1
|
Ghasemi M, Govahi M, Litkohi HR. Green synthesis of silver nanoparticles (AgNPs) and chitosan-coated silver nanoparticles (CS-AgNPs) using Ferula gummosa Boiss. gum extract: A green nano drug for potential applications in medicine. Int J Biol Macromol 2025; 291:138619. [PMID: 39667473 DOI: 10.1016/j.ijbiomac.2024.138619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 12/07/2024] [Accepted: 12/08/2024] [Indexed: 12/14/2024]
Abstract
In this study, silver nanoparticles (AgNPs) and chitosan-coated silver nanoparticles (CS-AgNPs) were synthesized in a green way using Ferula gummosa Boiss. gum extract. The as-prepared NPs were employed as efficient nanomaterials for developing antimicrobial, antioxidant, and anticancer agents. The AgNPs and the CS-AgNPs were characterized using TEM, EDX, FESEM, UV-Vis, XRD, DLS, and FTIR. The UV-Vis spectra showed the surface plasmon resonance for the AgNPs in the visible range around 420 nm. Also, the TEM images indicated particle sizes ranging from 2 to 20 nm and 5-50 nm for the AgNPs and the CS-AgNPs, respectively. Cytotoxicity of the AgNPs and the CS-AgNPs was assessed through MTT and hemolysis assays on normal and cancer cell lines. The AgNPs and the CS-AgNPs demonstrated significant antibacterial activity against Staphylococcus aureus and Bacillus subtilis. The antioxidant assays revealed substantial free radical scavenging activity, with CS-AgNPs exhibiting superior antioxidant properties. In addition, the hemolysis assay illustrated low hemolytic activity for the AgNPs and CS-AgNPs. Moreover, the MTT assay demonstrated a significant cytotoxic effect for the AgNPs and the CS-AgNPs on the MCF-7 breast cancer cell line. These results provide an effective strategy to prepare the biosynthesized AgNPs and the CS-AgNPs for future pharmaceutical applications.
Collapse
Affiliation(s)
- Mostafa Ghasemi
- Department of Microbial Biotechnology, College of Biotechnology, Amol University of Special Modern Technologies, Amol 46158-63111, Iran
| | - Mostafa Govahi
- Department of Nano Biotechnology, College of Biotechnology, Amol University of Special Modern Technologies, Amol 46158-63111, Iran.
| | - Hajar Rajaei Litkohi
- Department of Nano Biotechnology, College of Biotechnology, Amol University of Special Modern Technologies, Amol 46158-63111, Iran
| |
Collapse
|
2
|
Shaw S, Mondal R, Dam P, Mandal A, Acharya R, Manna S, Gangopadhyay D, Mandal AK. Synthesis, characterization and application of silk sericin-based silver nanocomposites for antibacterial and food coating solutions. RSC Adv 2024; 14:33068-33079. [PMID: 39435006 PMCID: PMC11492224 DOI: 10.1039/d4ra07056a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 10/15/2024] [Indexed: 10/23/2024] Open
Abstract
The rising demand for fresh and safe food is driving advancements in preservation technologies, with nanoparticles offering a revolutionary solution. These particles extend shelf life, preserve nutritional value, and enhance food safety, aligning with present consumer expectations. This study explores the eco-friendly synthesis, characterization, and application of silk sericin-based silver nanoparticles (SS-AgNPs) for antibacterial and food coating purposes. Silk sericin, a byproduct of the silk industry, is typically discarded despite its valuable properties like biocompatibility, biodegradability, and antimicrobial activity. In this research, sericin from Bombyx mori cocoons was used as a reducing and stabilizing agent to synthesize SS-AgNPs. Characterization was performed using UV-vis spectroscopy, Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and dynamic light scattering (DLS). Antibacterial tests confirmed the efficacy of SS-AgNPs against Pseudomonas sp. and Staphylococcus sp., while food coating trials on tomatoes significantly reduced weight loss and microbial contamination. Biocompatibility was further verified through hemolysis and MTT assays, confirming SS-AgNPs' safety for biomedical and food-related uses. This study underscores the potential to convert sericin waste into a valuable resource, promoting sustainability and increasing the commercial value of sericulture.
Collapse
Affiliation(s)
- Shubhajit Shaw
- Department of Sericulture, Raiganj University Raiganj 733134 West Bengal India
| | - Rittick Mondal
- Department of Sericulture, Raiganj University Raiganj 733134 West Bengal India
| | - Paulami Dam
- Department of Sericulture, Raiganj University Raiganj 733134 West Bengal India
| | - Avijit Mandal
- Department of Life Sciences, Presidency University Kolkata 700073 India
| | - Ritwik Acharya
- Department of Sericulture, Raiganj University Raiganj 733134 West Bengal India
| | - Sanjeet Manna
- Central Instrumentation Facility, Odisha University of Agriculture and Technology Bhubaneswar 751003 Odisha India
| | | | - Amit Kumar Mandal
- Department of Sericulture, Raiganj University Raiganj 733134 West Bengal India
| |
Collapse
|
3
|
Elayappan PK, Kandasamy K, Sasikumar V, Bharathi M, Hirad AH, Alarfaj AA, Arulselvan P, Jaganathan R, Ravindran R, Suriyaprakash J, Thangavelu I. Facile engineering of aptamer-coupled silk fibroin encapsulated myogenic gold nanocomposites: investigation of antiproliferative activity and apoptosis induction. Biotechnol Lett 2024; 46:871-885. [PMID: 38676857 DOI: 10.1007/s10529-024-03491-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/13/2024] [Accepted: 04/14/2024] [Indexed: 04/29/2024]
Abstract
Nanocomposites selectively induce cancer cell death, holding potential for precise liver cancer treatment breakthroughs. This study assessed the cytotoxicity of gold nanocomposites (Au NCs) enclosed within silk fibroin (SF), aptamer (Ap), and the myogenic Talaromyces purpureogenus (TP) against a human liver cancer cell (HepG2). The ultimate product, Ap-SF-TP@Au NCs, results from a three-step process. This process involves the myogenic synthesis of TP@Au NCs derived from TP mycelial extract, encapsulation of SF on TP@Au NCs (SF-TP@Au NCs), and the conjugation of Ap within SF-TP@Au NCs. The synthesized NCs are analyzed by various characteristic techniques. Ap-SF-TP@Au NCs induced potential cell death in HepG2 cells but exhibited no cytotoxicity in non-cancerous cells (NIH3T3). The morphological changes in cells were examined through various biochemical staining methods. Thus, Ap-SF-TP@Au NCs emerge as a promising nanocomposite for treating diverse cancer cells.
Collapse
Affiliation(s)
- Poorni Kaliyappan Elayappan
- Department of Biochemistry, Vivekanandha College of Arts and Sciences for Women (Autonomous), Elayampalayam, Tiruchengode, Namakkal, Tamil Nadu, 637205, India
| | - Kavitha Kandasamy
- Department of Biochemistry, Vivekanandha College of Arts and Sciences for Women (Autonomous), Elayampalayam, Tiruchengode, Namakkal, Tamil Nadu, 637205, India
| | - Vadivukkarasi Sasikumar
- Department of Biochemistry, K.S.Rangasamy College of Arts and Science, Tiruchengode, Namakkal, Tamil Nadu, 637215, India
| | - Muruganantham Bharathi
- Center for Bioinformatics, Department of Biochemistry, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, 641021, India
| | - Abdurahman Hajinur Hirad
- Department of Botany and Microbiology, College of Science, King Saud University, P. O. Box. 2455, 11451, Riyadh, Saudi Arabia
| | - Abdullah A Alarfaj
- Department of Botany and Microbiology, College of Science, King Saud University, P. O. Box. 2455, 11451, Riyadh, Saudi Arabia
| | - Palanisamy Arulselvan
- Department of Chemistry, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, Tamil Nadu, 602 105, India
| | - Ravindran Jaganathan
- Preclinical Department, Faculty of Medicine, Universiti Kuala Lumpur, Royal College of Medicine Perak (UniKL-RCMP), 30450, Ipoh, Perak, Malaysia
| | - Rajeswari Ravindran
- Preclinical Department, Faculty of Medicine, Universiti Kuala Lumpur, Royal College of Medicine Perak (UniKL-RCMP), 30450, Ipoh, Perak, Malaysia
| | - Jagadeesh Suriyaprakash
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou, 510006, China
| | - Indumathi Thangavelu
- Department of Chemistry, CHRIST (Deemed to Be University), Bangalore, 560029, India.
| |
Collapse
|
4
|
Mondal R, Chakraborty J, Dam P, Shaw S, Gangopadhyay D, Ertas YN, Mandal AK. Development of Aptamer-Functionalized Gold Nanoparticles as Probes in Point-of-Care Diagnostic Device for Rapid Detection of Multidrug-Resistant Bacteria in Bombyx mori L. . ACS APPLIED BIO MATERIALS 2024; 7:5740-5753. [PMID: 39110486 DOI: 10.1021/acsabm.4c00833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
The sericulture industry suffers severe crop losses due to various silkworm diseases, necessitating the development of further technologies for rapid pathogen detection. Here, we report an all-in-one portable biosensor that combines conjugated gold nanoparticles (Au NPs) with an aptamer-based lateral flow assay (LFA) platform for the real-time analysis of Mammaliicoccus sp. and Pseudomonas sp. Our platform enables sample-to-answer naked eye detection within 5 min without any cross-reactivity with other representatives of the silkworm pathogenic bacterial group. This assay was based on the sandwich-type format using a bacteria-specific primary aptamer (Apt1) conjugated with 23 nm ± 1.27 nm Au NPs as a signal probe and another bacteria-specific secondary aptamer (Apt2)-coated nitrocellulose membrane as a capture probe. The hybridization between the signal probe and the capture probe in the presence of bacteria develops a red band in the test line, whose intensity is directly proportional to the bacterial concentration. Under the optimal experimental conditions, the visual limit of detection of the strip for Mammaliicoccus sp. and Pseudomonas sp. was 1.5 × 104 CFU/mL and 1.5 × 103 CFU/mL, respectively. Additionally, the performance of the LFA device was validated by using a colorimetric assay, and the results from the colorimetric assay are consistent with those obtained from the LFA. Our findings indicate that the developed point-of-care diagnostic device has significant potential for providing a cost-effective, scalable alternative for the rapid detection of silkworm pathogens.
Collapse
Affiliation(s)
- Rittick Mondal
- Department of Sericulture, Raiganj University, North Dinajpur, Raiganj, West Bengal 733134, India
| | - Joydeep Chakraborty
- Department of Microbiology, Raiganj University, North Dinajpur, Raiganj, West Bengal 733134, India
| | - Paulami Dam
- Department of Sericulture, Raiganj University, North Dinajpur, Raiganj, West Bengal 733134, India
| | - Shubhajit Shaw
- Department of Sericulture, Raiganj University, North Dinajpur, Raiganj, West Bengal 733134, India
| | - Debnirmalya Gangopadhyay
- Department of Sericulture, Raiganj University, North Dinajpur, Raiganj, West Bengal 733134, India
| | - Yavuz Nuri Ertas
- Department of Biomedical Engineering, Erciyes University, Kayseri 38039, Turkey
- ERNAM-Nanotechnology Research and Application Center, Erciyes University, Kayseri 38039, Turkey
- Department of Technical Sciences, Western Caspian University, Baku AZ1001, Azerbaijan
| | - Amit Kumar Mandal
- Department of Sericulture, Raiganj University, North Dinajpur, Raiganj, West Bengal 733134, India
- Center for Nanotechnology Sciences (CeNS), Raiganj University, North Dinajpur, Raiganj, West Bengal 733134, India
| |
Collapse
|
5
|
Mondal R, Dam P, Chakraborty J, Shaw S, Pradhan S, Das S, Nesa J, Meena K, Ghati A, Chaudhuri SD, Bhattacharjee D, Mandal V, Sarkar B, Mandal AK. Genomic dataset of a multiple-drug resistant Pseudomonas sp. strain RAC1 isolated from a flacherie infected Nistari race of Bombyx mori L. Data Brief 2024; 54:110293. [PMID: 38524843 PMCID: PMC10957439 DOI: 10.1016/j.dib.2024.110293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 02/29/2024] [Indexed: 03/26/2024] Open
Abstract
Species belonging to the genus Pseudomonas is a rod shaped Gram-negative bacteria emerged as an important silkworm pathogen with broad-level multi-drug resistance. The extensive usage of antimicrobials in sericulture farming is gradually leading to the emergence of multi-drug resistance (MDR) strains, posing a significant threat to the well-being of both Bombyx mori L. and serifarmers. Pseudomonas spp. with MDR level may gets transmitted from the infected silkworm to human handlers either via direct contact or through contaminated feces. To understand the emerging concern of antimicrobial resistance (AMR) in Pseudomonas spp. provides insights into their genomic information. Here, we present the draft genome sequence data of Pseudomonas sp. strain RAC1 isolated from a flacherie infected Nistari race of Bombyx mori L. from the silkworm rearing house of Raiganj University, India and sequenced using the Illumina NovaSeq 6000 platform. The estimated genome size of the strain was 4494347 bp with a G + C content of 63.5%. The de novo assembly of the genome generated 38 contigs with an N50 of 200 kb. Our data might help to reveal the genetic diversity, underlying mechanisms of AMR and virulence potential of Pseudomonas spp. This draft-genome shotgun project has been deposited under the NCBI GenBank accession number NZ_JAUTXS000000000.
Collapse
Affiliation(s)
- Rittick Mondal
- Department of Sericulture, Raiganj University, North Dinajpur, West Bengal 733134, India
| | - Paulami Dam
- Department of Sericulture, Raiganj University, North Dinajpur, West Bengal 733134, India
| | - Joydeep Chakraborty
- Department of Microbiology, Raiganj University, North Dinajpur, West Bengal 733134, India
| | - Shubhajit Shaw
- Department of Sericulture, Raiganj University, North Dinajpur, West Bengal 733134, India
| | - Sayantan Pradhan
- Department of Sericulture, Raiganj University, North Dinajpur, West Bengal 733134, India
| | - Sandip Das
- Department of Sericulture, Raiganj University, North Dinajpur, West Bengal 733134, India
| | - Jannatun Nesa
- Department of Zoology, Gangarampur College, Dakshin Dinajpur, West Bengal 733124, India
| | - Khemraj Meena
- Department of Biotechnology, School of Life Sciences, Central University of Rajasthan, Kishangarh, Rajasthan 305817, India
| | - Amit Ghati
- Department of Microbiology, Barrackpore Rastraguru Surendranath College, Barrackpore, West Bengal 700120, India
| | - Sandip Dev Chaudhuri
- Department of Sericulture, Raiganj University, North Dinajpur, West Bengal 733134, India
| | - Debjoy Bhattacharjee
- Department of Sericulture, Raiganj University, North Dinajpur, West Bengal 733134, India
| | - Vivekananda Mandal
- Plant and Microbial Physiology and Biochemistry Laboratory, Department of Botany, University of Gour Banga, Malda, West Bengal 732103, India
| | - Biraj Sarkar
- Faculty of Allied Health Sciences (FAHS), The ICFAI University, Tripura; Kamalghat, Mohanpur, West Tripura 799210, India
| | - Amit Kumar Mandal
- Department of Sericulture, Raiganj University, North Dinajpur, West Bengal 733134, India
| |
Collapse
|
6
|
Dubey T, Bhanukiran K, Hemalatha S. Development of phytosterol-loaded silver nanoparticles for ameliorating haemorrhoidal complications via the AMPK pathway-a mechanistic approach. Biomed Mater 2024; 19:035030. [PMID: 38518371 DOI: 10.1088/1748-605x/ad3703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 03/22/2024] [Indexed: 03/24/2024]
Abstract
The aim of the current study was to synthesize silver nanoparticles (PLSNPs) using green technology by means of phytosterol-enriched fractions fromBlumea laceraextracts (EAF) and evaluate their toxicological and anti-haemorrhoidal potential. The average size of the synthesized particles was found to be 85.64 nm by scanning electron microscopy and transmission electron microscopy. Energy dispersive spectroscopy showed the elemental composition of PLSNPs to be 12.59% carbon and 87.41% silver, indicating the capping of phytochemicals on the PLSNPs. The PLSNPs were also standardized for total phytosterol content using chemical methods and high-perfromance liquid chromatography. The PLSNPs were found to be safe up to 1000 mg kg-1as no toxicity was observed in the acute and sub-acute toxicity studies performed as per OECD guidelines. After the induction of haemorrhoids, experimental animals were treated with different doses of EAF, PLSNPs and a standard drug (Pilex) for 7 d, and on the eighth day the ameliorative potential was assessed by evaluating the haemorrhoidal (inflammatory severity index, recto-anal coefficient) and biochemical (tumour necrosis factor-alpha and interleukin-6) parameters and histology of the recto-anal tissue. The results showed that treatment with PLSNPs and Pilex significantly (p< 0.05) reduced haemorrhoidal and biochemical parameters. This was further supported by restoration of altered antioxidant status. Further, a marked reduction in the inflammatory zones along with minimal dilated blood vessels was observed in the histopathological study. The results of molecular docking studies also confirmed the amelioration of haemorrhoids via AMP-activated protein kinase (AMPK)-mediated reduction of inflammation and endothelin B receptor modification by PLSNPs. In conclusion, PLSNPs could be a good alternative for the management of haemorrhoids.
Collapse
Affiliation(s)
- Tarkeshwar Dubey
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi 221005, India
| | - Kancharla Bhanukiran
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi 221005, India
| | - Siva Hemalatha
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi 221005, India
| |
Collapse
|
7
|
Manna A, Jana SC. Isolation and characterization of lactic acid bacteria producing a potent anti-listerial bacteriocin-like inhibitory substance (BLIS) from chhurpi, a fermented milk product. Arch Microbiol 2024; 206:73. [PMID: 38252168 DOI: 10.1007/s00203-023-03797-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/11/2023] [Accepted: 12/15/2023] [Indexed: 01/23/2024]
Abstract
Nowadays, the bacteriocin industries have seen significant growth, supplanting chemical preservatives in its ability to improve the shelf-life and safety of food. The increasing customer desire to use natural preservatives has fueled advancing bacteriocin research. The objective of this study was to identify lactic acid bacteria (LAB) that produce bacteriocin-like inhibitory substance (BLIS) and have strong anti-listerial activity. We have identified and analyzed a LAB obtained from chhurpi samples, a popular milk-derived product in the Himalayan regions of India and Nepal. The strain was studied and identified based on its morphological, biochemical, and physiological characteristics. Furthermore, the molecular 16s-rDNA analysis suggests that the strain was Lactococcus sp. RGUAM1 (98.2% similar to Lactococcus lactis subsp. hordniae NBRC 100931T). The isolated strain can produce a potent BLIS, which has shown efficacy against three gram-positive bacteria responsible for food spoilage, such as Listeria monocytogenes (MTCC 657), Staphylococcus aureus subsp. aureus (MTCC 87), Lactobacillus plantarum (MTCC 1407), Lactobacillus paraplantarum (MTCC 12904). The scanning electron microscope (SEM) image illustrates that the crude cell-free supernatant (CFS) disrupts the cell envelope, leading to the release of cellular contents and the clustering of cells. In addition, this BLIS can easily withstand a wide range of pH (2-12), temperature (up to 100 °C for 15 min), bile salt (0.3% W/V), salinity (4% W/V), and enzyme activity of 1600 AU/ml against Listeria monocytogenes. Our research offers a robust framework and valuable insights into bio-preservation and its potential applications in diverse food products.
Collapse
Affiliation(s)
- Atanu Manna
- Department of Microbiology, Raiganj University, Uttar Dinajpur, Raiganj, West Bengal, 733134, India
| | - Subhas Chandra Jana
- Department of Microbiology, Raiganj University, Uttar Dinajpur, Raiganj, West Bengal, 733134, India.
| |
Collapse
|
8
|
Ravindran DR, Kannan S, Marudhamuthu M. Fabrication and characterisation of human gut microbiome derived exopolysaccharide mediated silver nanoparticles - An in-vitro and in-vivo approach of Bio-Pm-AgNPs targeting Vibrio cholerae. Int J Biol Macromol 2024; 256:128406. [PMID: 38007009 DOI: 10.1016/j.ijbiomac.2023.128406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/28/2023] [Accepted: 11/22/2023] [Indexed: 11/27/2023]
Abstract
Utilising bacteria to produce silver nanoparticles was highly favoured due to its ability to minimise costs and mitigate any potential negative environmental impact. Exopolysaccharides (EPS) extracted from the human gut microbe have demonstrated remarkable efficacy in combating various bacterial infections. Exopolysaccharide (EPS), a naturally occurring biomolecule found in the human gut isolate Proteus mirabilis DMTMMR-11, was characterised using analytical techniques such as Fourier transform infrared spectroscopy (FTIR), 1H-nuclear magnetic resonance, 13C-nuclear magnetic resonance (NMR), and chemical composition analysis, which confirms the presence of carbohydrates (81.03 ± 0.23), proteins (4.22 ± 1.2), uronic acid (12.1 ± 0.12), and nucleic acid content (2.44 ± 0.15) in exopolysaccharide. The one factor at a time (OFAT) and response surface methodology (RSM) - central composite design (CCD) approaches were used to optimise the production of Bio-Pm-AgNPs, leading to an increase in yield of up to 1.86 g/l. The Bio-Pm-AgNPs were then subjected to Fourier transform infrared spectroscopy (FTIR) which determines the functional groups, X-ray diffractometer confers that Bio-Pm-AgNPs are crystalline in nature, field emission-scanning electron microscopy (FE-SEM) reveals the morphology of Bio-Pm-AgNPs, energy dispersive X-ray spectroscopy (EDX) confirms the presence of elements like Ag, C and O, high-resolution transmission electron microscopy (HR-TEM) determines that the Bio-Pm-AgNPs are sphere-shaped at 75 nm. Dynamic light scattering (DLS) and zeta potential analysis were also carried out to reveal the physiological nature of Bio-Pm-AgNPs. Bio-Pm-AgNPs have a promising effect on the inhibitory mechanism of Vibrio cholerae cells at a MIC concentration of 20 μg/ml which significantly affects cellular respiration and energy metabolism through glycolysis and TCA cycles by deteriorating the enzyme responsible for ATP and NADH utilisation. The action of Bio-Pm-AgNPs reduces the purity and concentration of nucleic acids, which leads to higher DNA damage. In-vivo analysis reveals that the treatment of Bio-Pm-AgNPs decreased the colonisation of V. cholerae and improved the survival rates in C. elegans.
Collapse
Affiliation(s)
- Deepthi Ramya Ravindran
- Department of Microbial Technology, School of Biological Sciences, Madurai Kamaraj University, Madurai, TamilNadu 625021, India
| | - Suganya Kannan
- Central Research Laboratory for Biomedical Research, Vinayaka Mission's Medical College and Hospital, Vinayaka Mission's Research Foundation (Deemed to be University), Karaikal, Puducherry 609609, India
| | - Murugan Marudhamuthu
- Department of Microbial Technology, School of Biological Sciences, Madurai Kamaraj University, Madurai, TamilNadu 625021, India.
| |
Collapse
|
9
|
Raposo BL, Souza SO, Santana GS, Lima MTA, Sarmento-Neto JF, Reboucas JS, Pereira G, Santos BS, Cabral Filho PE, Ribeiro MS, Fontes A. A Novel Strategy Based on Zn(II) Porphyrins and Silver Nanoparticles to Photoinactivate Candida albicans. Int J Nanomedicine 2023; 18:3007-3020. [PMID: 37312931 PMCID: PMC10258042 DOI: 10.2147/ijn.s404422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 05/06/2023] [Indexed: 06/15/2023] Open
Abstract
Background Photodynamic inactivation (PDI) is an attractive alternative to treat Candida albicans infections, especially considering the spread of resistant strains. The combination of the photophysical advantages of Zn(II) porphyrins (ZnPs) and the plasmonic effect of silver nanoparticles (AgNPs) has the potential to further improve PDI. Here, we propose the novel association of polyvinylpyrrolidone (PVP) coated AgNPs with the cationic ZnPs Zn(II) meso-tetrakis(N-ethylpyridinium-2-yl)porphyrin or Zn(II) meso-tetrakis(N-n-hexylpyridinium-2-yl)porphyrin to photoinactivate C. albicans. Methods AgNPs stabilized with PVP were chosen to allow for (i) overlap between the NP extinction and absorption spectra of ZnPs and (ii) favor AgNPs-ZnPs interaction; prerequisites for exploring the plasmonic effect. Optical and zeta potential (ζ) characterizations were performed, and reactive oxygen species (ROS) generation was also evaluated. Yeasts were incubated with individual ZnPs or their respective AgNPs-ZnPs systems, at various ZnP concentrations and two proportions of AgNPs, then irradiated with a blue LED. Interactions between yeasts and the systems (ZnP alone or AgNPs-ZnPs) were evaluated by fluorescence microscopy. Results Subtle spectroscopic changes were observed for ZnPs after association with AgNPs, and the ζ analyses confirmed AgNPs-ZnPs interaction. PDI using ZnP-hexyl (0.8 µM) and ZnP-ethyl (5.0 µM) promoted a 3 and 2 log10 reduction of yeasts, respectively. On the other hand, AgNPs-ZnP-hexyl (0.2 µM) and AgNPs-ZnP-ethyl (0.6 µM) systems led to complete fungal eradication under the same PDI parameters and lower porphyrin concentrations. Increased ROS levels and enhanced interaction of yeasts with AgNPs-ZnPs were observed, when compared with ZnPs alone. Conclusion We applied a facile synthesis of AgNPs which boosted ZnP efficiency. We hypothesize that the plasmonic effect combined with the greater interaction between cells and AgNPs-ZnPs systems resulted in an efficient and improved fungal inactivation. This study provides insight into the application of AgNPs in PDI and helps diversify our antifungal arsenal, encouraging further developments toward inactivation of resistant Candida spp.
Collapse
Affiliation(s)
- Bruno L Raposo
- Departamento de Biofísica e Radiobiologia, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Sueden O Souza
- Departamento de Biofísica e Radiobiologia, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Gleyciane S Santana
- Departamento de Biofísica e Radiobiologia, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Max T A Lima
- Departamento de Química Fundamental, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - José F Sarmento-Neto
- Departamento de Química, Universidade Federal da Paraíba, João Pessoa, PB, Brazil
| | - Júlio S Reboucas
- Departamento de Química, Universidade Federal da Paraíba, João Pessoa, PB, Brazil
| | - Goreti Pereira
- Departamento de Química Fundamental, Universidade Federal de Pernambuco, Recife, PE, Brazil
- Departamento de Química & CESAM, Universidade de Aveiro, Aveiro, Portugal
| | - Beate S Santos
- Departamento de Ciências Farmacêuticas, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Paulo E Cabral Filho
- Departamento de Biofísica e Radiobiologia, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Martha S Ribeiro
- Centro de Lasers e Aplicações, Instituto de Pesquisas Energéticas e Nucleares (IPEN-CNEN/SP), São Paulo, SP, Brazil
| | - Adriana Fontes
- Departamento de Biofísica e Radiobiologia, Universidade Federal de Pernambuco, Recife, PE, Brazil
| |
Collapse
|
10
|
Cho JL, Liu S, Wang P, Park JW, Choi D, Evans RE. Silver nanoparticles induced with aqueous black carpenter ant extract selectively inhibit the growth of Pseudomonas aeruginosa. Biotechnol Lett 2023:10.1007/s10529-023-03386-8. [PMID: 37166605 DOI: 10.1007/s10529-023-03386-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 04/24/2023] [Accepted: 04/27/2023] [Indexed: 05/12/2023]
Abstract
Aqueous black carpenter ant extract (ABCAE) was used to synthesize silver nanoparticles (AgNPs). The ABCAE was rich in water-soluble compounds such as hydrophilic polypeptides that behaved as both reducing and stabilizing agents for generating AgNPs from Ag+ ion precursors. The diameter of the observed AgNPs was mostly in the range of 20-60 nm. The AgNPs were tested as an antibacterial agent for the growth inhibition of two pathogenic bacteria (Pseudomonas aeruginosa ATCC 27853, Staphylococcus aureus ATCC 27661) and one common bacteria (Escherichia coli K12 ATCC 10798). Disk diffusion test showed that the AgNPs selectively inhibited the growth of P. aeruginosa but not for the other two species, suggesting the potential application of the green-chemically synthesized AgNPs as a selective antibacterial agent without harming other beneficial bacteria.
Collapse
Affiliation(s)
- James Lee Cho
- Department of Chemistry and Physics, Southeastern Louisiana University, Hammond, LA, 70402, USA.
| | - Shaoyang Liu
- Department of Chemistry and Physics, Center for Materials and Manufacturing Sciences, Troy University, Troy, AL, 36082, USA
| | - Pixiang Wang
- Center for Materials and Manufacturing Sciences, Troy University, Troy, AL, 36082, USA
| | - Joong-Wook Park
- Department of Biological and Environmental Science, Troy University, Troy, AL, 36082, USA
| | - Doosung Choi
- Department of Mathematics, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Riley Ethan Evans
- Department of Biological and Environmental Science, Troy University, Troy, AL, 36082, USA
| |
Collapse
|
11
|
Zhangabay Z, Berillo D. Antimicrobial and antioxidant activity of AgNPs stabilized with Calendula officinalis flower extract. RESULTS IN SURFACES AND INTERFACES 2023. [DOI: 10.1016/j.rsurfi.2023.100109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
12
|
Younas M, Rasool MH, Khurshid M, Khan A, Nawaz MZ, Ahmad I, Lakhan MN. Moringa oleifera leaf extract mediated green synthesis of silver nanoparticles and their antibacterial effect against selected gram-negative strains. BIOCHEM SYST ECOL 2023. [DOI: 10.1016/j.bse.2023.104605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
13
|
Tabasum H, Bhat BA, Sheikh BA, Mehta VN, Rohit JV. Emerging perspectives of plant-derived nanoparticles as effective antimicrobial agents. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Thakur N, Ghosh J, Kumar Pandey S, Pabbathi A, Das J. A comprehensive review on biosynthesis of magnesium oxide nanoparticles, and their antimicrobial, anticancer, antioxidant activities as well as toxicity study. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
15
|
Antimicrobial Activity of Silver and Gold Nanoparticles Prepared by Photoreduction Process with Leaves and Fruit Extracts of Plinia cauliflora and Punica granatum. Molecules 2022; 27:molecules27206860. [PMID: 36296456 PMCID: PMC9609182 DOI: 10.3390/molecules27206860] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/01/2022] [Accepted: 10/04/2022] [Indexed: 11/16/2022] Open
Abstract
The increased number of resistant microbes generates a search for new antibiotic methods. Metallic nanoparticles have emerged as a new platform against several microorganisms. The nanoparticles can damage the bacteria membrane and DNA by oxidative stress. The photoreduction process is a clean and low-cost method for obtaining silver and gold nanoparticles. This work describes two original insights: (1) the use of extracts of leaves and fruits from a Brazilian plant Plinia cauliflora, compared with a well know plant Punica granatum, and (2) the use of phytochemicals as stabilizing agents in the photoreduction process. The prepared nanoparticles were characterized by UV-vis, FTIR, transmission electron microscopy, and Zeta potential. The antimicrobial activity of nanoparticles was obtained with Gram-negative and Gram-positive bacteria, particularly the pathogens Staphylococcus aureus ATCC 25923; Bacillus subtilis ATCC 6633; clinical isolates of methicillin-resistant Staphylococcus aureus (MRSA) and Enterococcus faecalis; Escherichia coli ATCC 25922; Escherichia coli O44:H18 EAEC042 (clinical isolate); Klebsiella pneumoniae ATCC 700603, Salmonella Thiphymurium ATCC 10231; Pseudomonas aeruginosa ATCC 27853; and Candida albicans ATCC 10231. Excellent synthesis results were obtained. The AgNPs exhibited antimicrobial activities against Gram-negative and Gram-positive bacteria and yeast (80–100%), better than AuNPs (0–87.92%), and may have the potential to be used as antimicrobial agents.
Collapse
|
16
|
Antimicrobial potential of a ponericin-like peptide isolated from Bombyx mori L. hemolymph in response to Pseudomonas aeruginosa infection. Sci Rep 2022; 12:15493. [PMID: 36109567 PMCID: PMC9477818 DOI: 10.1038/s41598-022-19450-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 08/29/2022] [Indexed: 12/29/2022] Open
Abstract
The main effectors in the innate immune system of Bombyx mori L. are antimicrobial peptides (AMPs). Here, we infected B. mori with varied inoculum sizes of Pseudomonas aeruginosa ATCC 25668 cells to investigate changes in morpho-anatomical responses, physiological processes and AMP production. Ultraviolet-visible spectra revealed a sharp change in λmax from 278 to 285 nm (bathochromic shift) in the hemolymph of infected B. mori incubated for 24 h. Further, Fourier Transform InfraRed studies on the hemolymph extracted from the infected B. mori showed a peak at 1550 cm-1, indicating the presence of α-helical peptides. The peptide fraction was obtained through methanol, acetic acid and water mixture (90:1:9) extraction, followed by peptide purification using Reverse Phase High Performance Liquid Chromatography. The fraction exhibiting antibacterial properties was collected and characterized by Matrix-Assisted Laser Desorption/Ionization-Time of Flight. A linear α-helical peptide with flexible termini (LLKELWTKMKGAGKAVLGKIKGLL) was found, corresponding to a previously described peptide from ant venom and here denominated as Bm-ponericin-L1. The antibacterial activity of Bm-ponericin-L1 was determined against ESKAPE pathogens. Scanning electron microscopy confirmed the membrane disruption potential of Bm-ponericin-L1. Moreover, this peptide also showed promising antibiofilm activity. Finally, cell viability and hemolytic assays revealed that Bm-ponericin-L1 is non-toxic toward primary fibroblasts cell lines and red blood cells, respectively. This study opens up new perspectives toward an alternative approach to overcoming multiple-antibiotic-resistance by means of AMPs through invertebrates' infection with human pathogenic bacteria.
Collapse
|
17
|
Chandran Priyadarshni K, Krishnamoorthi R, Mumtha C, Ulagan Mahalingam P. Biochemical analysis of cultivated mushroom, Pleurotus florida and synthesis of silver nanoparticles for enhanced antimicrobial effects on clinically important human pathogens. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109673] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
18
|
Ureña‐Castillo B, Morones‐Ramírez JR, Rivera‐De la Rosa J, Alcalá‐Rodríguez MM, Cerdán Pasarán AQ, Díaz‐Barriga Castro E, Escárcega‐González CE. Organic Waste as Reducing and Capping Agents for Synthesis of Silver Nanoparticles with Various Applications. ChemistrySelect 2022. [DOI: 10.1002/slct.202201023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Brenda Ureña‐Castillo
- Facultad de Ciencias Químicas Universidad Autónoma de Nuevo León Av. Universidad s/n. CD. Universitaria 66455 San Nicolás de los Garza, NL México
- Centro de Investigación en Biotecnología y Nanotecnología Facultad de Ciencias Químicas Universidad Autónoma de Nuevo León Parque de Investigación e Innovación Tecnológica, Km. 10 autopista al Aeropuerto Internacional Mariano Escobedo Apodaca Nuevo León 66629 México
| | - José Rubén Morones‐Ramírez
- Facultad de Ciencias Químicas Universidad Autónoma de Nuevo León Av. Universidad s/n. CD. Universitaria 66455 San Nicolás de los Garza, NL México
- Centro de Investigación en Biotecnología y Nanotecnología Facultad de Ciencias Químicas Universidad Autónoma de Nuevo León Parque de Investigación e Innovación Tecnológica, Km. 10 autopista al Aeropuerto Internacional Mariano Escobedo Apodaca Nuevo León 66629 México
| | - Javier Rivera‐De la Rosa
- Facultad de Ciencias Químicas Universidad Autónoma de Nuevo León Av. Universidad s/n. CD. Universitaria 66455 San Nicolás de los Garza, NL México
| | - Mónica María Alcalá‐Rodríguez
- Facultad de Ciencias Químicas Universidad Autónoma de Nuevo León Av. Universidad s/n. CD. Universitaria 66455 San Nicolás de los Garza, NL México
| | - Andrea Quetzalli Cerdán Pasarán
- Facultad de Ciencias Químicas Universidad Autónoma de Nuevo León Av. Universidad s/n. CD. Universitaria 66455 San Nicolás de los Garza, NL México
| | - Enrique Díaz‐Barriga Castro
- Laboratorio de Instrumentación Analítica Centro de Investigación en Química Aplicada Blvd. Enrique Reyna Hermosillo No. 140 Saltillo Coahuila 25294 México
| | - Carlos Enrique Escárcega‐González
- Facultad de Ciencias Químicas Universidad Autónoma de Nuevo León Av. Universidad s/n. CD. Universitaria 66455 San Nicolás de los Garza, NL México
- Centro de Investigación en Biotecnología y Nanotecnología Facultad de Ciencias Químicas Universidad Autónoma de Nuevo León Parque de Investigación e Innovación Tecnológica, Km. 10 autopista al Aeropuerto Internacional Mariano Escobedo Apodaca Nuevo León 66629 México
| |
Collapse
|
19
|
Genomic Clues of a Multidrug-Resistant Bacterium from Cultured Domestic Silkworm (Bombyx mori L.). Microbiol Resour Announc 2022; 11:e0008122. [PMID: 35616409 PMCID: PMC9202366 DOI: 10.1128/mra.00081-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Enterobacter sp. strain ASE was isolated from the gut of an infected domestic silkworm (Bombyx mori L.; Lepidoptera: Bombycidae). The whole-genome sequence (WGS) of the multidrug-resistant strain Enterobacter sp. ASE, which may contribute to our understanding of the strain’s antibiotic resistance mechanism and virulence properties.
Collapse
|
20
|
Abstract
Metal nanoparticles (NPs) are increasingly being used in many areas, e.g., industry, pharmacy, and biomedical engineering. NPs can be obtained through chemical and biological synthesis or using physical methods. AgNPs, AuNPs, CuNPs, FeNPs, MgNPs, SnO2NPs, TiO2NPs, and ZnONPs are the most commonly synthesized metal nanoparticles. Many of them have anti-microbial properties and documented activity supported by many tests against some species of pathogenic bacteria, viruses, and fungi. AgNPs, which are used for the production of commercial self-sterilizing packages, are one of the best-explored nanoparticles. Moreover, the EFSA has approved the use of small doses of silver nanoparticles (0.05 mg Ag·kg−1) to food products. Recent studies have shown that metal NPs can be used for the production of coatings to prevent the spread of the SARS-CoV-2 virus, which has caused the global pandemic. Some nanoparticles (e.g., ZnONPs and MgONPs) have the Generally Recognized As Safe (GRAS) status, i.e., they are considered safe for consumption and can be used for the production of edible coatings, protecting food against spoilage. Promising results have been obtained in research on the use of more than one type of nanometals, which prevents the development of pathogen resistance through various mechanisms of inactivation thereof.
Collapse
|
21
|
Attallah NGM, Elekhnawy E, Negm WA, Hussein IA, Mokhtar FA, Al-Fakhrany OM. In Vivo and In Vitro Antimicrobial Activity of Biogenic Silver Nanoparticles against Staphylococcus aureus Clinical Isolates. Pharmaceuticals (Basel) 2022; 15:194. [PMID: 35215306 PMCID: PMC8878289 DOI: 10.3390/ph15020194] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 01/27/2022] [Accepted: 02/01/2022] [Indexed: 12/04/2022] Open
Abstract
Staphylococcus aureus can cause a wide range of severe infections owing to its multiple virulence factors in addition to its resistance to multiple antimicrobials; therefore, novel antimicrobials are needed. Herein, we used Gardenia thailandica leaf extract (GTLE), for the first time for the biogenic synthesis of silver nanoparticles (AgNPs). The active constituents of GTLE were identified by HPLC, including chlorogenic acid (1441.03 μg/g) from phenolic acids, and quercetin-3-rutinoside (2477.37 μg/g) and apigenin-7-glucoside (605.60 μg/g) from flavonoids. In addition, the antioxidant activity of GTLE was evaluated. The synthesized AgNPs were characterized using ultraviolet-visible spectroscopy, Fourier-transform infrared spectroscopy, transmission and scanning electron microscopy (SEM), zeta potential, dynamic light scattering, and X-ray diffraction. The formed AgNPs had a spherical shape with a particle size range of 11.02-17.92 nm. The antimicrobial activity of AgNPs was investigated in vitro and in vivo against S. aureus clinical isolates. The minimum inhibitory concentration (MIC) of AgNPs ranged from 4 to 64 µg/mL. AgNPs significantly decreased the membrane integrity of 45.8% of the isolates and reduced the membrane potential by flow cytometry. AgNPs resulted in morphological changes observed by SEM. Furthermore, qRT-PCR was utilized to examine the effect of AgNPs on the gene expression of the efflux pump genes norA, norB, and norC. The in vivo examination was performed on wounds infected with S. aureus bacteria in rats. AgNPs resulted in epidermis regeneration and reduction in the infiltration of inflammatory cells. Thus, GTLE could be a vital source for the production of AgNPs, which exhibited promising in vivo and in vitro antibacterial activity against S. aureus bacteria.
Collapse
Affiliation(s)
- Nashwah G. M. Attallah
- Department of Pharmaceutical Science, College of Pharmacy, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Engy Elekhnawy
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt;
| | - Walaa A. Negm
- Department of Pharmacognosy, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| | - Ismail A. Hussein
- Department of Pharmacognosy and Medicinal Plants, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt;
| | - Fatma Alzahraa Mokhtar
- Department of Pharmacognosy, Faculty of Pharmacy, Alsalam University, Tanta 3111, Egypt;
| | - Omnia Momtaz Al-Fakhrany
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt;
| |
Collapse
|
22
|
Mahmood Ansari S, Saquib Q, De Matteis V, Awad Alwathnani H, Ali Alharbi S, Ali Al-Khedhairy A. Marine Macroalgae Display Bioreductant Efficacy for Fabricating Metallic Nanoparticles: Intra/Extracellular Mechanism and Potential Biomedical Applications. Bioinorg Chem Appl 2021; 2021:5985377. [PMID: 34873399 PMCID: PMC8643268 DOI: 10.1155/2021/5985377] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/26/2021] [Accepted: 11/01/2021] [Indexed: 11/17/2022] Open
Abstract
The application of hazardous chemicals during nanoparticle (NP) synthesis has raised alarming concerns pertaining to their biocompatibility and equally to the environmental harmlessness. In the recent decade, nanotechnological research has made a gigantic shift in order to include the natural resources to produce biogenic NPs. Within this approach, researchers have utilized marine resources such as macroalgae and microalgae, land plants, bacteria, fungi, yeast, actinomycetes, and viruses to synthesize NPs. Marine macroalgae (brown, red, and green) are rich in polysaccharides including alginates, fucose-containing sulfated polysaccharides (FCSPs), galactans, agars or carrageenans, semicrystalline cellulose, ulvans, and hemicelluloses. Phytochemicals are abundant in phenols, tannins, alkaloids, terpenoids, and vitamins. However, microorganisms have an abundance of active compounds ranging from sugar molecules, enzymes, canonical membrane proteins, reductase enzymes (NADH and NADPH), membrane proteins to many more. The prime reason for using the aforesaid entities in the metallic NPs synthesis is based on their intrinsic properties to act as bioreductants, having the capability to reduce and cap the metal ions into stabilized NPs. Several green NPs have been verified for their biocompatibility in human cells. Bioactive constituents from the above resources have been found on the green metallic NPs, which has demonstrated their efficacies as prospective antibiotics and anti-cancer agents against a range of human pathogens and cancer cells. Moreover, these NPs can be characterized for the size, shapes, functional groups, surface properties, porosity, hydrodynamic stability, and surface charge using different characterization techniques. The novelty and originality of this review is that we provide recent research compilations on green synthesis of NPs by marine macroalgae and other biological sources (plant, bacteria, fungi, actinomycetes, yeast, and virus). Besides, we elaborated on the detailed intra- and extracellular mechanisms of NPs synthesis by marine macroalgae. The application of green NPs as anti-bacterial, anti-cancer, and popular methods of NPs characterization techniques has also been critically reviewed.
Collapse
Affiliation(s)
- Sabiha Mahmood Ansari
- Botany & Microbiology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Quaiser Saquib
- Zoology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Valeria De Matteis
- Department of Mathematics and Physics “E. De Giorgi”, University of Salento, Via per Arnesano, 73100 Lecce, Italy
| | - Hend Awad Alwathnani
- Botany & Microbiology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Sulaiman Ali Alharbi
- Botany & Microbiology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | | |
Collapse
|
23
|
Selvakesavan RK, Franklin G. Prospective Application of Nanoparticles Green Synthesized Using Medicinal Plant Extracts as Novel Nanomedicines. Nanotechnol Sci Appl 2021; 14:179-195. [PMID: 34588770 PMCID: PMC8476107 DOI: 10.2147/nsa.s333467] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 09/03/2021] [Indexed: 12/26/2022] Open
Abstract
The use of medicinal plants in green synthesis of metal nanoparticles is increasing day by day. A simple search for the keywords "green synthesis" and "nanoparticles" yields more than 33,000 articles in Scopus. As of August 10, 2021, more than 4000 articles have been published in 2021 alone. Besides demonstrating the ease and environmental-friendly route of synthesizing nanomaterials, many studies report the superior pharmacological properties of green synthesized nanoparticles compared to those synthesized by other methods. This is probably due to the fact that bioactive molecules are entrapped on the surface of these nanoparticles. On the other hand, recent studies have confirmed the nano-dimension and biocompatibility of metal ash (Bhasma) preparations, which are commonly macerated with biological products and administered for the treatment of various diseases in Indian medicine since ancient times. This perspective article argues for the prospective medical application of green nanoparticles in the light of Bhasma.
Collapse
Affiliation(s)
| | - Gregory Franklin
- Institute of Plant Genetics of the Polish Academy of Sciences, Poznan, Poland
| |
Collapse
|
24
|
Toxicity and action mechanisms of silver nanoparticles against the mycotoxin-producing fungus Fusarium graminearum. J Adv Res 2021; 38:1-12. [PMID: 35572400 PMCID: PMC9091762 DOI: 10.1016/j.jare.2021.09.006] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 12/30/2022] Open
Abstract
AgNPs possess high activity towards fungicide-resistant strains. AgNPs exert great activity against mycotoxin-producing fungus F. graminearum. AgNPs induce the expression of two azole resistance-related ABC genes. AgNPs lead to accumulation of toxisome and notorious mycotoxin DON by provoking ROS. AgNPs combined with DON-reducing fungicides are recommended for FHB control.
Introduction Fusarium graminearum is a most destructive fungal pathogen that causes Fusarium head blight (FHB) disease in cereal crops, resulting in severe yield loss and mycotoxin contamination in food and feed. Silver nanoparticles (AgNPs) are extensively applied in multiple fields due to their strong antimicrobial activity and are considered alternatives to fungicides. However, the antifungal mechanisms and the effects of AgNPs on mycotoxin production have not been well characterized. Objectives This study aimed to investigate the antifungal activity and mechanisms of AgNPs against both fungicide-resistant and fungicide-sensitive F. graminearum strains, determine their effects on mycotoxin deoxynivalenol (DON) production, and evaluate the potential of AgNPs for FHB management in the field. Methods Scanning electron microscopy (SEM), transmission electron microscopy (TEM), and fluorescence microscopy were used to examine the fungal morphological changes caused by AgNPs. In addition, RNA-Seq, qRT-PCR, and western blotting were conducted to detect gene transcription and DON levels. Results AgNPs with a diameter of 2 nm exhibited effective antifungal activity against both fungicide-sensitive and fungicide-resistant strains of F. graminearum. Further studies showed that AgNP application could impair the development, cell structure, cellular energy utilization, and metabolism pathways of this fungus. RNA-Seq analysis and sensitivity determination revealed that AgNP treatment significantly induced the expression of azole-related ATP-binding cassette (ABC) transporters without compromising the control efficacy of azoles in F. graminearum. AgNP treatment stimulated the generation of reactive oxygen species (ROS), subsequently induced transcription of DON biosynthesis genes, toxisome formation, and mycotoxin production. Conclusion This study revealed the underlying mechanisms of AgNPs against F. graminearum, determined their effects on DON production, and evaluated the potential of AgNPs for controlling fungicide-resistant F. graminearum strains. Together, our findings suggest that combinations of AgNPs with DON-reducing fungicides could be used for the management of FHB in the future.
Collapse
|
25
|
Naikoo GA, Mustaqeem M, Hassan IU, Awan T, Arshad F, Salim H, Qurashi A. Bioinspired and green synthesis of nanoparticles from plant extracts with antiviral and antimicrobial properties: A critical review. JOURNAL OF SAUDI CHEMICAL SOCIETY 2021. [DOI: 10.1016/j.jscs.2021.101304] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
26
|
Aschale Y, Wubetu M, Abebaw A, Yirga T, Minwuyelet A, Toru M. A Systematic Review on Traditional Medicinal Plants Used for the Treatment of Viral and Fungal Infections in Ethiopia. J Exp Pharmacol 2021; 13:807-815. [PMID: 34429665 PMCID: PMC8378932 DOI: 10.2147/jep.s316007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/05/2021] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Traditional medicine is still playing an important role in meeting the basic health care requirement of the peoples in different parts of Ethiopia. There is no published review that clearly indicates documented medicinal plants available in different parts of the country used for treating viral and fungal infections. Currently, viral epidemics with high mortality and morbidity like SARS COV-2 are emerging. Screening of promising drug from plant source is vital to control such viral and fungal infections. In addition, indicating the most commonly used parts of the plant and their route of administration will help for further drug formulation studies. This review aimed to present an indication of the ethnomedicinal plants used for the treatment of fungal and viral infections. METHODS The databases (Google Scholar, pub med, hinari, and research gate) were searched for published articles on the ethnobotany of medicinal plants used to treat viral and fungal infection in Ethiopia without restriction in the methodology and year of publication. Viral infections, fungal infections, anti-fungal and anti-viral activity, ethnobotany, Ethiopia, and medicinal plants were the key search terms. Studies that did not have complete ethnobotanical data and did not address viral and fungal infection as a disease treated traditionally by the practitioners were excluded. RESULTS A total of 249 articles were produced by database search. After amendment for exclusion criteria and duplicates, 15 articles were found appropriate for the review. The majority of the studies were qualitative and others were mixed type in nature. All of the medicinal plants traditionally used to treat viral and fungal infections in Ethiopia were not scientifically confirmed. Out of the 95 identified plants, 40.8% were herbs and from the plant parts used and 43.9% and 21.1% were leaves and roots, respectively. The majority, (48.8%), of the plant remedies were given orally. Rabies and Tinea capitis constitute the highest percentage of viral and fungal infections treated by traditional medicinal plants followed by hepatitis and Tinea corporis, respectively. CONCLUSION Various plants have been used to treat viral and fungal infections. Information obtained from this review serves as a guide to discover novel antiviral and antifungal agents from plants. Therefore, it is advisable for field researchers to properly identify, document, conserve and conduct efficacy and safety studies on such medicinal plants in animal models.
Collapse
Affiliation(s)
- Yibeltal Aschale
- Department of Medical Laboratory Sciences, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Muluken Wubetu
- Department of Pharmacy, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Abtie Abebaw
- Department of Medical Laboratory Sciences, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Tadesse Yirga
- Department of Pediatrics & Child Health Nursing, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | | | - Milkiyas Toru
- Department of Medical Laboratory Sciences, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| |
Collapse
|
27
|
Wahab S, Khan T, Adil M, Khan A. Mechanistic aspects of plant-based silver nanoparticles against multi-drug resistant bacteria. Heliyon 2021; 7:e07448. [PMID: 34286126 PMCID: PMC8273360 DOI: 10.1016/j.heliyon.2021.e07448] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 06/05/2021] [Accepted: 06/28/2021] [Indexed: 12/23/2022] Open
Abstract
Resistance among pathogenic bacteria to the existing antibiotics is one of the most alarming problems of the modern world. Alongwith reducing the use of antibiotics, and antibiotic stewardship, an alternative to antibiotics is much needed in the current scenario to combact infectious diseases. One alternative is to produce nanomaterials, especially, silver nanoparticles (AgNPs) against antibiotic-resistant bacteria. AgNPs are the most vital and fascinating nanoparticles because of their unique structural and functional properties and application against pathogenic bacteria. However, the synthesis of AgNPs remains a problem because of the chemicals and energy requirements and the byproducts of the reactions. Concerns have been raised about using chemically and physically synthesized nanoparticles because of their potential risks to the human body, animals, and environment. Green synthesis of these nanoparticles is a better alternative to physical and chemical approaches. Plant-based synthesis in turn is a method which can provide AgNPs that are cost-effective and eco-friendly as well as biocompatible. The specific features of size, morphology and shape of plant-based AgNPs give them the potency to fight multi-drug resistant bacteria. A detailed look into mechanistic aspects of the action of AgNPs against resistant bacteria with a focus on characteristic properties of AgNPs is required. This review discusses in detail these aspects and the potential of plant-based AgNPs as a solution to antibiotic resistance.
Collapse
Affiliation(s)
- Shahid Wahab
- Department of Biotechnology, University of Malakand, Chakdara Dir Lower, Pakistan
| | - Tariq Khan
- Department of Biotechnology, University of Malakand, Chakdara Dir Lower, Pakistan
| | - Muhammad Adil
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Centre for Nanoscience and Technology (NCNST), China
| | - Ajmal Khan
- Department of Biology, University of North Carolina at Greensboro, NC, United States
| |
Collapse
|
28
|
Roy A, Srivastava SK, Shrivastava SL, Mandal AK. Hierarchical Assembly of Nanodimensional Silver-Silver Oxide Physical Gels Controlling Nosocomial Infections. ACS OMEGA 2020; 5:32617-32631. [PMID: 33376899 PMCID: PMC7758962 DOI: 10.1021/acsomega.0c04957] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 11/27/2020] [Indexed: 05/15/2023]
Abstract
Microbial infections originating from medical care facilities are raising serious concerns across the globe. Therefore, nanotechnology-derived nanostructures have been investigated and explored due to their promising characteristics. In view of this, silver-based antimicrobial hydrogels as an alternative to antibiotic-based creams could play a crucial role in combating such infections. Toward this goal, we report a simple method for the synthesis and assembly of silver nanoparticles in a biopolymer physical gel derived from Abroma augusta plant in imparting antimicrobial properties against nosocomial pathogens. Synthesized silver nanoparticles (diameter, 30 ± 10 nm) were uniformly distributed inside the hydrogel. Such synthesized hydrogel assembly of silver nanoparticles dispersed in the biopolymer matrix exhibited hemocompatibility and antimicrobial and antibiofilm characteristics against nosocomial pathogens. The developed hydrogel as a surface coating offers reduced hardness and modulus value, thereby minimizing the brittleness tendency of the gel in the dried state. Hence, we believe that the hierarchical assembly of our hydrogel owing to its functional activity, host toxicity, and stability could possibly be used as an antimicrobial ointment for bacterial infection control.
Collapse
Affiliation(s)
- Anupam Roy
- Laboratory
of Food Chemistry and Technology, Department of Chemical Engineering, Birla Institute of Technology Mesra, Ranchi 835215, Jharkhand, India
- Agricultural
and Food Engineering Department, Indian
Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Suneel Kumar Srivastava
- Inorganic
Nanomaterials and Polymer Nanocomposite Laboratory, Department of
Chemistry, Indian Institute of Technology
Kharagpur, Kharagpur 721302, India
| | - Shanker Lal Shrivastava
- Agricultural
and Food Engineering Department, Indian
Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Amit Kumar Mandal
- Chemical
Biology Laboratory, Department of Sericulture, Raiganj University, Raiganj 733134, West Bengal, India
| |
Collapse
|
29
|
Lu J, Guo J, Song S, Yu G, Liu H, Yang X, Lu Z. Preparation of Ag nanoparticles by spark ablation in gas as catalysts for electrocatalytic hydrogen production. RSC Adv 2020; 10:38583-38587. [PMID: 35517560 PMCID: PMC9057284 DOI: 10.1039/d0ra06682f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 10/01/2020] [Indexed: 11/21/2022] Open
Abstract
Spark ablation in gas (SAG) technology has the characteristics of being green, fast quenching, fast dynamics and specializes in producing metallic nanoparticles with a clean surface, small size, and abundant defects. In this study, Ag nanoparticles were prepared via SAG and in situ loaded on a carbon fiber through nitrogen flow. The effect of the carrier gas flow rate and deposition time on the particle size and the dispersibility of the as-prepared Ag nanoparticles on the carbon fiber by SAG were investigated, and the hydrogen evolution reaction (HER) performances of the samples in acidic media were further studied. When the carrier gas flow rate and deposition time are controlled at 5 L min-1 and 120 min, respectively, the sample displays an optimal activity with an overpotential of 362 mV at 10 mA cm-2, which is superior to commercial Ag nanoparticles on carbon fibers. Accordingly, this synthetic technology provides a new way to obtain efficient metallic nano-catalysts and is expected to achieve large-scale application.
Collapse
Affiliation(s)
- Junda Lu
- School of Materials Science and Engineering, Hebei University of Technology Tianjin 300130 China
| | - Jia Guo
- School of Materials Science and Engineering, Hebei University of Technology Tianjin 300130 China
| | - Shihao Song
- School of Materials Science and Engineering, Hebei University of Technology Tianjin 300130 China
| | - Guangfa Yu
- School of Materials Science and Engineering, Hebei University of Technology Tianjin 300130 China
| | - Hui Liu
- School of Materials Science and Engineering, Tianjin University Tianjin 300072 China
| | - Xiaojing Yang
- School of Materials Science and Engineering, Hebei University of Technology Tianjin 300130 China
| | - Zunming Lu
- School of Materials Science and Engineering, Hebei University of Technology Tianjin 300130 China
| |
Collapse
|