1
|
Phiromphu N, Juthathan M, Chainok K, Theppitak C, Thamyongkit P, Tuntulani T, Leeladee P. Facile synthesis of acridine-based nickel(II) complexes via metal-mediated rearrangement of diphenylamine derivative and application in H 2 evolution reaction. Sci Rep 2025; 15:15839. [PMID: 40328822 PMCID: PMC12055961 DOI: 10.1038/s41598-025-00345-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 04/28/2025] [Indexed: 05/08/2025] Open
Abstract
In this study, the formation of acridine-based metal complexes from rearrangement of diphenylamine-2,2'-dicarboxaldehyde (2,2'-dpadc) in the presence of transition metal ions was investigated. As a result, two novel isomorphic nickel(II) complexes bearing acridine-based Schiff-base ligand [NiLACR](X)2·CH3CN (X = BF4 (1), ClO4 (2), LACR = (E)-N1-(2-((acridin-4-ylmethylene)amino)ethyl)-N1-(2-aminoethyl)ethane-1,2-diamine) were successfully synthesized via a one-pot condensation of 2,2'-dpadc and tris(2-aminoethyl)amine (TREN) with a satisfactory yield of approximately 60%. These complexes were fully characterized by X-ray crystallography, UV-vis spectroscopy and CHN elemental analysis. Additionally, their thermal stability (thermogravimetric analysis) and electrochemical properties were also determined. A plausible mechanism for the nickel(II)-mediated rearrangement of 2,2'-dpadc to form the acridine-based nickel(II) complex was proposed. To demonstrate their potential applications, complex 1 was explored in the realm of electrocatalysis. It exhibited moderate activity towards hydrogen evolution reaction (HER). During 1-h controlled-potential electrolysis (CPE) experiments, H2 production (16 micromole) was observed with faradaic efficiency of 40% when the reaction was conducted in a TBAPF6/DMF solution at -2.1 V vs. Fc/Fc+ in the presence of acetic acid as a proton source. The facile synthesis of these acridine-based nickel(II) complexes reported herein may stimulate further development of novel acridine-based ligands and their corresponding metal complexes for a wide range of applications.
Collapse
Affiliation(s)
- Nutchanikan Phiromphu
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Methasit Juthathan
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Kittipong Chainok
- Thammasat University Research Unit in Multifunctional Crystalline Materials and Applications (TU-McMa), Faculty of Science and Technology, Thammasat University, Pathum Thani, 12121, Thailand
| | - Chatphorn Theppitak
- Thammasat University Research Unit in Multifunctional Crystalline Materials and Applications (TU-McMa), Faculty of Science and Technology, Thammasat University, Pathum Thani, 12121, Thailand
| | - Patchanita Thamyongkit
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Thawatchai Tuntulani
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Pannee Leeladee
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
2
|
Chen GS, Liu C, Yang XJ, Zhan ZH, Wang TS, Zhang HX. Effect of proton sources on the electrocatalytic hydrogen evolution reaction mediated by a copper complex of bistriazolylpyridine. Dalton Trans 2025; 54:4761-4771. [PMID: 39976300 DOI: 10.1039/d4dt02856b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
The widespread utilization of hydrogen fuel is one of the important strategies to fix the issues of energy shortage. It is thereby vital to develop robust, low-cost efficient catalysts for the hydrogen evolution reaction (HER). In this work, a new bistriazolylpyridine dimethyl-2,2'-(pyridine-2,6-diyl bis(1H-1,2,3-triazole-4,1-diyl))diacetate (dbes) and its copper complex [Cu(dbes)2](ClO4)2 (Cudbes) were prepared. The electrocatalytic activity of Cudbes toward the HER was studied in CH3CN solution using acetic acid (AcOH), trifluoroacetic acid (TFA), and p-toluene sulfonic acid (TsOH) as proton sources. In the presence of AcOH, TFA, and TsOH, the overpotentials for the HER mediated by Cudbes were 550 mV, 525 mV, and 520 mV, respectively. The faradaic efficiency was above 98%. The rate constant for the HER (kobs) was 1377 s-1 with AcOH, much higher than those with TFA (535 s-1) and TsOH (519 s-1). The acids profoundly affected the reaction pathways of the HER mediated by Cudbes. The catalytic HER mediated by Cudbes with AcOH followed the EECC or EEECC pathway. By contrast, in the presence of TFA or TsOH, the catalytic HER followed the CEEC or CECE pathway. The catalytic reactions invoked the proton-coupled electron transfer step and the proton relay on the triazolyl moiety of dbes. This work demonstrates that bistriazolylpyridines are good organic scaffolds to build transition metal complexes that are promising catalyst candidates for the HER and gives some new insights into the catalytic HER mediated by copper complexes using different proton sources.
Collapse
Affiliation(s)
- Gui-Shan Chen
- School of Chemistry and Chemical Engineering, Guangxi University, No. 100, Daxue East Road, Nanning 530004, Guangxi, China.
| | - Chang Liu
- School of Chemistry and Chemical Engineering, Guangxi University, No. 100, Daxue East Road, Nanning 530004, Guangxi, China.
| | - Xing-Jin Yang
- School of Chemistry and Chemical Engineering, Guangxi University, No. 100, Daxue East Road, Nanning 530004, Guangxi, China.
| | - Zhi-Hao Zhan
- School of Chemistry and Chemical Engineering, Guangxi University, No. 100, Daxue East Road, Nanning 530004, Guangxi, China.
| | - Tian-Shun Wang
- School of Chemistry and Chemical Engineering, Guangxi University, No. 100, Daxue East Road, Nanning 530004, Guangxi, China.
- Research Institute of Agro-Products Quality Safety and Testing Technology, Guangxi Academy of Agriculture Science, Nanning 530007, Guangxi, China
| | - Hua-Xin Zhang
- School of Chemistry and Chemical Engineering, Guangxi University, No. 100, Daxue East Road, Nanning 530004, Guangxi, China.
| |
Collapse
|
3
|
Singh V, Robb MG, Brooker S. Testing mixed metal bimetallic, and monometallic, cryptates for electrocatalytic hydrogen evolution. Dalton Trans 2025; 54:3165-3173. [PMID: 39820986 DOI: 10.1039/d4dt03161j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Appropriately designed catalysts help to minimise the energy required to convert the energy-poor feedstock H2O into energy-rich molecular H2. Herein, two families of pyridazine-based cryptates, mononuclear [MIILi](BF4)2 and mixed metal dinuclear [MIICuILi](BF4)3 (M = Fe, Co, Cu or Zn; Li is the Schiff base cryptand made by 2 : 3 condensation of tris(2-aminoethyl)amine and 3,6-diformylpyridazine), are investigated as potential electrocatalysts for the hydrogen evolution reaction (HER) in MeCN with acetic acid as the proton source. The synthesis and structures of a new mixed metal cryptate, [ZnIICuILi](BF4)3, and the tetrafluoroborate analogue of the previously reported perchlorate salt of the mono-zinc cryptate, [ZnIILi](BF4)2·0.5H2O, are reported. Electrocatalytic HER testing showed that a deposit forms on the glassy carbon working electrode during electrolysis and it is the active species responsible for the very modest activity observed. The deposits formed by the heterobinuclear cryptates had higher activities (2.0 < TON2h < 3.5) than the deposits formed by the mononuclear cryptates (TON2h < 0.75). But unfortunately the control, using CuI(MeCN)4BF4, had a similar TON2h (2.3) to those seen for the heterobinculear cryptates, which indicates that it is the deposit formed by the CuI cation present in the heterobinuclear cryptates that is likely responsible for the observed, very modest, HER activity.
Collapse
Affiliation(s)
- Varinder Singh
- Department of Chemistry and the MacDiarmid Institute for Advanced Materials and Nanotechnology, University of Otago, PO Box 56, Dunedin 9054, New Zealand.
| | - Matthew G Robb
- Department of Chemistry and the MacDiarmid Institute for Advanced Materials and Nanotechnology, University of Otago, PO Box 56, Dunedin 9054, New Zealand.
| | - Sally Brooker
- Department of Chemistry and the MacDiarmid Institute for Advanced Materials and Nanotechnology, University of Otago, PO Box 56, Dunedin 9054, New Zealand.
| |
Collapse
|
4
|
Yuan H, Ming M, Yang S, Guo K, Chen B, Jiang L, Han Z. Molecular Copper-Anthraquinone Photocatalysts for Robust Hydrogen Production. J Am Chem Soc 2024; 146:31901-31910. [PMID: 39508387 DOI: 10.1021/jacs.4c11223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
The development of robust and inexpensive photocatalysts for H2 production under visible light irradiation remains a significant challenge. This study presents a series of square planar copper anthraquinone complexes (R4N)CuL2 (R = ethyl, L = alizarin dianion (CuAA); R = n-butyl, L = purpurin dianion (CuPP), (2-hydroxyanthraquinone)formamide dianion (CuAHA)) as molecular photocatalysts to achieve high long-term stability in visible-light-driven H2 production. These complexes are self-sensitized by the anthraquinone ligands and serve as proton reduction photocatalysts without additional photosensitizers or catalysts. Under irradiation of blue light, complex CuAA produces H2 in a mixture of H2O/DMF with undiminished activity over 42 days, giving a turnover number exceeding 6800. Electrochemical and UV-vis studies are consistent with an EECC mechanism (E: electron transfer and C: protonation) in the catalytic cycle. The initial photochemical steps involve conversion of both anthraquinone ligands to hydroquinones. Further light-driven reductions of the hydroquinones followed by two protonation steps results in formation of H2. Dependence of the catalytic rate on the concentration of H2O suggests that either the generation of a CuII-H intermediate by protonation or heterocoupling between CuII-H and H+ to produce H2 is the turnover-limiting step in catalysis.
Collapse
Affiliation(s)
- Huiqing Yuan
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, IGCME, Sun Yat-sen University, Guangzhou 510275, China
| | - Mei Ming
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, IGCME, Sun Yat-sen University, Guangzhou 510275, China
| | - Shuang Yang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, IGCME, Sun Yat-sen University, Guangzhou 510275, China
| | - Kai Guo
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, IGCME, Sun Yat-sen University, Guangzhou 510275, China
| | - Bixian Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, IGCME, Sun Yat-sen University, Guangzhou 510275, China
| | - Long Jiang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, IGCME, Sun Yat-sen University, Guangzhou 510275, China
| | - Zhiji Han
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, IGCME, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
5
|
Diyali S, Saha S, Diyali N, Bhattacharjee A, Mallick A, Agrawalla SK, Purohit CS, Biswas B. Deciphering Electrocatalytic Hydrogen Production in Water Through a Bioinspired Water-Stable Copper(II) Complex Adorned with (N 2S 2)-Donor Sites. CHEMSUSCHEM 2024:e202401089. [PMID: 39365613 DOI: 10.1002/cssc.202401089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/17/2024] [Accepted: 10/01/2024] [Indexed: 10/05/2024]
Abstract
Electrocatalytic hydrogen production stands as a pivotal cornerstone in ushering the revolutionary era of the hydrogen economy. With a keen focus on emulating the significance of hydrogenase-like active sites in sustainable H2 generation, a meticulously designed and water-stable copper(II) complex, [Cl-Cu-LN2S2]ClO4, featuring the N,S-type ligand, LN2S2 (2,2'-((butane-2,3-diylbis(sulfanediyl))bis(methylene))dipyridine), has been crafted and assessed for its prowess in electrocatalytic H2 production in water, leveraging acetic acid as a proton source. The molecular catalyst, adopting a square pyramidal coordination geometry, undergoes -Cl substitution by H2O during electrochemical conditions yielding [H2O-Cu-LN2S2]2+ as the true catalyst, showcases outstanding activity in electrochemical proton reduction in acidic water, achieving an impressive rate of 241.75 s-1 for hydrogen generation. Controlled potential electrolysis at -1.2 V vs. Ag/AgCl for 1.6 h reveals a high turnover number of 73.06 with a commendable Faradic efficiency of 94.2 %. A comprehensive analysis encompassing electrochemical, spectroscopic, and analytical methods reveals an insignificant degradation of the molecular catalyst. However, the post-CPE electrocatalyst, present in the solution domain, signifies the coveted stability and effective activity under the specified electrochemical conditions. The synergy of electrochemical, spectroscopic, and computational studies endorses the proton-electron coupling mediated catalytic pathways, affirming the viability of sustainable hydrogen production.
Collapse
Affiliation(s)
- Sangharaj Diyali
- Department of Chemistry, University of North Bengal, Darjeeling, 734013, India
| | - Subhajit Saha
- Department of Chemistry, University of North Bengal, Darjeeling, 734013, India
| | - Nilankar Diyali
- Department of Chemistry, University of North Bengal, Darjeeling, 734013, India
| | | | - Abhishek Mallick
- Department of Chemistry, University of North Bengal, Darjeeling, 734013, India
| | - Suraj Kumar Agrawalla
- School of Chemical Sciences, National Institute of Science Education and Research, Bhubaneswar, 752050, India
| | - Chandra Shekhar Purohit
- School of Chemical Sciences, National Institute of Science Education and Research, Bhubaneswar, 752050, India
| | - Bhaskar Biswas
- Department of Chemistry, University of North Bengal, Darjeeling, 734013, India
| |
Collapse
|
6
|
Akogun FS, Judd M, Mort AGC, Malthus SJ, Robb MG, Cox N, Brooker S. Complexes of a Noncyclic Carbazole-based N5-donor Schiff base: Structures, Redox, EPR and Poor Activity as Hydrogen Evolution Electrocatalysts. Inorg Chem 2024; 63:17014-17025. [PMID: 39225072 DOI: 10.1021/acs.inorgchem.4c02657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
A new noncyclic pentadentate N5-donor Schiff-base ligand, HL2Etpyr (1,1'-(3,6-ditert-butyl-9H-carbazole-1,8-diyl)bis(N-(2-(pyridin-2-yl)ethyl)methanimine)), prepared from 1,8-diformyl-3,6-ditertbutyl-carbazole (HUtBu) and two equivalents of 2-(2-pyridyl)ethylamine, along with four tetrafluoroborate complexes, [MIIL2Etpyr](BF4), where M = Co, Ni, Cu, and Zn, and two [CoIIL2EtPyr]·1/2[CoIIX4] complexes where X = NCS or Cl, isolated as solvates, are reported. All six complexes were structurally characterized, revealing the cations to be isostructural, with M(II) in a trigonal bipyramidal N5-donor environment. Only the Zn(II) complex is fluorescent. Cyclic voltammograms of [MIIL2Etpyr](BF4) in MeCN reveal reversible redox processes at positive potentials: 0.61 (Zn), 0.62 (Cu), 0.57 (Ni), and 0.25 V (Co), and for the cobalt complex a second quasi-reversible process occurs at 0.92 V vs Fc+/Fc. EPR data for the first oxidation product clearly demonstrate that the Zn complex undergoes a ligand centered oxidation, and support this being the case for the Ni and Cu complexes, although this is not definitively shown. After both oxidations the EPR data shows that the Co complex is best described as a low spin Co(III)-ligand radical. In the presence of 80 mM acetic acid, controlled potential electrolysis carried out on [MIIL2Etpyr](BF4) at -1.68 V in MeCN shows some electrocatalytic hydrogen evolution reaction (HER) performance in the order Ni(II) > Cu(II) > Co(II) - but the control, Ni(II) tetrafluoroborate, is more active than all three of the complexes.
Collapse
Affiliation(s)
- Folaranmi S Akogun
- Department of Chemistry and MacDiarmid Institute for Advanced Materials and Nanotechnology, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Martyna Judd
- Research School of Chemistry, The Australian National University, Canberra, ACT 0200, Australia
| | - Alexandra G C Mort
- Research School of Chemistry, The Australian National University, Canberra, ACT 0200, Australia
| | - Stuart J Malthus
- Department of Chemistry and MacDiarmid Institute for Advanced Materials and Nanotechnology, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Matthew G Robb
- Department of Chemistry and MacDiarmid Institute for Advanced Materials and Nanotechnology, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Nicholas Cox
- Research School of Chemistry, The Australian National University, Canberra, ACT 0200, Australia
| | - Sally Brooker
- Department of Chemistry and MacDiarmid Institute for Advanced Materials and Nanotechnology, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| |
Collapse
|
7
|
Taechaworaphong C, Juthathan M, Thamyongkit P, Tuntulani T, Leeladee P. Electrocatalytic Hydrogen Evolution of Immobilized Copper Complex on Carbonaceous Materials: From Neutral Water to Seawater. Chempluschem 2024; 89:e202300679. [PMID: 38367268 DOI: 10.1002/cplu.202300679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/01/2024] [Accepted: 02/14/2024] [Indexed: 02/19/2024]
Abstract
Electrochemical hydrogen evolution reaction (HER) is an appealing strategy to utilize renewable electricity to produce green H2. Moreover, use of neutral-pH electrolyte such as water and seawater for the HER has long been desired for eco-friendly energy production that aligns with net zero emission goal. Herein, new heterogeneous catalysts were developed by dispersing an HER-active copper complex containing N4-Schiff base macrocycle (CuL) on carbonaceous materials, i. e. multi-walled carbon nanotube (CNT) and graphene oxide (GO), via non-covalent interaction and investigated their HER performance. It was found that CuL/GO exhibited higher HER activity than CuL/CNT, possibly due to its significantly larger amount of CuL immobilized onto GO. In addition, CuL/GO showed satisfactory HER performance in a neutral (pH 7) NaCl electrolyte solution. Notably, the performances of CuL/GO were boosted up when performed in natural seawater sample with the faradaic efficiency of 70 % and 3 times higher amount of H2 at -0.6 V vs reversible hydrogen electrode (RHE), in comparison to the HER in a NaCl electrolyte. Furthermore, it possessed a low overpotential of 139 mV at -10 mA/cm2. This demonstrated the potential use of CuL/GO as an effective HER catalyst in seawater for further sustainable development.
Collapse
Affiliation(s)
| | - Methasit Juthathan
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Patchanita Thamyongkit
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Thawatchai Tuntulani
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Pannee Leeladee
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
8
|
Abudayyeh AM, Bennington MS, Hamonnet J, Marshall AT, Brooker S. Copper-based electrocatalyst for hydrogen evolution in water. Dalton Trans 2024; 53:6207-6214. [PMID: 38483208 DOI: 10.1039/d4dt00224e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
In aqueous pH 7 phosphate buffer, during controlled potential electrolysis (CPE) at -1.10 V vs. Ag|AgCl the literature square planar copper complex, [CuIILEt]BF4 (1), forms a heterogeneous deposit on the glassy carbon working electrode (GCWE) that is a stable and effective hydrogen evolution reaction (HER) electrocatalyst. Specifically, CPE for 20 hours using a small GCWE (A = 0.071 cm2) gave a turnover number (TON) of 364, with ongoing activity. During CPE the brownish-yellow colour of the working solution fades, and a deposit is observed on the small GCWE. Repeating this CPE experiment in a larger cell with a larger GCWE (A = 2.7 cm2), connected to a gas chromatograph, resulted in a TON of 2628 after 2.6 days, with FE = 93%, and with activity ongoing. After this CPE, the working solution had faded to nearly colourless, and visual inspection of the large GCWE showed a material had deposited on the surface. In a 'rinse and repeat test', this heterogeneous deposit was used for further CPE, in a freshly prepared working solution minus fresh catalyst, which resulted in similar ongoing HER activity to before, consistent with the surface deposited material being the active HER catalyst. EDS, PXRD and SEM analysis of this deposit shows that copper and oxygen are the main components present, most likely comprising copper and copper(I) oxide ((Cu2O)n) formed from 1. The use of 1 leads to a deposit that is more catalytically active than that formed when starting with a simple copper salt (control), likely due to it forming a more robustly attached deposit, which also enables the observed long-lived catalytic activity.
Collapse
Affiliation(s)
- Abdullah M Abudayyeh
- Department of Chemistry, University of Otago, Dunedin, 9016, New Zealand.
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, New Zealand
| | - Michael S Bennington
- Department of Chemistry, University of Otago, Dunedin, 9016, New Zealand.
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, New Zealand
| | - Johan Hamonnet
- Chemical and Process Engineering, University of Canterbury, Christchurch, 8041, New Zealand
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, New Zealand
| | - Aaron T Marshall
- Chemical and Process Engineering, University of Canterbury, Christchurch, 8041, New Zealand
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, New Zealand
| | - Sally Brooker
- Department of Chemistry, University of Otago, Dunedin, 9016, New Zealand.
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, New Zealand
| |
Collapse
|
9
|
Xue J, Guo L, Huo H, Ma L, Huang J, Li F, Li C. Syntheses and Catalytic Behavior of Dendritic Macrocyclic Schiff‐Base Nickel (II) Complexes in Ethylene Oligomerization. ChemistrySelect 2023. [DOI: 10.1002/slct.202204866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Affiliation(s)
- Jingqi Xue
- Provincial Key Laboratory of Polyolefin New Materials, College of Chemistry & Chemical Engineering Northeast Petroleum University, Daqing Heilongjiang 163318 China
| | - Lijun Guo
- Provincial Key Laboratory of Polyolefin New Materials, College of Chemistry & Chemical Engineering Northeast Petroleum University, Daqing Heilongjiang 163318 China
| | - Hongliang Huo
- Daqing Petrochemical Research Center, CNPC, Daqing Heilongjiang 163318 PR China
| | - Lili Ma
- Daqing Petrochemical Research Center, CNPC, Daqing Heilongjiang 163318 PR China
| | - Jin Huang
- Provincial Key Laboratory of Polyolefin New Materials, College of Chemistry & Chemical Engineering Northeast Petroleum University, Daqing Heilongjiang 163318 China
| | - Feng Li
- Provincial Key Laboratory of Polyolefin New Materials, College of Chemistry & Chemical Engineering Northeast Petroleum University, Daqing Heilongjiang 163318 China
| | - Cuiqin Li
- Provincial Key Laboratory of Polyolefin New Materials, College of Chemistry & Chemical Engineering Northeast Petroleum University, Daqing Heilongjiang 163318 China
| |
Collapse
|
10
|
Li J, Guo L, Huo H, Wang Y, Gao Y, Li F, Li C. Preparation of nickel catalysts bearing Schiff base macrocycles and their performance in ethylene oligomerization. TRANSIT METAL CHEM 2023. [DOI: 10.1007/s11243-023-00527-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
11
|
Afshan G, Ghorai S, Rai S, Pandey A, Majumder P, Patwari GN, Dutta A. Expanding the Horizon of Bio-Inspired Catalyst Design with Tactical Incorporation of Drug Molecules. Chemistry 2023; 29:e202203730. [PMID: 36689256 DOI: 10.1002/chem.202203730] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/22/2023] [Accepted: 01/23/2023] [Indexed: 01/24/2023]
Abstract
The development of potent H2 production catalysts is a key aspect in our journey toward the establishment of a sustainable carbon-neutral power infrastructure. Hydrogenase enzymes provide the blueprint for designing efficient catalysts by the rational combination of central metal core and protein scaffold-based outer coordination sphere (OCS). Traditionally, a biomimetic catalyst is crafted by including natural amino acids as OCS features around a synthetic metal motif to functionally imitate the metalloenzyme activity. Here, we have pursued an unconventional approach and implanted two distinct drug molecules (isoniazid and nicotine hydrazide) at the axial position of a cobalt core to create a new genre of synthetic catalysts. The resultant cobalt complexes are active for both electrocatalytic and photocatalytic H2 production in near-neutral water, where they significantly enhance the catalytic performance of the unfunctionalized parent cobalt complex. The drug molecules showcased a dual effect as they influence the catalytic HER by improving the surrounding proton relay along and exerting subtle electronic effects. The isoniazid-ligated catalyst C1 outperformed the nicotine hydrazide-bound complex C2, as it produced H2 from water (pH 6.0) at a rate of 3960 s-1 while exhibiting Faradaic efficiency of about 90 %. This strategy opens up newer avenues of bio-inspired catalyst design beyond amino acid-based OCS features.
Collapse
Affiliation(s)
- Gul Afshan
- Chemistry Department, Indian Institute of Technology, 400076, Bombay, Maharashtra, India
| | - Santanu Ghorai
- Chemistry Department, Indian Institute of Technology, 400076, Bombay, Maharashtra, India
| | - Surabhi Rai
- Chemistry Department, Indian Institute of Technology, 400076, Bombay, Maharashtra, India.,National center of Excellence CCU, Indian Institute of Technology, 400076, Bombay, Maharashtra, India
| | - Aman Pandey
- Chemistry Department, Indian Institute of Technology, 400076, Bombay, Maharashtra, India
| | - Piyali Majumder
- National center of Excellence CCU, Indian Institute of Technology, 400076, Bombay, Maharashtra, India
| | - G Naresh Patwari
- Chemistry Department, Indian Institute of Technology, 400076, Bombay, Maharashtra, India
| | - Arnab Dutta
- Chemistry Department, Indian Institute of Technology, 400076, Bombay, Maharashtra, India.,National center of Excellence CCU, Indian Institute of Technology, 400076, Bombay, Maharashtra, India.,Interdisciplinary Program Climate Studies, Indian Institute of Technology, 400076, Bombay, Maharashtra, India
| |
Collapse
|
12
|
Wang XY, He YQ, Wang M, Zhou Y, Li N, Song XR, Zhou ZZ, Tian WF, Xiao Q. Visible-light-driven proton reduction for semi-hydrogenation of alkynes via organophotoredox/manganese dual catalysis. RSC Adv 2022; 12:36138-36141. [PMID: 36545070 PMCID: PMC9761695 DOI: 10.1039/d2ra07920h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Described here is a unprecedented organophotoredox/manganese dual catalyzed proton reduction and its application for semi-reduction of alkynes. The catalytic active pre-catalyst [Mn-1] can be feasibly be prepared on gram-scale from Mn(acac)2·2H2O in air. This dual catalytic protocol features noble-metal-free catalysts, simple ligand, and mild conditions. Besides, a unique ortho-halogen and -hydroxyl effect was observed to achieve high Z-stereoselectivity.
Collapse
Affiliation(s)
- Xiao-Yu Wang
- Key Laboratory of Organic Chemistry of Jiangxi Province, Jiangxi Science & Technology Normal UniversityNanchang330013P. R. China
| | - Yong-Qin He
- School of Pharmaceutical Science, Nanchang UniversityNanchang330006P. R. China
| | - Mei Wang
- Key Laboratory of Organic Chemistry of Jiangxi Province, Jiangxi Science & Technology Normal UniversityNanchang330013P. R. China
| | - Yi Zhou
- Key Laboratory of Organic Chemistry of Jiangxi Province, Jiangxi Science & Technology Normal UniversityNanchang330013P. R. China
| | - Na Li
- School of Pharmaceutical Science, Nanchang UniversityNanchang330006P. R. China
| | - Xian-Rong Song
- Key Laboratory of Organic Chemistry of Jiangxi Province, Jiangxi Science & Technology Normal UniversityNanchang330013P. R. China
| | - Zhao-Zhao Zhou
- College of Chemistry and Food Science, Nanchang Normal UniversityNanchangP. R. China
| | - Wan-Fa Tian
- Key Laboratory of Organic Chemistry of Jiangxi Province, Jiangxi Science & Technology Normal UniversityNanchang330013P. R. China
| | - Qiang Xiao
- Key Laboratory of Organic Chemistry of Jiangxi Province, Jiangxi Science & Technology Normal UniversityNanchang330013P. R. China
| |
Collapse
|
13
|
O'Neill JS, Kearney L, Brandon MP, Pryce MT. Design components of porphyrin-based photocatalytic hydrogen evolution systems: A review. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214599] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
14
|
Zhu G, Jin Y, Ge M. Simple preparation of a CuO@γ-Al 2O 3 Fenton-like catalyst and its photocatalytic degradation function. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:68636-68651. [PMID: 35545745 DOI: 10.1007/s11356-022-20698-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 05/04/2022] [Indexed: 06/15/2023]
Abstract
We designed a photocatalyst and developed sustainable wastewater purification technology, which have significant advantages in effectively solving the global problem of drinking water shortage. In this study, a new nanocomposite was reported and shown to be a catalyst with excellent performance; CuO was coated successively onto functionalized nano γ-Al2O3, and this novel structure could provide abundant active sites. We evaluated the performance of the CuO@γ-Al2O3 nanocomposite catalyst for polyvinyl alcohol (PVA) degradation under visible light irradiation. Under optimized conditions (calcination temperature, 450 °C; mass ratio of γ-Al2O3:Cu(NO3)2·3H2O, 1:15; pH value, 7; catalyst dosage, 2.6 g/L; reaction temperature, 20 °C; and H2O2 dosage, 0.2 g/mL), the CuO@γ-Al2O3 nanocomposite catalyst presented an excellent PVA removal rate of 99.21%. After ten consecutive degradation experiments, the catalyst could still maintain a PVA removal rate of 97.58%, thus demonstrating excellent reusability. This study provides an efficient and easy-to-prepare photocatalyst and proposes a mechanism for the synergistic effect of the photocatalytic reaction and the Fenton-like reaction.
Collapse
Affiliation(s)
- Gaofeng Zhu
- School of Textile Science and Engineering, Jiangnan University, Wuxi, 214122, China
| | - Yang Jin
- School of Textile Science and Engineering, Jiangnan University, Wuxi, 214122, China
| | - Mingqiao Ge
- School of Textile Science and Engineering, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
15
|
Exploring the Potential of Water-Soluble Cu(II) Complexes with MPA–CdTe Quantum Dots for Photoinduced Electron Transfer. Catalysts 2022. [DOI: 10.3390/catal12040422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Three water-soluble copper complexes based on the amine/pyridine functionalities were investigated, along with quantum dots, as a catalyst–photosensitizer assembly, respectively, for fundamental understanding of photoinduced electron transfer. Luminescence quenching and lifetime measurements were performed to try and establish the actual process that leads to the quenching, such as electron transfer, energy transfer, or complex formation (static quenching). Cyclic voltammetry and dynamic light scattering experiments were also performed. Irrespective of the similar reduction potentials of the three complexes, very different photoluminescence properties were observed.
Collapse
|
16
|
Singh V, Abudayyeh A, Robb MG, Brooker S. Mono-copper far more active than analogous di-copper complex for electrocatalytic hydrogen evolution. Dalton Trans 2022; 51:4166-4172. [DOI: 10.1039/d2dt00141a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The di-copper(II) analogue, [CuII2(bis-LEt)](BF4)2 (2), of the previously reported mono-copper(II) complex [CuIILEt]BF4 (1) which resulted in long lived electrocatalytic hydrogen evolution reaction (HER), has been prepared, characterised and tested for...
Collapse
|
17
|
Rogalewicz B, Maniecki T, Ciesielski R, Czylkowska A. Synthesis, Spectroscopic, Thermal, and Catalytic Properties of Eight New Complexes of Metal(II) Formates or Propionates with Imidazole; Relationship between the Carbon Chain Length and Catalytic Activity. MATERIALS (BASEL, SWITZERLAND) 2021; 15:142. [PMID: 35009285 PMCID: PMC8745843 DOI: 10.3390/ma15010142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/01/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
In one of our previously published articles, we reported the synthesis, spectroscopic, thermal, and catalytic properties of four new M(II) acetate (where M = Co, Ni, Cu, Zn) complexes with imidazole. Presented compounds exhibited activity in the reaction on catalytic oxidation of styrene. In this study we have synthesized and investigated properties of analogous compounds, however using formates or propionates of mentioned metal cations instead of acetates. Such an approach allowed us to draw valuable conclusions concerning the relationship between the carbon chain length and catalytic activity, which is an important factor for catalyst modeling. Synthesized compounds have been thoroughly investigated using appropriate analytic techniques: AAS (Atomic Absorption Spectrometry), FTIR (Fourier-Transform Infrared Spectroscopy), and TGA (Thermogravimetric Analysis). Catalytic properties have been studied under the same previous conditions, using GC-FID (GC-chromatograph equipped with FID detector).
Collapse
|
18
|
Rodríguez-Jiménez S, Bennington MS, Akbarinejad A, Tay EJ, Chan EWC, Wan Z, Abudayyeh AM, Baek P, Feltham HLC, Barker D, Gordon KC, Travas-Sejdic J, Brooker S. Electroactive Metal Complexes Covalently Attached to Conductive PEDOT Films: A Spectroelectrochemical Study. ACS APPLIED MATERIALS & INTERFACES 2021; 13:1301-1313. [PMID: 33351602 DOI: 10.1021/acsami.0c16317] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The successful covalent attachment, via copper(I)-catalyzed azide alkyne cycloaddition (CuAAC), of alkyne-functionalized nickel(II) and copper(II) macrocyclic complexes onto azide (N3)-functionalized poly(3,4-ethylenedioxythiophene) (PEDOT) films on ITO-coated glass electrodes is reported. To investigate the surface attachment of the selected metal complexes, which are analogues of the cobalt-based complex previously reported to be a molecular catalyst for hydrogen evolution, first, three different PEDOT films were formed by electropolymerization of pure PEDOT or pure N3-PEDOT, and last, 1:2N3-PEDOT:PEDOT were formed by co-polymerizing a 1:4 mixture of N3-EDOT:EDOT monomers. The successful surface immobilization of the complexes on the latter two azide-functionalized films, by CuAAC, was confirmed by X-ray photoelectron spectroscopy (XPS) and electrochemistry as well as by UV-vis-NIR and resonance Raman spectroelectrochemistry. The ratio between the N3 groups, and hence, the number of surface-attached metal complexes after CuAAC functionalization, in pristine N3-PEDOT versus 1:2N3-PEDOT:PEDOT is expected to be 3:1 and seen to be 2.86:1 with a calculated surface coverage of 3.28 ± 1.04 and 1.15 ± 0.09 nmol/cm2, respectively. The conversion, to the metal complex attached films, was lower for the N3-PEDOT films (Ni 74%, Cu 76%) than for the copolymer 1:2N3-PEDOT:PEDOT films (Ni 83%, Cu 91%) due to the former being more sterically congested. The Raman and UV-vis-NIR results were simulated using density functional theory (DFT) and time-dependent DFT (TD-DFT), respectively, and showed good agreement with the experimental data. Importantly, the spectroelectrochemical behavior of both anchored metal complexes is analogous to that of the free metal complexes in solution. This proves that PEDOT films are promising conducting scaffolds for the covalent immobilization of metal complexes, as the existing electrochromic features of the complexes are preserved on immobilization, which is important for applications in electrocatalytic proton and carbon dioxide reduction, optoelectronics, and sensing.
Collapse
Affiliation(s)
- Santiago Rodríguez-Jiménez
- Department of Chemistry, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
| | - Michael S Bennington
- Department of Chemistry, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
| | - Alireza Akbarinejad
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
- Polymer Biointerface Centre and School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand
| | - Elliot J Tay
- Department of Chemistry, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
| | - Eddie Wai Chi Chan
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
- Polymer Biointerface Centre and School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand
| | - Ziyao Wan
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
- Polymer Biointerface Centre and School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand
| | - Abdullah M Abudayyeh
- Department of Chemistry, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
| | - Paul Baek
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
- Polymer Biointerface Centre and School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand
| | - Humphrey L C Feltham
- Department of Chemistry, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
| | - David Barker
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
- Polymer Biointerface Centre and School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand
| | - Keith C Gordon
- Department of Chemistry, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
| | - Jadranka Travas-Sejdic
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
- Polymer Biointerface Centre and School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand
| | - Sally Brooker
- Department of Chemistry, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
| |
Collapse
|