1
|
Wiethoff MA, Lezius L, Studer A. Photocatalytic Generation of a Ground-State Electron Donor Through Water Activation. Angew Chem Int Ed Engl 2025:e202501757. [PMID: 40135576 DOI: 10.1002/anie.202501757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/04/2025] [Accepted: 03/24/2025] [Indexed: 03/27/2025]
Abstract
Electron donors that can be excited to higher energy states through light absorption can achieve oxidation potentials as low as -3.0 V (vs. SCE). However, ground-state organic electron transfer reagents operating at such potentials remain underdeveloped, often necessitating multi-step syntheses and elevated reaction temperatures for activation. The longer lifetime of ground-state reagents is an advantage compared to most photoexcited single-electron reductants, which typically have relatively short lifetimes. In this study, catalytically generated phosphine oxide radical anions derived from phosphines and water applying redox catalysis are introduced as highly efficient single-electron reductants. The in situ generated radical anions are capable of reducing electron-rich aryl chlorides at potentials as low as -3.3 V (vs. SCE). Cyclic voltammetry studies and DFT calculations provide valuable insights into the behavior of these phosphorus-based ground-state electron donors. These findings do not only expand the chemistry of phosphoranyl radicals but also unlock the potential of in situ generated organic ground state electron donors that reach potentials comparable to elemental potassium.
Collapse
Affiliation(s)
| | - Lena Lezius
- Organisch-Chemisches Institut, Universität Münster, 48149, Münster, Germany
| | - Armido Studer
- Organisch-Chemisches Institut, Universität Münster, 48149, Münster, Germany
| |
Collapse
|
2
|
Gerogiannopoulou ADD, Mountanea OG, Routsi EA, Tzeli D, Kokotos CG, Kokotos G. Electron Donor-Acceptor Complex-Assisted Photochemical Conversion of O-2-Nitrobenzyl Protected Hydroxamates to Amides. Chemistry 2024; 30:e202402984. [PMID: 39343744 DOI: 10.1002/chem.202402984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/18/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024]
Abstract
The hydroxamic acid functionality is present in various medicinal agents and has attracted special interest for synthetic transformations in both organic and medicinal chemistry. The N-O bond cleavage of hydroxamic acid derivatives provides an interesting transformation for the generation of various products. We demonstrate, herein, that O-benzyl-type protected hydroxamic acids may undergo photochemical N-O bond cleavage, in the presence or absence of a catalyst, leading to amides. Although some O-benzyl protected aromatic hydroxamates may be photochemically converted to amides in the presence of a base and anthracene as the catalyst, employing O-2-nitrobenzyl group allowed the smooth conversion of both aliphatic and aromatic hydroxamates to primary or secondary amides in good to excellent yields in the presence of an amine, bypassing the need of a catalyst. DFT and UV-Vis studies supported the effective generation of an electron donor-acceptor (EDA) complex between O-2-nitrobenzyl hydroxamates and amines, which enabled the successful product formation under these photochemical conditions. An extensive substrate scope was demonstrated, showcasing that both aliphatic and aromatic hydroxamates are compatible with this protocol, affording a wide variety of primary and secondary amides.
Collapse
Affiliation(s)
- Anna-Dimitra D Gerogiannopoulou
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Athens, 15771, Greece
- Center of Excellence for Drug Design and Discovery, National and Kapodistrian University of Athens, Athens, 15771, Greece
| | - Olga G Mountanea
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Athens, 15771, Greece
- Center of Excellence for Drug Design and Discovery, National and Kapodistrian University of Athens, Athens, 15771, Greece
| | - E Alexandros Routsi
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Athens, 15771, Greece
- Center of Excellence for Drug Design and Discovery, National and Kapodistrian University of Athens, Athens, 15771, Greece
| | - Demeter Tzeli
- Laboratory of Physical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Athens, 15771, Greece
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave., Athens, 11635, Greece
| | - Christoforos G Kokotos
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Athens, 15771, Greece
- Center of Excellence for Drug Design and Discovery, National and Kapodistrian University of Athens, Athens, 15771, Greece
| | - George Kokotos
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Athens, 15771, Greece
- Center of Excellence for Drug Design and Discovery, National and Kapodistrian University of Athens, Athens, 15771, Greece
| |
Collapse
|
3
|
Bae H, Park J, Yoon R, Lee S, Son J. Copper-catalyzed synthesis of primary amides through reductive N-O cleavage of dioxazolones. RSC Adv 2024; 14:9440-9444. [PMID: 38516159 PMCID: PMC10951817 DOI: 10.1039/d4ra00320a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/05/2024] [Indexed: 03/23/2024] Open
Abstract
A new method for the synthesis of primary amides is developed, in which dioxazolones are treated with a copper catalyst under mild reaction conditions. A broad scope of dioxazolones is exhibited as well as dioxazolones containing biologically active structural motifs. These robust and mild reaction conditions allow the transformation of dioxazolones to primary amides, in which sensitive functional groups such as hydroxyl, aldehyde, trialkylsilyl, and unsaturated carbon units are tolerated with excellent chemoselectivity.
Collapse
Affiliation(s)
- Hyeonwoong Bae
- Department of Chemical Engineering (BK21 FOUR Graduate Program), Dong-A University 37 Nakdong-Daero 550beon-gil, Saha-gu Busan 49315 South Korea
- Department of Chemistry, Dong-A University 37 Nakdong-Daero 550beon-gil, Saha-gu Busan 49315 South Korea
| | - Jinhwan Park
- Department of Chemical Engineering (BK21 FOUR Graduate Program), Dong-A University 37 Nakdong-Daero 550beon-gil, Saha-gu Busan 49315 South Korea
- Department of Chemistry, Dong-A University 37 Nakdong-Daero 550beon-gil, Saha-gu Busan 49315 South Korea
| | - Rahyun Yoon
- Department of Chemistry, Dong-A University 37 Nakdong-Daero 550beon-gil, Saha-gu Busan 49315 South Korea
| | - Seunghoon Lee
- Department of Chemical Engineering (BK21 FOUR Graduate Program), Dong-A University 37 Nakdong-Daero 550beon-gil, Saha-gu Busan 49315 South Korea
- Department of Chemistry, Dong-A University 37 Nakdong-Daero 550beon-gil, Saha-gu Busan 49315 South Korea
| | - Jongwoo Son
- Department of Chemical Engineering (BK21 FOUR Graduate Program), Dong-A University 37 Nakdong-Daero 550beon-gil, Saha-gu Busan 49315 South Korea
- Department of Chemistry, Dong-A University 37 Nakdong-Daero 550beon-gil, Saha-gu Busan 49315 South Korea
| |
Collapse
|
4
|
Dalai PG, Swain S, Mohapatra S, Panda N. Metal-Free C-H Sulfamidation of 1,4-Naphthoquinone in Water. J Org Chem 2023; 88:13760-13770. [PMID: 37676688 DOI: 10.1021/acs.joc.3c01409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Direct sulfamidation of 1,4-naphthoquinones using N-methoxy sulfonamides under metal-free conditions in water was developed. Base-mediated nucleophilic addition of N-methoxy sulfonamides, followed by N-O bond cleavage allowed the formation of enesulfonamides. Further, the synthesis of pyrrolonaphthoquinones proved the practicability of the current approach.
Collapse
Affiliation(s)
- Pallaba Ganjan Dalai
- Department of Chemistry, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Swayamprava Swain
- Department of Chemistry, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Soumya Mohapatra
- Department of Chemistry, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Niranjan Panda
- Department of Chemistry, National Institute of Technology, Rourkela, Odisha 769008, India
| |
Collapse
|
5
|
Malik M, Senatore R, Langer T, Holzer W, Pace V. Base-mediated homologative rearrangement of nitrogen-oxygen bonds of N-methyl- N-oxyamides. Chem Sci 2023; 14:10140-10146. [PMID: 37772102 PMCID: PMC10530184 DOI: 10.1039/d3sc03216g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 08/26/2023] [Indexed: 09/30/2023] Open
Abstract
Due to the well known reactivity of C(O)-N functionalities towards canonical C1-homologating agents (e.g. carbenoids, diazomethane, ylides), resulting in the extrusion of the N-centered fragment en route to carbonyl compounds, formal C1-insertions within N-O bonds still remain obscure. Herein, we document the homologative transformation of N-methyl-N-oxyamides - with high tolerance for diverse O-substituents - into N-acyl-N,O-acetals. Under controlled basic conditions, the N-methyl group of the same starting materials acts as a competent precursor of the methylene synthon required for the homologation. The logic is levered on the formation of an electrophilic iminium ion (via N-O heterolysis) susceptible to nucleophilic attack by the alkoxide previously expulsed. The procedure documents genuine chemocontrol and flexibility, as judged by the diversity of substituents placed on both amide and nitrogen linchpins. The mechanistic rationale was validated through experiments conducted on D-labeled materials which unambiguously attributed the origin of the methylene fragment to the N-methyl group of the starting compounds.
Collapse
Affiliation(s)
- Monika Malik
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, University of Vienna Josef-Holaubek-Platz 2 1090 Vienna Austria
| | - Raffaele Senatore
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, University of Vienna Josef-Holaubek-Platz 2 1090 Vienna Austria
| | - Thierry Langer
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, University of Vienna Josef-Holaubek-Platz 2 1090 Vienna Austria
| | - Wolfgang Holzer
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, University of Vienna Josef-Holaubek-Platz 2 1090 Vienna Austria
| | - Vittorio Pace
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, University of Vienna Josef-Holaubek-Platz 2 1090 Vienna Austria
- Department of Chemistry, University of Turin Via Giuria 7 10125 Turin Italy
| |
Collapse
|
6
|
Wang R, Chen Y, Fei B, Hu J, Chen J, Luo Y, Xia Y. Condition-Controlled O-Acylation and N-O Bond Reduction of Hydroximic Acids with Thioacetic Acid. Org Lett 2023; 25:2970-2974. [PMID: 37087763 DOI: 10.1021/acs.orglett.3c00735] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Condition-dependent transformations between hydroximic acids and thioacetic acid were achieved. Using NH4HCO3 in the ethanol solvent, efficient N-O bond cleavage of hydroxamic acids occurred to afford primary amides with high functional group compatibility. The reaction was switched to O-acylation when NEt3 and H2O were used as the base and solvent, respectively. These facile transformations could be scaled up to the gram level smoothly. Preliminary mechanistic studies suggested that the N-O bond cleavage involves a cascade process of acylation/reduction.
Collapse
Affiliation(s)
- Risong Wang
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Yifei Chen
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Binjie Fei
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Jiahao Hu
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Jianhui Chen
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Yanshu Luo
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Yuanzhi Xia
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, China
| |
Collapse
|
7
|
Soika J, McLaughlin C, Neveselý T, Daniliuc CG, Molloy JJ, Gilmour R. Organophotocatalytic N–O Bond Cleavage of Weinreb Amides: Mechanism-Guided Evolution of a PET to ConPET Platform. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Julia Soika
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| | - Calum McLaughlin
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| | - Tomáš Neveselý
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| | - Constantin G. Daniliuc
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| | - John. J. Molloy
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| | - Ryan Gilmour
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| |
Collapse
|
8
|
Tan Y, Han YP, Zhang Y, Zhang HY, Zhao J, Yang SD. Primary Amination of Ar2P(O)–H with (NH4)2CO3 as an Ammonia Source under Simple and Mild Conditions and Its Extension to the Construction of Various P–N or P–O Bonds. J Org Chem 2022; 87:3254-3264. [DOI: 10.1021/acs.joc.1c02933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yushi Tan
- School of Chemical Engineering and Technology, Hebei Provincial Key Lab of Green Chemical Technology & High Efficient Energy Saving, Tianjin Key Laboratory of Chemical Process Safety, Hebei University of Technology, Tianjin 300130, P. R. China
| | - Ya-Ping Han
- School of Chemical Engineering and Technology, Hebei Provincial Key Lab of Green Chemical Technology & High Efficient Energy Saving, Tianjin Key Laboratory of Chemical Process Safety, Hebei University of Technology, Tianjin 300130, P. R. China
| | - Yuecheng Zhang
- School of Chemical Engineering and Technology, Hebei Provincial Key Lab of Green Chemical Technology & High Efficient Energy Saving, Tianjin Key Laboratory of Chemical Process Safety, Hebei University of Technology, Tianjin 300130, P. R. China
| | - Hong-Yu Zhang
- School of Chemical Engineering and Technology, Hebei Provincial Key Lab of Green Chemical Technology & High Efficient Energy Saving, Tianjin Key Laboratory of Chemical Process Safety, Hebei University of Technology, Tianjin 300130, P. R. China
| | - Jiquan Zhao
- School of Chemical Engineering and Technology, Hebei Provincial Key Lab of Green Chemical Technology & High Efficient Energy Saving, Tianjin Key Laboratory of Chemical Process Safety, Hebei University of Technology, Tianjin 300130, P. R. China
| | - Shang-Dong Yang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China
| |
Collapse
|
9
|
Wang S, Zheng L, Song S, Wang S, Zhang Z, Xiang J. Catalyst-Controlled Regiodivergent Synthesis of α/β-Dipeptide Derivatives via N-Allylic Alkylation of O-Alkyl Hydroxamates with MBH Carbonates. Chem Asian J 2022; 17:e202101186. [PMID: 34811892 DOI: 10.1002/asia.202101186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/11/2021] [Indexed: 11/06/2022]
Abstract
A controllable and regiodivergent N-allylation reaction involving readily available O-alkyl hydroxamates derived from natural α-amino acids has been developed, allowing regiospecific access to α/β-dipeptides containing α-unsaturated β-amino acids moieties in moderate to good yields. The regioselectivity could be conveniently switched by alternation of the catalysts and solvents.
Collapse
Affiliation(s)
- Shutao Wang
- The Center for Combinatorial Chemistry and Drug Discovery of Jilin University, The School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, P. R. China
| | - Lianyou Zheng
- The Center for Combinatorial Chemistry and Drug Discovery of Jilin University, The School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, P. R. China
| | - Shaoli Song
- The Center for Combinatorial Chemistry and Drug Discovery of Jilin University, The School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, P. R. China
| | - Siyu Wang
- The Center for Combinatorial Chemistry and Drug Discovery of Jilin University, The School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, P. R. China
| | - Zhuoqi Zhang
- The Center for Combinatorial Chemistry and Drug Discovery of Jilin University, The School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, P. R. China
| | - Jinbao Xiang
- The Center for Combinatorial Chemistry and Drug Discovery of Jilin University, The School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, P. R. China.,Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130021, P. R. China
| |
Collapse
|