1
|
Wu Y, Huang L, Ma X, Zhou X, Li Q, Li F. Design, synthesis, and antiproliferative evaluation of novel dehydroabietic acid-1,2,3-triazole-oxazolidinone hybrids. RSC Med Chem 2024; 15:561-571. [PMID: 38389893 PMCID: PMC10880940 DOI: 10.1039/d3md00550j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 11/28/2023] [Indexed: 02/24/2024] Open
Abstract
A series of novel dehydroabietic acid derivatives containing both 1,2,3-triazole and oxazolidinone 4a-4t have been synthesized and their antiproliferative activity in vitro against HeLa, HepG2, MGC-803 and T-24 cell lines evaluated. Most of them displayed cell proliferation inhibition on four tested human malignant tumour cell lines to some degree. Among them, compound 4p exhibited promising cytotoxicity with IC50 values ranging from 3.18 to 25.31 μM and weak cytotoxicity toward normal cells. The mechanism of action of 4p was then studied using flow cytometry, Hoechst 33258 staining, ROS generation assay, and JC-1 mitochondrial membrane potential staining, which illustrated that compound 4p induced apoptosis, arrested mitotic process at the G1 phase of the cell cycle, reduced the mitochondrial membrane potential, and increased intracellular ROS levels. In summary, the introduction of an oxazolidinone group via a "1,2,3-triazole" linker significantly improved the antitumor activity of dehydroabietic acid, and deserves to be further investigated.
Collapse
Affiliation(s)
- Yaju Wu
- Guangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, School of Pharmacy, Guilin Medical University Guilin 541199 PR China +86 773 229 5179
| | - Lin Huang
- Guangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, School of Pharmacy, Guilin Medical University Guilin 541199 PR China +86 773 229 5179
| | - Xianli Ma
- Guangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, School of Pharmacy, Guilin Medical University Guilin 541199 PR China +86 773 229 5179
| | - Xiaoqun Zhou
- Guangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, School of Pharmacy, Guilin Medical University Guilin 541199 PR China +86 773 229 5179
| | - Qian Li
- Guangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, School of Pharmacy, Guilin Medical University Guilin 541199 PR China +86 773 229 5179
| | - Fangyao Li
- Guangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, School of Pharmacy, Guilin Medical University Guilin 541199 PR China +86 773 229 5179
| |
Collapse
|
2
|
Fiadorwu J, Subedi K, Todd D, Basti MM. Multipronged Approach to Profiling Metabolites in Beta vulgaris L. Dried Pulp Extracts Using Chromatography, NMR and Other Spectroscopy Methods. Foods 2023; 12:3510. [PMID: 37761219 PMCID: PMC10528680 DOI: 10.3390/foods12183510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/29/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Beetroot (Beta vulgaris L.) is known for being a rich source of phytochemicals, minerals and vitamins. This study aims to show how the combination of extraction/chromatography/mass spectrometry and NMR offers an efficient way to profile metabolites in the extracts of beetroot. Such combination may lead to the identification of more nutritional or medicinal compounds in natural products, and it is essential for our ongoing investigation to study the selective adsorption/desorption of these metabolites' on/off nanoparticles. The aqueous and organic extracts underwent analyses using UV-vis spectroscopy; GC-MS; LC-MS; 1H, 13C, 31P, TOCSY, HSQC, and selective TOCSY NMR experiments. Polar Extract: The two forms of betalain pigment were identified by UV-vis and LC MS. Fourteen amino acids, sucrose, and other compounds, among which is riboflavin, were identified by LC-MS. Two-dimensional TOCSY showed the spin coupling correlations corresponding to some of these compounds. The HSQC spectrum showed 1H/13C spin correlation in sucrose, confirming its high abundance in beetroot. Organic Extract: GC-MS data enabled the identification of several compounds including six fatty acid methyl esters (FAME) with higher than, on average, 90% similarity score. Selective TOCSY NMR data showed the spin coupling pattern corresponding to oleic, linoleic, and linolenic fatty acids. 31P NMR spectra indicate that phospholipids exist in both the organic and aqueous phase.
Collapse
Affiliation(s)
- Joshua Fiadorwu
- Department of Applied Science and Technology, College of Science and Technology, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, USA;
| | - Kiran Subedi
- Analytical Services Laboratory, College of Agriculture and Environmental Sciences (CAES), North Carolina Agricultural and Technical State University, Greensboro, NC 27411, USA;
| | - Daniel Todd
- Triad Mass Spectrometry Facility, University of North Carolina at Greensboro, Greensboro, NC 27412, USA;
| | - Mufeed M. Basti
- Department of Applied Science and Technology, College of Science and Technology, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, USA;
| |
Collapse
|
3
|
Zhu M, Sun J, Wu Y, Ma X, Lei F, Li Q, Jiang C, Li F. Synthesis and anti-proliferative activity of dehydroabietinol derivatives bearing a triazole moiety. RSC Med Chem 2023; 14:680-691. [PMID: 37122546 PMCID: PMC10131649 DOI: 10.1039/d2md00427e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 02/14/2023] [Indexed: 02/17/2023] Open
Abstract
In search of more efficacious antitumor agents, a series of novel dehydroabietinol derivatives containing a triazole moiety was synthesized, and evaluated for cytotoxicity against four human cancer cell lines. Many exhibited superior cytotoxic profiles compared to the parent molecule, dehydroabietic acid. In particular, compounds 5g, 5i and 5j exhibited promising cytotoxicity with IC50 values ranging from 4.84 to 9.62 μM against all the test cell lines. Cell clone formation and migration tests of compound 5g showed that it not only effectively inhibited the formation of MGC-803 cell colonies but also inhibited the MGC-803 cell migration and invasion. Additionally, the preliminary pharmacological mechanism indicated compound 5g induced apoptosis, arrested the mitotic process at the G0/G1 phase of the cell cycle, reduced the mitochondrial membrane potential, and increased the intracellular ROS and Ca2+ levels.
Collapse
Affiliation(s)
- Mingjun Zhu
- Guangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, School of Pharmacy, Guilin Medical University Guilin 541199 PR China +86 773 229 5179
| | - Jinchuan Sun
- Guangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, School of Pharmacy, Guilin Medical University Guilin 541199 PR China +86 773 229 5179
| | - Yaju Wu
- Guangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, School of Pharmacy, Guilin Medical University Guilin 541199 PR China +86 773 229 5179
| | - Xianli Ma
- Guangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, School of Pharmacy, Guilin Medical University Guilin 541199 PR China +86 773 229 5179
| | - Fuhou Lei
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Minzu University Nanning 530006 China
| | - Qian Li
- Guangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, School of Pharmacy, Guilin Medical University Guilin 541199 PR China +86 773 229 5179
| | - Caina Jiang
- Guangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, School of Pharmacy, Guilin Medical University Guilin 541199 PR China +86 773 229 5179
| | - Fangyao Li
- Guangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, School of Pharmacy, Guilin Medical University Guilin 541199 PR China +86 773 229 5179
| |
Collapse
|
4
|
Ivanchenko OB, Popova LM, Nikitina AM, Tsyrulnikova AS, Vershilov SV. Biotesting in an Environmental Monitoring System: Safety Assessment of Rosin Derivatives. RUSS J GEN CHEM+ 2022. [DOI: 10.1134/s1070363222130011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
5
|
Recent Advances on Biological Activities and Structural Modifications of Dehydroabietic Acid. Toxins (Basel) 2022; 14:toxins14090632. [PMID: 36136570 PMCID: PMC9501862 DOI: 10.3390/toxins14090632] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 11/17/2022] Open
Abstract
Dehydroabietic acid is a tricyclic diterpenoid resin acid isolated from rosin. Dehydroabietic acid and its derivatives showed lots of medical and agricultural bioactivities, such as anticancer, antibacterial, antiviral, antiulcer, insecticidal, and herbicidal activities. This review summarized the research advances on the structural modification and total synthesis of dehydroabietic acid and its derivatives from 2015 to 2021, and analyzed the biotransformation and structure-activity relationships in order to provide a reference for the development and utilization of dehydroabietic acid and its derivatives as drugs and pesticides.
Collapse
|
6
|
Zonouz AM, Ghaffari, P, Pourreza A. Synthesis of Pyrimidine Hybrids Based on 4H-Pyran and 4H-Chromene Privileged Structures. LETT ORG CHEM 2022. [DOI: 10.2174/1570178619666220209154646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract:
A combinatorial library of pyrimidine hybrids based on 4H-chromene and 4H-pyran privileged structures have been developed by reaction of phenyl isothiocyanate with chromene derivatives 1a-j and pyranopyrazoles 2a-f in refluxing dry pyridine, respectively. Thus, the target pyrimidine hybrids 3a-j and 4a-f were obtained in good yields with a simple reaction strategy.
Collapse
Affiliation(s)
- Adeleh Moshtaghi Zonouz
- Chemistry Department, Faculty of Science, Azarbaijan Shahid Madani University, Tabriz - Iran
| | - Parisa Ghaffari,
- Chemistry Department, Faculty of Science, Azarbaijan Shahid Madani University, Tabriz - Iran
| | - Azita Pourreza
- Chemistry Department, Faculty of Science, Azarbaijan Shahid Madani University, Tabriz - Iran
| |
Collapse
|
7
|
Haffez H, Osman S, Ebrahim HY, Hassan ZA. Growth Inhibition and Apoptotic Effect of Pine Extract and Abietic Acid on MCF-7 Breast Cancer Cells via Alteration of Multiple Gene Expressions Using In Vitro Approach. Molecules 2022; 27:293. [PMID: 35011526 PMCID: PMC8746537 DOI: 10.3390/molecules27010293] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/11/2021] [Accepted: 12/22/2021] [Indexed: 01/09/2023] Open
Abstract
In vitro anti-proliferative activity of Pinus palustris extract and its purified abietic acid was assessed against different human cancer cell lines (HepG-2, MCF-7 and HCT-116) compared to normal WI-38 cell line. Abietic acid showed more promising IC50 values against MCF-7 cells than pine extract (0.06 µg/mL and 0.11 µM, respectively), with insignificant cytotoxicity toward normal fibroblast WI-38 cells. Abietic acid triggered both G2/M cell arrest and subG0-G1 subpopulation in MCF-7, compared to SubG0-G1 subpopulation arrest only for the extract. It also induced overexpression of key apoptotic genes (Fas, FasL, Casp3, Casp8, Cyt-C and Bax) and downregulation of both proliferation (VEGF, IGFR1, TGF-β) and oncogenic (C-myc and NF-κB) genes. Additionally, abietic acid induced overexpression of cytochrome-C protein. Furthermore, it increased levels of total antioxidants to diminish carcinogenesis and chemotherapy resistance. P. palustris is a valuable source of active abietic acid, an antiproliferative agent to MCF-7 cells through induction of apoptosis with promising future anticancer agency in breast cancer therapy.
Collapse
Affiliation(s)
- Hesham Haffez
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, Helwan University, Cairo 11795, Egypt;
- Helwan Structural Biology Center for Excellence, Helwan University, Cairo 11795, Egypt
| | | | - Hassan Y. Ebrahim
- Pharmacognosy Department, Faculty of Pharmacy, Helwan University, Cairo 11795, Egypt;
| | - Zeinab A. Hassan
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, Helwan University, Cairo 11795, Egypt;
| |
Collapse
|
8
|
Zhu J, He L, Luo J, Xiong J, Wang T. Design, synthesis, and herbicidal activity of novel pyrimidine derivatives containing 1,2,4-triazole. PHOSPHORUS SULFUR 2021. [DOI: 10.1080/10426507.2021.1946063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Jiajun Zhu
- Jiangxi Province Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi, China
| | - Linghui He
- Jiangxi Province Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi, China
| | - Jin Luo
- Jiangxi Province Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi, China
- Analytical & Testing Center, Jiangxi Normal University, Nanchang, Jiangxi, China
| | - Jun Xiong
- College of Pharmacy, Hubei University of Science and Technology, Xianning, Hubei, China
| | - Tao Wang
- Jiangxi Province Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi, China
| |
Collapse
|
9
|
Popova L, Ivanchenko O, Pochkaeva E, Klotchenko S, Plotnikova M, Tsyrulnikova A, Aronova E. Rosin Derivatives as a Platform for the Antiviral Drug Design. Molecules 2021; 26:3836. [PMID: 34201875 PMCID: PMC8270270 DOI: 10.3390/molecules26133836] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 11/16/2022] Open
Abstract
The increased complexity due to the emergence and rapid spread of new viral infections prompts researchers to search for potential antiviral and protective agents for mucous membranes among various natural objects, for example, plant raw materials, their individual components, as well as the products of their chemical modification. Due to their structure, resin acids are valuable raw materials of natural origin to synthesize various bioactive substances. Therefore, the purpose of this study was to confirm the possibility of using resin acid derivatives for the drug design. As a result, we studied the cytotoxicity and biological activity of resin acid derivatives. It was shown that a slight decrease in the viral load in the supernatants was observed upon stimulation of cells (II) compared with the control. When using PASS-online modeling (Prediction of Activity Spectra for Substances), the prediction of the biological activity spectrum showed that compound (I) is capable of exhibiting antiviral activity against the influenza virus. The use of the SWISS-ADME webserver to reveal the drug-like properties of compounds did not directly indicate the presence of antiviral activity. These results indicate the potential of resin acid derivatives as a starting point for extensive research in the study of biological activity.
Collapse
Affiliation(s)
- Larisa Popova
- Graduate School of Biotechnology and Food Science, Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya Street 29, 195251 Saint Petersburg, Russia; (O.I.); (A.T.); (E.A.)
| | - Olga Ivanchenko
- Graduate School of Biotechnology and Food Science, Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya Street 29, 195251 Saint Petersburg, Russia; (O.I.); (A.T.); (E.A.)
| | - Evgeniia Pochkaeva
- Graduate School of Biotechnology and Food Science, Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya Street 29, 195251 Saint Petersburg, Russia; (O.I.); (A.T.); (E.A.)
| | - Sergey Klotchenko
- Smorodintsev Research Institute of Influenza, Prof. Popov Street 15/17, 197376 Saint Petersburg, Russia; (S.K.); (M.P.)
| | - Marina Plotnikova
- Smorodintsev Research Institute of Influenza, Prof. Popov Street 15/17, 197376 Saint Petersburg, Russia; (S.K.); (M.P.)
| | - Angelica Tsyrulnikova
- Graduate School of Biotechnology and Food Science, Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya Street 29, 195251 Saint Petersburg, Russia; (O.I.); (A.T.); (E.A.)
| | - Ekaterina Aronova
- Graduate School of Biotechnology and Food Science, Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya Street 29, 195251 Saint Petersburg, Russia; (O.I.); (A.T.); (E.A.)
| |
Collapse
|
10
|
He B, Zhu Z, Chen F, Zhang R, Chen W, Zhang T, Wang T, Lei J. Synthesis and antitumor potential of new arylidene ursolic acid derivatives via caspase-8 activation. Arch Pharm (Weinheim) 2021; 354:e2000448. [PMID: 33646592 DOI: 10.1002/ardp.202000448] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/22/2021] [Accepted: 01/29/2021] [Indexed: 12/11/2022]
Abstract
Continuing our studies on NO-donating ursolic acid-benzylidene derivatives as potential antitumor agents, we designed and synthesized a series of new arylidene derivatives containing NO-donating ursolic acid and aromatic heterocyclic units. Compounds 5c and 6c showed a significant broad-spectrum antitumor activity. Compound 5c exhibited nearly three- to nine-fold higher cytotoxicity as compared with the parent drug in A549, MCF-7, HepG-2, HT-29, and HeLa cells, and it was also found to be the most potent apoptosis inducer of MCF-7 cells. More importantly, compound 5c arrested the MCF-7 cell cycle in the G1 phase, which was associated with caspase activation and a decrease of the Bcl-2/Bax ratio. Meanwhile, compound 5c caused changes in morphological features, dissipation of the mitochondrial membrane potential, and accumulation of reactive oxygen species. A docking study revealed that the nitroxyethyl moiety of compound 5c may form hydrogen bonds with caspase-8 amino acid residues (SER256 and HIS255). Together, these data suggest that NO-donating ursolic acid-arylidene derivatives are potent apoptosis inducers in tumor cells.
Collapse
Affiliation(s)
- Baoen He
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zuchang Zhu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Fenglian Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Rong Zhang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Weiqiang Chen
- School of Nursing, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Te Zhang
- Department of Research and Development, Shanghai Hequan Pharmaceutical Co. Ltd., Shanghai, China
| | - Tao Wang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiamei Lei
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|