1
|
Wei X, Chen J, Shen HY, Jiang K, Ren H, Liu Y, Luo E, Zhang J, Xu JZ, Li ZM. Hierarchically Biomimetic Scaffolds with Anisotropic Micropores and Nanotopological Patterns to Promote Bone Regeneration via Geometric Modulation. Adv Healthc Mater 2024; 13:e2304178. [PMID: 38490686 DOI: 10.1002/adhm.202304178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/29/2024] [Indexed: 03/17/2024]
Abstract
Structural engineering is an appealing means to modulate osteogenesis without the intervention of exogenous cells or therapeutic agents. In this work, a novel 3D scaffold with anisotropic micropores and nanotopographical patterns is developed. Scaffolds with oriented pores are fabricated via the selective extraction of water-soluble polyethylene oxide from its poly(ε-caprolactone) co-continuous mixture and uniaxial stretching. The plate apatite-like lamellae are subsequently hatched on the pore walls through surface-induced epitaxial crystallization. Such a unique geometric architecture yields a synergistic effect on the osteogenic capability. The prepared scaffold leads to a 19.2% and 128.0% increase in the alkaline phosphatase activity of rat bone mesenchymal stem cells compared to that of the scaffolds with only oriented pores and only nanotopographical patterns, respectively. It also induces the greatest upregulation of osteogenic-related gene expression in vitro. The cranial defect repair results demonstrate that the prepared scaffold effectively promotes new bone regeneration, as indicated by a 350% increase in collagen I expression in vivo compared to the isotropic porous scaffold without surface nanotopology after implantation for 14 weeks. Overall, this work provides geometric motifs for the transduction of biophysical cues in 3D porous scaffolds, which is a promising option for tissue engineering applications.
Collapse
Affiliation(s)
- Xin Wei
- College of Polymer Science and Engineering and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Jiaxin Chen
- Center for Plastic & Reconstructive Surgery, Department of Plastic & Reconstructive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, 310014, P. R. China
| | - Hui-Yuan Shen
- College of Polymer Science and Engineering and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Kai Jiang
- College of Polymer Science and Engineering and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Haohao Ren
- College of Physics, Sichuan University, Chengdu, 610064, P. R. China
| | - Yao Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P. R. China
| | - En Luo
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P. R. China
| | - Jin Zhang
- College of Chemical Engineering, Fuzhou University, 2 Xueyuan Road, Fuzhou, 350108, P. R. China
- Qingyuan Innovation Laboratory, 1 Xueyuan Road, Quanzhou, 362801, P. R. China
| | - Jia-Zhuang Xu
- College of Polymer Science and Engineering and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Zhong-Ming Li
- College of Polymer Science and Engineering and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| |
Collapse
|
2
|
Gonçalves LFFF, Reis RL, Fernandes EM. Forefront Research of Foaming Strategies on Biodegradable Polymers and Their Composites by Thermal or Melt-Based Processing Technologies: Advances and Perspectives. Polymers (Basel) 2024; 16:1286. [PMID: 38732755 PMCID: PMC11085284 DOI: 10.3390/polym16091286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/13/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
The last few decades have witnessed significant advances in the development of polymeric-based foam materials. These materials find several practical applications in our daily lives due to their characteristic properties such as low density, thermal insulation, and porosity, which are important in packaging, in building construction, and in biomedical applications, respectively. The first foams with practical applications used polymeric materials of petrochemical origin. However, due to growing environmental concerns, considerable efforts have been made to replace some of these materials with biodegradable polymers. Foam processing has evolved greatly in recent years due to improvements in existing techniques, such as the use of supercritical fluids in extrusion foaming and foam injection moulding, as well as the advent or adaptation of existing techniques to produce foams, as in the case of the combination between additive manufacturing and foam technology. The use of supercritical CO2 is especially advantageous in the production of porous structures for biomedical applications, as CO2 is chemically inert and non-toxic; in addition, it allows for an easy tailoring of the pore structure through processing conditions. Biodegradable polymeric materials, despite their enormous advantages over petroleum-based materials, present some difficulties regarding their potential use in foaming, such as poor melt strength, slow crystallization rate, poor processability, low service temperature, low toughness, and high brittleness, which limits their field of application. Several strategies were developed to improve the melt strength, including the change in monomer composition and the use of chemical modifiers and chain extenders to extend the chain length or create a branched molecular structure, to increase the molecular weight and the viscosity of the polymer. The use of additives or fillers is also commonly used, as fillers can improve crystallization kinetics by acting as crystal-nucleating agents. Alternatively, biodegradable polymers can be blended with other biodegradable polymers to combine certain properties and to counteract certain limitations. This work therefore aims to provide the latest advances regarding the foaming of biodegradable polymers. It covers the main foaming techniques and their advances and reviews the uses of biodegradable polymers in foaming, focusing on the chemical changes of polymers that improve their foaming ability. Finally, the challenges as well as the main opportunities presented reinforce the market potential of the biodegradable polymer foam materials.
Collapse
Affiliation(s)
- Luis F. F. F. Gonçalves
- 3B’s Research Group, I3Bs–Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal;
- ICVS/3B’s—PT Government Associate Laboratory, Barco, 4805-017 Guimarães, Portugal
| | - Rui L. Reis
- 3B’s Research Group, I3Bs–Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal;
- ICVS/3B’s—PT Government Associate Laboratory, Barco, 4805-017 Guimarães, Portugal
| | - Emanuel M. Fernandes
- 3B’s Research Group, I3Bs–Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal;
- ICVS/3B’s—PT Government Associate Laboratory, Barco, 4805-017 Guimarães, Portugal
| |
Collapse
|
3
|
Zhou Y, Tian Y, Zhang M. Technical development and application of supercritical CO 2 foaming technology in PCL foam production. Sci Rep 2024; 14:6825. [PMID: 38514733 PMCID: PMC10958027 DOI: 10.1038/s41598-024-57545-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 03/19/2024] [Indexed: 03/23/2024] Open
Abstract
Polycaprolactone (PCL) has the advantages of good biocompatibility, appropriate biodegradability, non-toxicity, flexibility, and processability. As a result, PCL-based foams can successfully work in bone tissue engineering, medical patches, drug delivery, reinforcing materials, and other applications. A promising technology for producing PCL foam products is supercritical CO2 (ScCO2) foaming technology, which avoids using organic solvents, is green, and has low foaming agent costs. However, due to the limitations of ScCO2 foaming technology, it is no longer possible to use this technology alone to meet current production requirements. Therefore, ScCO2 foaming technology must combine with other technologies to develop PCL foam products with better performance and matching requirements. This paper systematically reviews the technological development of ScCO2 foaming in producing PCL foams. The molding process of ScCO2 foaming and the conventional preparation process of PCL foam products are discussed comprehensively, including the preparation process, advantages, and disadvantages, challenges faced, etc. Six combined technologies for ScCO2 foaming in the production of PCL foams and the applications of PCL foams are presented. Finally, the future remaining research for producing PCL foams by ScCO2 foaming is analyzed.
Collapse
Affiliation(s)
- Yujin Zhou
- College of Physical Education, Wuhan Sports University, Wuhan, 430079, China
- College of Science, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Yingrui Tian
- School of Materials and Metallurgy, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Mengdong Zhang
- Hubei Key Laboratory of Advanced Technology for Automotive Components & Hubei Collaborative Innovation Center for Automotive Components Technology, Wuhan University of Technology, Wuhan, 430070, China.
| |
Collapse
|
4
|
Li D, Zhang S, Zhao Z, Miao Z, Zhang G, Shi X. High-Expansion Open-Cell Polylactide Foams Prepared by Microcellular Foaming Based on Stereocomplexation Mechanism with Outstanding Oil-Water Separation. Polymers (Basel) 2023; 15:polym15091984. [PMID: 37177130 PMCID: PMC10181122 DOI: 10.3390/polym15091984] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/05/2023] [Accepted: 04/11/2023] [Indexed: 05/15/2023] Open
Abstract
Biodegradable polylactic acid (PLA) foams with open-cell structures are good candidates for oil-water separation. However, the foaming of PLA with high-expansion and uniform cell morphology by the traditional supercritical carbon dioxide microcellular foaming method remains a big challenge due to its low melting strength. Herein, a green facile strategy for the fabrication of open-cell fully biodegradable PLA-based foams is proposed by introducing the unique stereocomplexation mechanism between PLLA and synthesized star-shaped PDLA for the first time. A series of star-shaped PDLA with eight arms (8-s-PDLA) was synthesized with different molecular weights and added into the PLLA as modifiers. PLLA/8-s-PDLA foams with open-cells structure and high expansion ratios were fabricated by microcellular foaming with green supercritical carbon dioxide. In detail, the influences of induced 8-s-PDLA on the crystallization behavior, rheological properties, cell morphology and consequential oil-water separation performance of PLA-based foam were investigated systemically. The addition of 8-s-PDLA induced the formation of SC-PLA, enhancing crystallization by acting as nucleation sites and improving the melting strength through acting as physical cross-linking points. The further microcellular foaming of PLLA/8-s-PDLA resulted in open-cell foams of high porosity and high expansion ratios. With an optimized foaming condition, the PLLA/8-s-PDLA-13K foam exhibited an average cell size of about 61.7 μm and expansion ratio of 24. Furthermore, due to the high porosity of the interconnected open cells, the high-absorption performance of the carbon tetrachloride was up to 37 g/g. This work provides a facile green fabrication strategy for the development of environmentally friendly PLA foams with stable open-cell structures and high expansion ratios for oil-water separation.
Collapse
Affiliation(s)
- Dongsheng Li
- Key Laboratory of Macromolecular Science & Technology of Shaanxi Province, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Shuai Zhang
- Key Laboratory of Macromolecular Science & Technology of Shaanxi Province, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Zezhong Zhao
- Key Laboratory of Macromolecular Science & Technology of Shaanxi Province, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Zhenyun Miao
- Key Laboratory of Macromolecular Science & Technology of Shaanxi Province, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Guangcheng Zhang
- Key Laboratory of Macromolecular Science & Technology of Shaanxi Province, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Xuetao Shi
- Key Laboratory of Macromolecular Science & Technology of Shaanxi Province, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
5
|
Valipour F, Valioğlu F, Rahbarghazi R, Navali AM, Rashidi MR, Davaran S. Thermosensitive and biodegradable PCL-based hydrogels: potential scaffolds for cartilage tissue engineering. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2023; 34:695-714. [PMID: 36745508 DOI: 10.1080/09205063.2022.2088530] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Due to a lack of sufficient blood supply and unique physicochemical properties, the treatment of injured cartilage is laborious and needs an efficient strategy. Unfortunately, most of the current therapeutic approaches are, but not completely, unable to restore the function of injured cartilage. Tissue engineering-based modalities are an alternative option to reconstruct the injured tissue. Considering the unique structure and consistency of cartilage tissue (osteochondral junction), it is mandatory to apply distinct biomaterials with unique properties slightly different from scaffolds used for soft tissues. PCL is extensively used for the fabrication of fine therapeutic scaffolds to accelerate the restorative process. Thermosensitive PCL hydrogels with distinct chemical compositions have paved the way for sophisticated cartilage regeneration. This review aimed to collect recent findings regarding the application of PCL in hydrogels blended with natural, synthetic materials in the context of cartilage healing.
Collapse
Affiliation(s)
- Fereshteh Valipour
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.,Applied Drug Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ferzane Valioğlu
- Department of Molecular Biology, Faculty of Science, Hacettepe University, Ankara, Turkey
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mohammad Reza Rashidi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soodabeh Davaran
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.,Applied Drug Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
6
|
Wei X, Meng R, Bai Y, Liu W, Zhou H, Wang X, Xu B. Hydrophobic and oleophilic open-cell foams from in-situ microfibrillation blends of poly(lactic acid) and polytetrafluoroethylene: Selective oil-adsorption behaviors. Int J Biol Macromol 2023; 227:273-284. [PMID: 36549028 DOI: 10.1016/j.ijbiomac.2022.12.196] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/09/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022]
Abstract
Confronted with severe water contamination induced by the spillage of oils, seeking oil-selective adsorbent to recover oil from oily wastewater is extremely urgent. In particular, the functionalized polymer foams with open-cell structures are highly promising oil-selective adsorbent. Herein, a simple, effective and green method was presented to prepare open-cell poly(lactic acid) (PLA)/polytetrafluoroethylene (PTFE) foams with selective oil-adsorption behaviors via melt blending and supercritical CO2 batch foaming technique. The introduction of PTFE had a distinct positive influence on the melt viscoelasticity and crystallization performances of various PLA specimens. The resulted PLA/PTFE4 foam with a volume expansion ratio of 10.17 ± 0.93 and a cell density of 1.58 × 108 cells/cm3 possessed the highest open-cell content of 90.81 ± 0.78 %. Meanwhile, PLA/PTFE4 foam revealed oil/water selective adsorption capacity of 1.2-6.1 g/g for various organic solvents and oils. The adsorption capacity of PLA/PTFE4 foam for CCl4 exhibited no significant decrement during ten adsorption-desorption cycles. This research offered a guideline for the manufacture of green environmental open-cell polymer foams for oil-selective adsorption.
Collapse
Affiliation(s)
- Xinyi Wei
- Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, People's Republic of China
| | - Ruijing Meng
- Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, People's Republic of China
| | - Yu'an Bai
- Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, People's Republic of China
| | - Wei Liu
- School of Materials and Energy Engineering, Guizhou Institute of Technology, Guiyang 550003, People's Republic of China
| | - Hongfu Zhou
- Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, People's Republic of China.
| | - Xiangdong Wang
- Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, People's Republic of China
| | - Bo Xu
- Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, People's Republic of China.
| |
Collapse
|
7
|
Su Y, Huang P, Zhao Y, Zheng W, Lan X, Luo H, Chong Y, Lee PC, Xu L. Lightweight Polypropylene/Polylactic Acid Composite Foams with Controllable Hollow Radially Gradient Porous Structures for Oil/Water Separation. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c01416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yaozhuo Su
- Ningbo Key Lab of Polymer Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pengke Huang
- Ningbo Key Lab of Polymer Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, People’s Republic of China
| | - Yongqing Zhao
- Ningbo Key Lab of Polymer Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, People’s Republic of China
| | - Wenge Zheng
- Ningbo Key Lab of Polymer Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoqin Lan
- Ningbo Key Lab of Polymer Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, People’s Republic of China
| | - Haibin Luo
- Ningbo Key Lab of Polymer Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, People’s Republic of China
| | - Yunkai Chong
- Ningbo Key Lab of Polymer Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, People’s Republic of China
| | - Patrick C. Lee
- Multifunctional Composites Manufacturing Laboratory, Department of Mechanical and Industrial Engineering, University of Toronto, 5 King’s College Road, Toronto M5G3G8, Ontario, Canada
| | - Linqiong Xu
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, People’s Republic of China
| |
Collapse
|
8
|
Foaming biocompatible and biodegradable PBAT/PLGA as fallopian tube stent using supercritical carbon dioxide. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2021.04.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
9
|
Polydopamine constructed interfacial molecular bridge in nano-hydroxylapatite/polycaprolactone composite scaffold. Colloids Surf B Biointerfaces 2022; 217:112668. [PMID: 35810612 DOI: 10.1016/j.colsurfb.2022.112668] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/14/2022] [Accepted: 06/26/2022] [Indexed: 11/21/2022]
Abstract
Nano-hydroxylapatite (nano-HAP)/polycaprolactone (PCL) composite scaffold is proved to possess great potential for bone tissue engineering application since the biocompatibility of PCL and the osteoinduction ability of nano-HAP. However, the interfacial bonding between nano-HAP and PCL is weak by reason of the difference in thermodynamic properties. Herein, nano-HAP was modified by polydopamine (PDA) and then added to the PCL matrix to enhance their interface bonding in bone scaffold manufactured by selective laser sintering (SLS). The results indicated that PDA acted as an interfacial molecular bridge between PCL and nano-HAP. On one hand, the amino groups of PDA formed hydrogen bonding with the hydroxyl groups of nano-HAP, and on the other hand, the catechol groups of PDA formed hydrogen bonding with the ester groups of PCL. Compared with the HAP/PCL scaffolds, the tensile and compressive strength of the P-HAP/PCL scaffolds loading 12 wt% P-HAP were increased by 10% and 16%, respectively. Meanwhile, the scaffold possessed great bioactivity and cytocompatibility that could accelerate the formation of apatite layers and promote the cell adhesion, proliferation and differentiation.
Collapse
|
10
|
Sans J, Arnau M, Roa JJ, Turon P, Alemán C. Tailorable Nanoporous Hydroxyapatite Scaffolds for Electrothermal Catalysis. ACS APPLIED NANO MATERIALS 2022; 5:8526-8536. [PMID: 36910876 PMCID: PMC9989946 DOI: 10.1021/acsanm.2c01915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Polarized hydroxyapatite (HAp) scaffolds with customized architecture at the nanoscale have been presented as a green alternative to conventional catalysts used for carbon and dinitrogen fixation. HAp printable inks with controlled nanoporosity and rheological properties have been successfully achieved by incorporating Pluronic hydrogel. Nanoporous scaffolds with good mechanical properties, as demonstrated by means of the nanoindentation technique, have been obtained by a sintering treatment and the posterior thermally induced polarization process. Their catalytic activity has been evaluated by considering three different key reactions (all in the presence of liquid water): (1) the synthesis of amino acids from gas mixtures of N2, CO2, and CH4; (2) the production of ethanol from gas mixtures of CO2 and CH4; and (3) the synthesis of ammonia from N2 gas. Comparison of the yields obtained by using nanoporous and nonporous (conventional) polarized HAp catalysts shows that both the nanoporosity and water absorption capacity of the former represent a drawback when the catalytic reaction requires auxiliary coating layers, as for example for the production of amino acids. This is because the surface nanopores achieved by incorporating Pluronic hydrogel are completely hindered by such auxiliary coating layers. On the contrary, the catalytic activity improves drastically for reactions in which the HAp-based scaffolds with enhanced nanoporosity are used as catalysts. More specifically, the carbon fixation from CO2 and CH4 to yield ethanol improves by more than 3000% when compared with nonporous HAp catalyst. Similarly, the synthesis of ammonia by dinitrogen fixation increases by more than 2000%. Therefore, HAp catalysts based on nanoporous scaffolds exhibit an extraordinary potential for scalability and industrial utilization for many chemical reactions, enabling a feasible green chemistry alternative to catalysts based on heavy metals.
Collapse
Affiliation(s)
- Jordi Sans
- Departament
d’Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, Ed. I2, 08019 Barcelona, Spain
- Barcelona
Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, 08019 Barcelona, Spain
| | - Marc Arnau
- Departament
d’Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, Ed. I2, 08019 Barcelona, Spain
- Barcelona
Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, 08019 Barcelona, Spain
| | - Joan Josep Roa
- Barcelona
Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, 08019 Barcelona, Spain
- CIEFMA-Departament
de Ciència i Eng. de Materials, Universitat
Politècnica de Catalunya, Eduard Maristany 10-14, Ed. I, 08019 Barcelona, Spain
| | - Pau Turon
- B.
Braun Surgical, S.A.U. Carretera de Terrassa 121 Rubí, 08191 Barcelona, Spain
| | - Carlos Alemán
- Departament
d’Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, Ed. I2, 08019 Barcelona, Spain
- Barcelona
Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, 08019 Barcelona, Spain
- Institute
for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028 Barcelona, Spain
| |
Collapse
|
11
|
Hernandez JL, Woodrow KA. Medical Applications of Porous Biomaterials: Features of Porosity and Tissue-Specific Implications for Biocompatibility. Adv Healthc Mater 2022; 11:e2102087. [PMID: 35137550 PMCID: PMC9081257 DOI: 10.1002/adhm.202102087] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/17/2021] [Indexed: 12/14/2022]
Abstract
Porosity is an important material feature commonly employed in implants and tissue scaffolds. The presence of material voids permits the infiltration of cells, mechanical compliance, and outward diffusion of pharmaceutical agents. Various studies have confirmed that porosity indeed promotes favorable tissue responses, including minimal fibrous encapsulation during the foreign body reaction (FBR). However, increased biofilm formation and calcification is also described to arise due to biomaterial porosity. Additionally, the relevance of host responses like the FBR, infection, calcification, and thrombosis are dependent on tissue location and specific tissue microenvironment. In this review, the features of porous materials and the implications of porosity in the context of medical devices is discussed. Common methods to create porous materials are also discussed, as well as the parameters that are used to tune pore features. Responses toward porous biomaterials are also reviewed, including the various stages of the FBR, hemocompatibility, biofilm formation, and calcification. Finally, these host responses are considered in tissue specific locations including the subcutis, bone, cardiovascular system, brain, eye, and female reproductive tract. The effects of porosity across the various tissues of the body is highlighted and the need to consider the tissue context when engineering biomaterials is emphasized.
Collapse
Affiliation(s)
- Jamie L Hernandez
- Department of Bioengineering, University of Washington, 3720 15th Ave NE, Seattle, WA, 98195, USA
| | - Kim A Woodrow
- Department of Bioengineering, University of Washington, 3720 15th Ave NE, Seattle, WA, 98195, USA
| |
Collapse
|
12
|
Kim JM, Kyung H, Song YS. Analysis of poly(dioxanone) foam prepared using salt leaching method. J Appl Polym Sci 2022. [DOI: 10.1002/app.52331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jung Min Kim
- Department of Fiber Convergence Materials Engineering Dankook University Yongin‐si Gyeonggi Do Korea
| | - Haksu Kyung
- Department of Ophthalmology National Medical Center Seoul Korea
| | - Young Seok Song
- Department of Fiber Convergence Materials Engineering Dankook University Yongin‐si Gyeonggi Do Korea
| |
Collapse
|
13
|
Ushiki I, Kawashima H, Kihara SI, Takishima S. Solubility and diffusivity of supercritical CO2 for polycaprolactone in its molten state: Measurement and modeling using PC-SAFT and free volume theory. J Supercrit Fluids 2022. [DOI: 10.1016/j.supflu.2021.105499] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
14
|
Cao Y, Jiang J, Jiang Y, Li Z, Hou J, Li Q. Biodegradable highly porous interconnected poly(ε‐caprolactone)/poly(L‐lactide‐co‐ε‐caprolactone) scaffolds by supercritical foaming for small‐diameter vascular tissue engineering. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5528] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Yongjun Cao
- School of Materials Science & Engineering Zhengzhou University Zhengzhou China
- National Center for International Joint Research of Micro‐Nano Molding Technology Zhengzhou University Zhengzhou China
| | - Jing Jiang
- National Center for International Joint Research of Micro‐Nano Molding Technology Zhengzhou University Zhengzhou China
- School of Mechanical & Power Engineering Zhengzhou University Zhengzhou China
| | - Yufan Jiang
- School of Materials Science & Engineering Zhengzhou University Zhengzhou China
- National Center for International Joint Research of Micro‐Nano Molding Technology Zhengzhou University Zhengzhou China
| | - Zihui Li
- National Center for International Joint Research of Micro‐Nano Molding Technology Zhengzhou University Zhengzhou China
| | - Jianhua Hou
- National Center for International Joint Research of Micro‐Nano Molding Technology Zhengzhou University Zhengzhou China
| | - Qian Li
- School of Materials Science & Engineering Zhengzhou University Zhengzhou China
- National Center for International Joint Research of Micro‐Nano Molding Technology Zhengzhou University Zhengzhou China
| |
Collapse
|
15
|
Jiang J, Li Z, Yang H, Wang X, Li Q, Turng LS. Microcellular injection molding of polymers: a review of process know-how, emerging technologies, and future directions. Curr Opin Chem Eng 2021. [DOI: 10.1016/j.coche.2021.100694] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
16
|
Li Y, Zhao E, Li L, Bai L, Zhang W. Facile design of lidocaine-loaded polymeric hydrogel to persuade effects of local anesthesia drug delivery system: complete in vitro and in vivo toxicity analyses. Drug Deliv 2021; 28:1080-1092. [PMID: 34114924 PMCID: PMC8204985 DOI: 10.1080/10717544.2021.1931558] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The principal goal of the present investigation was to enterprise new and effective drug delivery vesicle for the sustained delivery of local anesthetic lidocaine hydrochloride (LDC), using a novel combination of copolymeric hydrogel with tetrahydroxyborate (COP–THB) to improve bioactivity and therapeutic potential. To support this contention, the physical and mechanical properties, rheological characteristics, and component release of candidate formulations were investigated. An optimized formulation of COP–THB containing LDC to an upper maximum concentration of 1.5% w/w was assessed for drug crystallization. The biocompatibility of the prepared COP–THB hydrogel was exhibited strong cell survival (96%) and growth compatibility on L929 fibroblast cell lines, which was confirmed by using methods of MTT assay and microscopic observations. The COP–THB hydrogel release pattern is distinct from that of COP–THB/LDC hydrogels by the slow-release rate and the low percentage of cumulative release. In vivo evaluations were demonstrated the anesthetic effects and toxicity value of treated samples by using mice models. In addition, COP–THB/LDC hydrogels significantly inhibit in vivo tumor growth in mice model and effectively reduced it is in vivo toxicity. The pharmacological evaluation showed that encapsulation of LDC in COP–THB hydrogels prolonged its anesthetic action with favorable in vitro and in vivo compatibility. This novel design may theoretically be used in promising studies involving the controlled release of local anesthetics.Highlights Development a modified sustained release system for the local anesthetic lidocaine. PVP-THB hydrogel to improve the pharmacological properties of the drug and their anesthetic activities. Profiles of PVP-THB/LDC showed that the effective release of associated lidocaine. This new formulation could potentially be used in future local anesthetics.
Collapse
Affiliation(s)
- Yan Li
- Department of Anesthesiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Erxian Zhao
- Department of Anesthesiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Li Li
- Department of Anesthesiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Liying Bai
- Department of Anesthesiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wei Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
17
|
Al Halawani A, Wang Z, Liu L, Zhang M, Weiss AS. Applications of Engineering Techniques in Microvasculature Design. Front Cardiovasc Med 2021; 8:660958. [PMID: 33981737 PMCID: PMC8107229 DOI: 10.3389/fcvm.2021.660958] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 03/30/2021] [Indexed: 11/17/2022] Open
Abstract
Achieving successful microcirculation in tissue engineered constructs in vitro and in vivo remains a challenge. Engineered tissue must be vascularized in vitro for successful inosculation post-implantation to allow instantaneous perfusion. To achieve this, most engineering techniques rely on engineering channels or pores for guiding angiogenesis and capillary tube formation. However, the chosen materials should also exhibit properties resembling the native extracellular matrix (ECM) in providing mechanical and molecular cues for endothelial cells. This review addresses techniques that can be used in conjunction with matrix-mimicking materials to further advance microvasculature design. These include electrospinning, micropatterning and bioprinting. Other techniques implemented for vascularizing organoids are also considered for their potential to expand on these approaches.
Collapse
Affiliation(s)
- Aleen Al Halawani
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
- Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia
| | - Ziyu Wang
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
- Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia
| | - Linyang Liu
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
- Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia
| | - Miao Zhang
- Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia
- School of Biomedical Engineering, University of Sydney, Sydney, NSW, Australia
| | - Anthony S. Weiss
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
- Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia
- Sydney Nano Institute, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
18
|
Kirillova A, Yeazel TR, Asheghali D, Petersen SR, Dort S, Gall K, Becker ML. Fabrication of Biomedical Scaffolds Using Biodegradable Polymers. Chem Rev 2021; 121:11238-11304. [PMID: 33856196 DOI: 10.1021/acs.chemrev.0c01200] [Citation(s) in RCA: 133] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Degradable polymers are used widely in tissue engineering and regenerative medicine. Maturing capabilities in additive manufacturing coupled with advances in orthogonal chemical functionalization methodologies have enabled a rapid evolution of defect-specific form factors and strategies for designing and creating bioactive scaffolds. However, these defect-specific scaffolds, especially when utilizing degradable polymers as the base material, present processing challenges that are distinct and unique from other classes of materials. The goal of this review is to provide a guide for the fabrication of biodegradable polymer-based scaffolds that includes the complete pathway starting from selecting materials, choosing the correct fabrication method, and considering the requirements for tissue specific applications of the scaffold.
Collapse
Affiliation(s)
- Alina Kirillova
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
| | - Taylor R Yeazel
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
| | - Darya Asheghali
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Shannon R Petersen
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Sophia Dort
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Ken Gall
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
| | - Matthew L Becker
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States.,Department of Chemistry, Duke University, Durham, North Carolina 27708, United States.,Departments of Biomedical Engineering and Orthopaedic Surgery, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|