1
|
Hemmati A, Asadollahzadeh M, Torkaman R. Assessment of metal extraction from e-waste using supported IL membrane with reliable comparison between RSM regression and ANN framework. Sci Rep 2024; 14:3882. [PMID: 38366075 PMCID: PMC10873303 DOI: 10.1038/s41598-024-54591-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 02/14/2024] [Indexed: 02/18/2024] Open
Abstract
Recently, efficient techniques to remove indium ions from e-waste have been described due to their critical application. This paper illustrates the recovery of indium ions from an aqueous solution using a liquid membrane. CyphosIL 104 described the excellent potential for the extraction of indium ions. Evaluation of the five process parameters, such as indium concentration (10-100 mg/L), carrier concentration (0.05-0.2 mol/L), feed phase acidity (0.01-3 mol/L), chloride ion concentration (0.5-4 mol/L) and the stripping agent concentration (0.1-5 mol/L) were conducted. The interactive impacts of the various parameters on the extraction efficiency were investigated. The response surface methodology (RSM) and artificial neural network (ANN) were employed to model and compare the FS-SLM process results. RSM model with a quadratic equation (R2 = 0.9589) was the most suitable model for describing the efficiency. ANN model with six neurons showed a prediction of extraction efficiency with R2 = 0.9860. The best-optimized data were: 73.92 mg/L, 0.157 mol/L, 1.386 mol/L, 2.99 mol/L, and 3.06 mol/L for indium concentration, carrier concentration, feed phase acidity, chloride ion concentration, and stripping agent concentration. The results achieved by RSM and ANN led to an experimentally determined extraction efficiency of 93.91%, and 94.85%, respectively. It was close to the experimental data in the optimization condition (95.77%). Also, the evaluation shows that the ANN model has a better prediction and fitting ability to reach outcomes than the RSM model.
Collapse
Affiliation(s)
- Alireza Hemmati
- School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology, P.O. Box: 16765-163, Tehran, Iran
| | - Mehdi Asadollahzadeh
- Nuclear Fuel Cycle Research School, Nuclear Science and Technology Research Institute, P.O. Box 11365-8486, Tehran, Iran.
| | - Rezvan Torkaman
- Nuclear Fuel Cycle Research School, Nuclear Science and Technology Research Institute, P.O. Box 11365-8486, Tehran, Iran
| |
Collapse
|
2
|
Applied novel functionality in separation procedure from leaching solution of zinc plant residue by using non-aqueous solvent extraction. Sci Rep 2023; 13:1146. [PMID: 36670143 PMCID: PMC9860044 DOI: 10.1038/s41598-023-27646-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 01/05/2023] [Indexed: 01/22/2023] Open
Abstract
Traditional solvent extraction (SX) procedures limit metal separation and purification, which consist of the organic and aqueous phases. Because differences in metal ion solvation lead to distinct distribution properties, non-aqueous solvent extraction (NASX) considerably expands the scope of solvent extraction by replacing the aqueous phase with alternate polar solvents. In this study, an experimental design approach used non-aqueous solvent extraction to extract cobalt from zinc plant residue. The aqueous phase comprises ethylene glycol (EG), LiCl and metal ions. In kerosene, D2EHPA, Cyanex272, Cyanex301, and Cyanex302 extractants were used as a less polar organic phase. Various factors were investigated to see how they affected extraction, including solvent type, extractant type and phase ratio, pH, Co(II) concentration, and temperature. The results revealed that at a concentration of 0.05 M, the Cyanex301 extractant could achieve the requisite extraction efficiency in kerosene. The optimal conditions were chosen as the concentration of Cyanex 301 (0.05 M), the concentration of cobalt (833 ppm), the pH (3.5), and the percent of EG (80%). As a result, during the leaching process, these systems are advised for extracting and separating a combination of various metal ions.
Collapse
|
3
|
Liu Z, Wang Z, Gan W, Liu S, Zhang J, Ran Z, Wu C, Hu C, Wang D, Chen T, Li G. Computational and Experimental Investigation of the Selective Adsorption of Indium/Iron Ions by the Epigallocatechin Gallate Monomer. MATERIALS (BASEL, SWITZERLAND) 2022; 15:8251. [PMID: 36431735 PMCID: PMC9696512 DOI: 10.3390/ma15228251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 06/16/2023]
Abstract
Selective recovery of indium has been widely studied to improve the resource efficiency of critical metals. However, the interaction and selective adsorption mechanism of indium/iron ions with tannin-based adsorbents is still unclear and hinders further optimization of their selective adsorption performance. In this study, the epigallocatechin gallate (EGCG) monomer, which is the key functional unit of persimmon tannin, was chosen to explore the ability and mechanism of selective separation/extraction of indium from indium-iron mixture solutions. The density functional theory calculation results indicated that the deprotonated EGCG was easier to combine with indium/iron cations than those of un-deprotonated EGCG. Moreover, the interaction of the EGCG-Fe(III) complex was dominated by chelation and electrostatic interaction, while that of the EGCG-In(III) complex was controlled by electrostatic interactions and aromatic ring stacking effects. Furthermore, the calculation of binding energy verified that EGCG exhibited a stronger affinity for Fe(III) than that for In(III) and preferentially adsorbed iron ions in acidic or neutral solutions. Further experimental results were consistent with the theoretical study, which showed that the Freundlich equilibrium isotherm fit the In(III) and Fe(III) adsorption behavior very well, and the Fe(III) adsorption processes followed a pseudo-second-order model. Thermodynamics data revealed that the adsorption of In(III) and Fe(III) onto EGCG was feasible, spontaneous, and endothermic. The adsorption rate of the EGCG monomer for Fe(III) in neutral solution (1:1 mixed solution, pH = 3.0) was 45.7%, 4.3 times that of In(III) (10.7%). This study provides an in-depth understanding of the relationship between the structure of EGCG and the selective adsorption capacity at the molecular level and provides theoretical guidance for further optimization of the selective adsorption performance of structurally similar tannin-based adsorbents.
Collapse
Affiliation(s)
- Zhigao Liu
- Guangxi Academy of Sciences, Nanning 530007, China
- School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin 541004, China
| | | | - Weijiang Gan
- Guangxi Academy of Sciences, Nanning 530007, China
| | - Songlin Liu
- School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin 541004, China
| | - Jianglin Zhang
- School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin 541004, China
| | - Zhaojin Ran
- Guangxi Academy of Sciences, Nanning 530007, China
| | - Chenxi Wu
- Guangxi Academy of Sciences, Nanning 530007, China
| | - Chaohao Hu
- School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin 541004, China
| | - Dianhui Wang
- School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin 541004, China
| | - Tao Chen
- School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin 541004, China
| | - Guiyin Li
- College of Chemistry, Guangdong University of Petrochemical Technology, Maoming 525000, China
| |
Collapse
|
4
|
Effect of polar molecular organic solvents on non-aqueous solvent extraction of rare-earth elements. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
5
|
Dewulf B, Riaño S, Binnemans K. Separation of heavy rare-earth elements by non-aqueous solvent extraction: Flowsheet development and mixer-settler tests. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120882] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
6
|
Application of Ionic Liquids for the Recycling and Recovery of Technologically Critical and Valuable Metals. ENERGIES 2022. [DOI: 10.3390/en15020628] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Population growth has led to an increased demand for raw minerals and energy resources; however, their supply cannot easily be provided in the same proportions. Modern technologies contain materials that are becoming more finely intermixed because of the broadening palette of elements used, and this outcome creates certain limitations for recycling. The recovery and separation of individual elements, critical materials and valuable metals from complex systems requires complex energy-consuming solutions with many hazardous chemicals used. Significant pressure is brought to bear on the improvement of separation and recycling approaches by the need to balance sustainability, efficiency, and environmental impacts. Due to the increase in environmental consciousness in chemical research and industry, the challenge for a sustainable environment calls for clean procedures that avoid the use of harmful organic solvents. Ionic liquids, also known as molten salts and future solvents, are endowed with unique features that have already had a promising impact on cutting-edge science and technologies. This review aims to address the current challenges associated with the energy-efficient design, recovery, recycling, and separation of valuable metals employing ionic liquids.
Collapse
|
7
|
Li Z, Dewulf B, Binnemans K. Nonaqueous Solvent Extraction for Enhanced Metal Separations: Concept, Systems, and Mechanisms. Ind Eng Chem Res 2021; 60:17285-17302. [PMID: 34898845 PMCID: PMC8662634 DOI: 10.1021/acs.iecr.1c02287] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 10/06/2021] [Accepted: 10/27/2021] [Indexed: 11/30/2022]
Abstract
Efficient and sustainable separation of metals is gaining increasing attention, because of the essential roles of many metals in sustainable technologies for a climate-neutral society, such as rare earths in permanent magnets and cobalt, nickel, and manganese in the cathode materials of lithium-ion batteries. The separation and purification of metals by conventional solvent extraction (SX) systems, which consist of an organic phase and an aqueous phase, has limitations. By replacing the aqueous phase with other polar solvents, either polar molecular organic solvents or ionic solvents, nonaqueous solvent extraction (NASX) largely expands the scope of SX, since differences in solvation of metal ions lead to different distribution behaviors. This Review emphasizes enhanced metal extraction and remarkable metal separations observed in NASX systems and discusses the effects of polar solvents on the extraction mechanisms according to the type of polar solvents and the type of extractants. Furthermore, the considerable effects of the addition of water and complexing agents on metal separations in terms of metal ion solvation and speciation are highlighted. Efforts to integrate NASX into metallurgical flowsheets and to develop closed-loop solvometallurgical processes are also discussed. This Review aims to construct a framework of NASX on which many more studies on this topic, both fundamental and applied, can be built.
Collapse
Affiliation(s)
| | | | - Koen Binnemans
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001 Heverlee, Belgium
| |
Collapse
|
8
|
Extraction of Cu(II), Fe(III), Zn(II), and Mn(II) from Aqueous Solutions with Ionic Liquid R4NCy. METALS 2021. [DOI: 10.3390/met11101585] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The leaching of copper ores produces a rich solution with metal interferences. In this context, Fe(III), Zn(II), and Mn(II) are three metals contained in industrial copper-rich solutions in high quantities and eventually can be co-extracted with the copper. The purpose of the current study was to determine the feasibly of solvent extraction with the use of ionic liquid methyltrioctyl/decylammonium bis (2,4,4-trimethylpentyl)phosphinate (R4NCy) as an extractant of Cu(II) in the presence of Fe(III), Zn(II), and Mn(II). In general terms, the results showed a high single extraction efficiency of all the metals under study. In the case of Fe(III) and Zn(II), the extraction was close to 100%. On the contrary, the stripping efficiency was poor to Fe(III) and discrete to Zn(II), but very high to Cu(II) and Mn(II). Finally, the findings of this study suggest that the ionic liquid R4NCy is feasible for the pre-treatment of the copper solvent extraction process to remove metal impurities such as Fe(III) and Zn(II).
Collapse
|
9
|
Alguacil FJ. Liquid-Liquid Extraction of Indium(III) from the HCl Medium by Ionic Liquid A327H +Cl - and Its Use in a Supported Liquid Membrane System. Molecules 2020; 25:E5238. [PMID: 33182748 PMCID: PMC7698273 DOI: 10.3390/molecules25225238] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/05/2020] [Accepted: 11/07/2020] [Indexed: 01/22/2023] Open
Abstract
Ionic liquid A327H+Cl- was generated by reaction of tertiary amine A327 and HCl, and the liquid-liquid extraction of indium(III) from the HCl medium by this ionic liquid dissolved in Solvesso 100 was investigated. The extraction reaction is exothermic. The numerical analysis of indium distribution data suggests the formation of A327H+InCl4- in the organic phase. The results derived from indium(III) extraction have been implemented in a supported liquid membrane system. The influence of the stirring speed (600-1200 min-1), carrier concentration (2.5-20% v/v) in the membrane phase, and indium concentration (0.01-0.2 g/L) in the feed phase on metal transport have been investigated.
Collapse
Affiliation(s)
- Francisco José Alguacil
- Centro Nacional de Investigaciones Metalurgicas (CSIC), Avda, Gregorio del Amo 8, 28040 Madrid, Spain
| |
Collapse
|