laboratory, Chemistry Program, KAUST Catalysis Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
| | - Shrikant B Nikam
- Polymer Synthesis Laboratory, Chemistry Program, KAUST Catalysis Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
| | - Karuppasamy Gopalsamy
- Advanced Membranes and Porous Materials Center (AMPM), Physical Science and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Lujain Bashihab
- Polymer Synthesis Laboratory, Chemistry Program, KAUST Catalysis Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
| | - Gyorgy Szekely
- Advanced Membranes and Porous Materials Center (AMPM), Physical Science and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Nikos Hadjichristidis
- Polymer Synthesis Laboratory, Chemistry Program, KAUST Catalysis Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
| |
Collapse
|
4
|
Grillo A, Rusconi Y, D’Alterio MC, De Rosa C, Talarico G, Poater A. Ring Opening Polymerization of Six- and Eight-Membered Racemic Cyclic Esters for Biodegradable Materials. Int J Mol Sci 2024; 25:1647. [PMID: 38338928 PMCID: PMC10855523 DOI: 10.3390/ijms25031647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/17/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
The low percentage of recyclability of the polymeric materials obtained by olefin transition metal (TM) polymerization catalysis has increased the interest in their substitution with more eco-friendly materials with reliable physical and mechanical properties. Among the variety of known biodegradable polymers, linear aliphatic polyesters produced by ring-opening polymerization (ROP) of cyclic esters occupy a prominent position. The polymer properties are highly dependent on the macromolecule microstructure, and the control of stereoselectivity is necessary for providing materials with precise and finely tuned properties. In this review, we aim to outline the main synthetic routes, the physical properties and also the applications of three commercially available biodegradable materials: Polylactic acid (PLA), Poly(Lactic-co-Glycolic Acid) (PLGA), and Poly(3-hydroxybutyrate) (P3HB), all of three easily accessible via ROP. In this framework, understanding the origin of enantioselectivity and the factors that determine it is then crucial for the development of materials with suitable thermal and mechanical properties.
Collapse
Affiliation(s)
- Andrea Grillo
- Department of Chemical Sciences, Università degli Studi di Napoli Federico II, Via Cintia, 80126 Napoli, Italy; (A.G.); (Y.R.); (M.C.D.); (C.D.R.); (G.T.)
| | - Yolanda Rusconi
- Department of Chemical Sciences, Università degli Studi di Napoli Federico II, Via Cintia, 80126 Napoli, Italy; (A.G.); (Y.R.); (M.C.D.); (C.D.R.); (G.T.)
- Scuola Superiore Meridionale, Largo San Marcellino 10, 80138 Napoli, Italy
| | - Massimo Christian D’Alterio
- Department of Chemical Sciences, Università degli Studi di Napoli Federico II, Via Cintia, 80126 Napoli, Italy; (A.G.); (Y.R.); (M.C.D.); (C.D.R.); (G.T.)
| | - Claudio De Rosa
- Department of Chemical Sciences, Università degli Studi di Napoli Federico II, Via Cintia, 80126 Napoli, Italy; (A.G.); (Y.R.); (M.C.D.); (C.D.R.); (G.T.)
| | - Giovanni Talarico
- Department of Chemical Sciences, Università degli Studi di Napoli Federico II, Via Cintia, 80126 Napoli, Italy; (A.G.); (Y.R.); (M.C.D.); (C.D.R.); (G.T.)
- Scuola Superiore Meridionale, Largo San Marcellino 10, 80138 Napoli, Italy
| | - Albert Poater
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, c/ Maria Aurèlia Capmany 69, 17003 Girona, Spain
| |
Collapse
|
5
|
Rusconi Y, D’Alterio MC, De Rosa C, Lu Y, Severson SM, Coates GW, Talarico G. Mechanism of Alternating Poly(lactic- co-glycolic acid) Formation by Polymerization of ( S)- and ( R)-3-Methyl Glycolide Using an Enantiopure Aluminum Complex. ACS Catal 2024; 14:318-323. [PMID: 38205026 PMCID: PMC10775139 DOI: 10.1021/acscatal.3c04955] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/07/2023] [Accepted: 12/14/2023] [Indexed: 01/12/2024]
Abstract
The mechanism(s) of alternating PLGA synthesis by ring-opening polymerization of (S)- and (R)-3-methyl glycolide promoted by enantiopure aluminum complexes have been rationalized by density functional theory (DFT) calculations. The high regioselectivity of the (S)-MeG polymerization is obtained by repetitive ring opening at the glycolyl site by the (R)-catalyst whereas a lower regioselectivity is predicted by the ROP of (R)-MeG. The behavior of the two monomers is rationalized by unveiling the active site fluxionality of the enantiopure catalyst, identifying the rate-limiting steps that encode a preference at the glycolyl site versus the lactyl site, and revealing selection of the opposite monomer enantioface. The microstructure of the PLGA copolymers is predicted by considering the influence of the configuration of the last inserted unit. The identification of the preferred mechanistic paths may allow for a targeted catalyst design to enhance control of the polymer microstructures.
Collapse
Affiliation(s)
- Yolanda Rusconi
- Scuola
Superiore Meridionale, Largo San Marcellino, 80138 Napoli, Italy
- Dipartimento
di Scienze Chimiche, Università degli
Studi di Napoli Federico II, 80126 Napoli, Italy
| | | | - Claudio De Rosa
- Dipartimento
di Scienze Chimiche, Università degli
Studi di Napoli Federico II, 80126 Napoli, Italy
| | - Yiye Lu
- Department
of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853-1301, United States
| | - Sarah M. Severson
- Department
of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853-1301, United States
| | - Geoffrey W. Coates
- Department
of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853-1301, United States
| | - Giovanni Talarico
- Scuola
Superiore Meridionale, Largo San Marcellino, 80138 Napoli, Italy
- Dipartimento
di Scienze Chimiche, Università degli
Studi di Napoli Federico II, 80126 Napoli, Italy
| |
Collapse
|
6
|
Lu Y, Coates GW. Pairing-Enhanced Regioselectivity: Synthesis of Alternating Poly(lactic- co-glycolic acid) from Racemic Methyl-Glycolide. J Am Chem Soc 2023; 145:22425-22432. [PMID: 37793193 DOI: 10.1021/jacs.3c05941] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
Poly(lactic-co-glycolic acid) (PLGA) is used in vivo for various biomedical applications. Due to its biodegradability and biocompatibility, PLGA is uniquely suited for controlled drug delivery with parenteral administration. Previously, we established the synthesis of isotactic, alternating PLGA from enantiopure starting materials. Here, to fill in the gap of the current field, we have developed the synthesis of syndioenriched, alternating PLGA from racemic methyl-glycolide (rac-MeG). The synthesis of alternating PLGA is accomplished by a highly regioselective ring-opening polymerization of rac-MeG with an optimized racemic aluminum catalyst. Mechanistic studies are carried out to elucidate the pairing-enhanced catalyst regio- and stereocontrol. Polymer sequence fidelity has been established by NMR investigations, confirming a high degree of alternation of the comonomer sequence and moderate syndiotacticity within the backbone stereoconfiguration. The resulting syndioenriched material is amorphous, which will facilitate the drug complexation behavior.
Collapse
Affiliation(s)
- Yiye Lu
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853-1301, U.S.A
| | - Geoffrey W Coates
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853-1301, U.S.A
| |
Collapse
|
7
|
Lipophilic poly(glycolide) blocks in morpholin-2-one-based CARTs for plasmid DNA delivery: Polymer regioregularity, sequence of lipophilic/polyamine blocks, and nanoparticle stability as factors of transfection efficiency. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
8
|
Stereocomplex crystallization of chiral hydroxyalkanoic acid-based biodegradable alternating copolyesters with two types of chiral centers and opposite monomer configurational combinations of L-D and D-L (S-R and R–S). POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
9
|
Raj R, Pinto SN, Crucho CIC, Das S, Baleizão C, Farinha JPS. Optically traceable PLGA-silica nanoparticles for cell-triggered doxorubicin delivery. Colloids Surf B Biointerfaces 2022; 220:112872. [PMID: 36179611 DOI: 10.1016/j.colsurfb.2022.112872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/18/2022] [Accepted: 09/21/2022] [Indexed: 11/28/2022]
Abstract
Fluorescent silica nanoparticles with a polymer shell of poly (D, L-lactide-co-glycolide) (PLGA) can provide traceable cell-triggered delivery of the anticancer drug doxorubicin (DOX), protecting the cargo while in transit and releasing it only intracellularly. PLGA with 50:50 lactide:glycolide ratio was grown by surface-initiated ring-opening polymerization (ROP) from silica nanoparticles of ca. 50 nm diameter, doped with a perylenediimide (PDI) fluorescent dye anchored to the silica structure. After loading DOX, release from the core-shell particles was evaluated in solution at physiological pH (7.4), and in human breast cancer cells (MCF-7) after internalization. The hybrid silica-PLGA nanoparticles can accommodate a large cargo of DOX, and the release in solution (PBS) due to PLGA hydrolysis is negligible for at least 72 h. However, once internalized in MCF-7 cells, the nanoparticles release the DOX cargo by degradation of the PLGA. Accumulation of DOX in the nucleus causes cell apoptosis, with the drug-loaded nanoparticles found to be as potent as free DOX. Our fluorescently traceable hybrid silica-PLGA nanoparticles with cell-triggered cargo release offer excellent prospects for the controlled delivery of anticancer drugs, protecting the cargo while in transit and efficiently releasing the drug once inside the cell.
Collapse
Affiliation(s)
- Ritu Raj
- Centro de Química Estrutural, Institute of Molecular Sciences, and Department of Chemical Engineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; Department of Life Science, Laboratory of Environmental Microbiology and Ecology (LEnME), National Institute of Technology Rourkela, Rourkela 769 008, Odisha, India.
| | - Sandra N Pinto
- iBB-Institute of Bioengineering and Biosciences, i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - Carina I C Crucho
- iBB-Institute of Bioengineering and Biosciences, i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - Surajit Das
- Department of Life Science, Laboratory of Environmental Microbiology and Ecology (LEnME), National Institute of Technology Rourkela, Rourkela 769 008, Odisha, India.
| | - Carlos Baleizão
- Centro de Química Estrutural, Institute of Molecular Sciences, and Department of Chemical Engineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - José Paulo S Farinha
- Centro de Química Estrutural, Institute of Molecular Sciences, and Department of Chemical Engineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| |
Collapse
|
10
|
Kuehster L, Jhon YK, Wang Y, Smith WC, Xu X, Qin B, Zhang F, Lynd NA. Stochastic and Deterministic Analysis of Reactivity Ratios in the Partially Reversible Copolymerization of Lactide and Glycolide. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Louise Kuehster
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Young Kuk Jhon
- Office of Lifecycle Drug Products, United States Food and Drug Administration, Silver Spring, Maryland 20993, United States
- Office of Pharmaceutical Quality, United States Food and Drug Administration, Silver Spring, Maryland 20993, United States
- Center for Drug Evaluation and Research, United States Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | - Yan Wang
- Center for Drug Evaluation and Research, United States Food and Drug Administration, Silver Spring, Maryland 20993, United States
- Office of Research and Standards, United States Food and Drug Administration, Silver Spring, Maryland 20993, United States
- Office of Generic Drugs, United States Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | - William C. Smith
- Office of Pharmaceutical Quality, United States Food and Drug Administration, Silver Spring, Maryland 20993, United States
- Center for Drug Evaluation and Research, United States Food and Drug Administration, Silver Spring, Maryland 20993, United States
- Office of Testing and Research, United States Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | - Xiaoming Xu
- Office of Pharmaceutical Quality, United States Food and Drug Administration, Silver Spring, Maryland 20993, United States
- Center for Drug Evaluation and Research, United States Food and Drug Administration, Silver Spring, Maryland 20993, United States
- Office of Testing and Research, United States Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | - Bin Qin
- Center for Drug Evaluation and Research, United States Food and Drug Administration, Silver Spring, Maryland 20993, United States
- Office of Research and Standards, United States Food and Drug Administration, Silver Spring, Maryland 20993, United States
- Office of Generic Drugs, United States Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | - Feng Zhang
- Molecular Pharmaceutics and Drug Delivery, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Nathaniel A. Lynd
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
11
|
Shen Y, Li D, Kou X, Wang R, Liu F, Li Z. Ultrafast ring-opening copolymerization of lactide with glycolide toward random poly(lactic-co-glycolic acid) copolymers by organophosphazene base and urea binary catalysts. Polym Chem 2022. [DOI: 10.1039/d1py01653a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The preparation of poly(lactic-co-glycolic acid) (PLGA) copolymers with controllable random microstructures remains as a challenge due to the much higher reactivity of glycolide (GA) compared to lactide (LA). In this...
Collapse
|
12
|
Tsuji H, Osanai K, Arakawa Y. Stereocomplex and individual crystallization behavior of symmetric or enantiomeric substituted Poly(lactic acid)s random copolymers with high crystallizabilities. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.124352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
13
|
Pardeshi SR, Nikam A, Chandak P, Mandale V, Naik JB, Giram PS. Recent advances in PLGA based nanocarriers for drug delivery system: a state of the art review. INT J POLYM MATER PO 2021. [DOI: 10.1080/00914037.2021.1985495] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Sagar R. Pardeshi
- Department of Pharmaceutical Technology, University Institute of Chemical Technology, KBC North Maharashtra University, Jalgaon, India
| | - Aniket Nikam
- Department of Pharmaceutical Quality Assurance, Dr. D.Y. Patil Institute of Pharmaceutical Sciences and Research, Pune, India
| | - Priyanka Chandak
- Department of Pharmaceutical Quality Assurance, Dr. D.Y. Patil Institute of Pharmaceutical Sciences and Research, Pune, India
| | - Vijaya Mandale
- Department of Pharmaceutical Quality Assurance, Dr. D.Y. Patil Institute of Pharmaceutical Sciences and Research, Pune, India
| | - Jitendra B. Naik
- Department of Pharmaceutical Technology, University Institute of Chemical Technology, KBC North Maharashtra University, Jalgaon, India
| | - Prabhanjan S. Giram
- Department of Pharmaceutics, Dr. D.Y. Patil Institute of Pharmaceutical Sciences and Research, Pune, India
| |
Collapse
|
14
|
Jia Z, Li Y, Wu J. Sequence‐Controlled Alternating Copolyesters Synthesis via Selective Ring‐Opening Polymerization. MACROMOL CHEM PHYS 2021. [DOI: 10.1002/macp.202100323] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Zhaowei Jia
- State Key Laboratory of Applied Organic Chemistry Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province College of Chemistry and Chemical Engineering. Lanzhou University No. 222 Tianshui South Road Lanzhou 730000 P. R. China
| | - Yuju Li
- State Key Laboratory of Applied Organic Chemistry Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province College of Chemistry and Chemical Engineering. Lanzhou University No. 222 Tianshui South Road Lanzhou 730000 P. R. China
| | - Jincai Wu
- State Key Laboratory of Applied Organic Chemistry Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province College of Chemistry and Chemical Engineering. Lanzhou University No. 222 Tianshui South Road Lanzhou 730000 P. R. China
| |
Collapse
|
15
|
Tsuji H, Yamasaki M, Arakawa Y. Synthesis and Stereocomplexation of New Enantiomeric Stereo Periodical Copolymers Poly( l-lactic acid– l-lactic acid– d-lactic acid) and Poly( d-lactic acid– d-lactic acid– l-lactic acid). Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01099] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Hideto Tsuji
- Department of Applied Chemistry and Life Science, Graduate School of Engineering, Toyohashi University of Technology, Tempaku-cho, Toyohashi, Aichi 441-8580, Japan
| | - Masato Yamasaki
- Department of Applied Chemistry and Life Science, Graduate School of Engineering, Toyohashi University of Technology, Tempaku-cho, Toyohashi, Aichi 441-8580, Japan
| | - Yuki Arakawa
- Department of Applied Chemistry and Life Science, Graduate School of Engineering, Toyohashi University of Technology, Tempaku-cho, Toyohashi, Aichi 441-8580, Japan
| |
Collapse
|
16
|
Altay E, Jang YJ, Kua XQ, Hillmyer MA. Synthesis, Microstructure, and Properties of High-Molar-Mass Polyglycolide Copolymers with Isolated Methyl Defects. Biomacromolecules 2021; 22:2532-2543. [PMID: 33970613 DOI: 10.1021/acs.biomac.1c00269] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
An efficient, fast, and reliable method for the synthesis of high-molar-mass polyglycolide (PGA) in bulk using bismuth (III) subsalicylate through ring-opening transesterification polymerization is described. The difference between the crystallization (Tc ≈ 180 °C)/degradation (Td ≈ 245 °C) temperatures and the melting temperature (Tm ≈ 222 °C) significantly affects the ability to melt-process PGA homopolymer. To expand these windows, the effect of copolymer microstructure differences through incorporation of methyl groups in pairs using lactide or isolated using methyl glycolide (≤10% methyl) as comonomers on the thermal, mechanical, and barrier properties were studied. Structures of copolymers were characterized by nuclear magnetic resonance (1H and 13C NMR) spectroscopies. Films of copolymers were obtained, and the microstructural and physical properties were analyzed. PGA homopolymers exhibited an approximately 30 °C difference between Tm and Tc, which increased to 68 °C by incorporating up to 10% methyl groups in the chain while maintaining overall thermal stability. Oxygen and water vapor permeation values of solvent-cast nonoriented films of PGA homopolymers were found to be 4.6 cc·mil·m-2·d-1·atm-1 and 2.6 g·mil·m-2·d-1·atm-1, respectively. Different methyl distributions in the copolymer sequence, provided through either lactide or methyl glycolide, affected the resulting gas barrier properties. At 10% methyl insertion, using lactide as a comonomer significantly increased both O2 (32 cc·mil·m-2·d-1·atm-1) and water vapor (12 g·mil·m-2·d-1·atm-1) permeation. However, when methyl glycolide was utilized for methyl insertion at 10% Me content, excellent barrier properties for both O2 (2.9 cc·mil·m-2·d-1·atm-1) and water vapor (1.0 g·mil·m-2·d-1·atm-1) were achieved.
Collapse
Affiliation(s)
- Esra Altay
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Yoon-Jung Jang
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Xiang Qi Kua
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Marc A Hillmyer
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| |
Collapse
|
17
|
Jia Z, Jiang J, Zhang X, Cui Y, Chen Z, Pan X, Wu J. Isotactic-Alternating, Heterotactic-Alternating, and ABAA-Type Sequence-Controlled Copolyester Syntheses via Highly Stereoselective and Regioselective Ring-Opening Polymerization of Cyclic Diesters. J Am Chem Soc 2021; 143:4421-4432. [PMID: 33724019 DOI: 10.1021/jacs.1c00902] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Synthesizing different types of sequence-controlled copolyesters can enrich the diversity of copolyesters and modify their properties more precisely, but it is still a challenge to synthesize a complicated sequence-controlled copolyester using different hydroxy acids in a living polymerization manner. In this work, a highly regioselective and stereoselective catalytic system was developed to synthesize biorenewable and biodegradable copolyesters of mandelic acid and lactic acid with isotactic-alternating, heterotactic-alternating, and ABAA-type precise and complicated sequences. Because of the regular incorporation of mandelic acid into polylactide, these sequence-controlled copolymers of mandelic acid and lactic acid show higher glass-transition temperatures than polylactide and a random copolymer. A stereocomplexation interaction between two opposite enantiomeric isotactic polymer chains was also discovered in the isotactic-alternating copolymer.
Collapse
Affiliation(s)
- Zhaowei Jia
- State Key Laboratory of Applied Organic Chemistry (Lanzhou University), Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Jinxing Jiang
- State Key Laboratory of Applied Organic Chemistry (Lanzhou University), Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Xiaofei Zhang
- State Key Laboratory of Applied Organic Chemistry (Lanzhou University), Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Yaqin Cui
- School of Chemical Engineering and Technology, Tianshui Normal University, Tianshui, Gansu 741001, People's Republic of China
| | - Zhichun Chen
- State Key Laboratory of Applied Organic Chemistry (Lanzhou University), Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Xiaobo Pan
- State Key Laboratory of Applied Organic Chemistry (Lanzhou University), Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Jincai Wu
- State Key Laboratory of Applied Organic Chemistry (Lanzhou University), Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
| |
Collapse
|
18
|
Lu Y, Swisher JH, Meyer TY, Coates GW. Chirality-Directed Regioselectivity: An Approach for the Synthesis of Alternating Poly(Lactic-co-Glycolic Acid). J Am Chem Soc 2021; 143:4119-4124. [DOI: 10.1021/jacs.1c00248] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Yiye Lu
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853-1301, United States
| | - Jordan H. Swisher
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260-8929, United States
| | - Tara Y. Meyer
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260-8929, United States
| | - Geoffrey W. Coates
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853-1301, United States
| |
Collapse
|