1
|
Faheem M, Saddique Z, Akhter T, Wang K, Qian J, Gu W, Afzal A, Long L. High-performance disposable electrochemical sensors for creatinine derived from hollow CoNi-LDH@Creatinine-imprinted Poly(methacrylic acid) (i-PMA) composites. Anal Chim Acta 2025; 1346:343768. [PMID: 40021322 DOI: 10.1016/j.aca.2025.343768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/03/2025] [Accepted: 02/01/2025] [Indexed: 03/03/2025]
Abstract
BACKGROUND Layered double hydroxides (LDHs), featuring a 2D layered structure, are an emerging class of inorganic porous materials for electrochemical biosensors. Presently, they are primarily utilized in the electrochemical detection of oxygen-containing biomolecules. However, there are currently no reported LDH sensors, particularly CoNi-LDH ones, designed for the electrochemical detection of creatinine (Cre), a widely studied nitrogen-containing biomolecule. Here, to realize electrochemical detection of creatinine, a unique hollow CoNi-LDH/creatinine imprinted polymethacrylic acid (H-LDH@i-PMA) composite is developed through a pioneering combination of a hollow CoNi-LDH (H-LDH) structure and the molecular imprinting polymer (MIP) coating technique. RESULTS The materials are comprehensively characterized using FT-IR, PXRD, XPS, TEM, CV, and EIS. Disposable Au-screen printed electrodes are fabricated with both H-LDH and H-LDH@i-PMA, and the sensing of Cre is subsequently investigated via cyclic voltammetry and differential pulse voltammetry methods. The H-LDH@i-PMA sensor exhibits superior porosity, a larger electroactive area, and enhanced electron-transfer kinetics in comparison to H-LDH sensor. The H-LDH@i-PMA sensor achieves a wide detection range of 0-1000 nM, accompanied by a low detection limit of 236 pM, and five-times more sensitivity for Cre than non-imprinted H-LDH sensor. Futhermore, it demonstrates robust selectivity against interferents such as ascorbic acid, uric acid, guanine, and glutamine. When tested with real salivary samples, it exhibits a recovery rate of 99.0 ± 1.80 %, and maintains excellent reusability over a period of four weeks. SIGNIFICANCE These exceptional results are due to superior electroactive area, tailor-made recognition sites, and greater electron-transfer kinetics of H-LDH@i-PMA as compared to the non-imprinted LDH sensor. This is the first reported use of an LDH-based sensor for the detection of Cre, providing valuable insights into developing high-performance electrochemical sensors for various biomolecules.
Collapse
Affiliation(s)
- Muhammad Faheem
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, PR China
| | - Zohaib Saddique
- Sensors and Diagnostic Lab, School of Chemistry, University of the Punjab, Quaid-i-Azam Campus, Lahore, 54590, Pakistan
| | - Toheed Akhter
- Department of Chemical and Biological Engineering, Gachon University, Seongnam, 13120, South Korea
| | - Kun Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, PR China.
| | - Jing Qian
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, PR China
| | - Wuyan Gu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, PR China
| | - Adeel Afzal
- Sensors and Diagnostic Lab, School of Chemistry, University of the Punjab, Quaid-i-Azam Campus, Lahore, 54590, Pakistan
| | - Lingliang Long
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, PR China.
| |
Collapse
|
2
|
Shahzad N, Afzal A. Molecularly imprinted nanocomposites-based synthetic antibodies for uric acid-specific non-invasive electrochemical gout sensors. Mikrochim Acta 2025; 192:163. [PMID: 39951242 DOI: 10.1007/s00604-025-07008-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 01/25/2025] [Indexed: 02/20/2025]
Abstract
A disposable electrochemical sensor is introduced for the selective recognition of uric acid (UA), a crucial biomarker for gout arthritis. The sensor employs synthetic antibodies composed of molecularly imprinted polythiophene (MIP) laden graphitic carbon nitride (GCN) nanocomposites for the selective recognition of UA. Microscopic analysis demonstrates an increase in surface roughness and kurtosis after removing the template, indicating the fabrication and functionalization of the MIP/GCN sensors. These sensors exhibit excellent electrochemical properties, characterized by electrochemical impedance spectroscopy (EIS) and voltammetric (CV, DPV) methods. The sensor displays a wide linear detection range (1-500 µM), encompassing the normal UA levels in human saliva, high sensitivity (5.47 µA/cm2.µM), a low limit of detection (0.21 µM), and limit of quantification (0.64 µM). The sensor also exhibits low cross-sensitivity to common salivary interferences, including urea, creatinine, ascorbic acid, glucose, and glutamine. The MIP/GCN sensor accurately identifies UA in human saliva, resulting in a recovery of 93.25 ± 0.33%. Electrochemical studies, utilizing [Fe(CN)6]4-/3- as a redox probe, also provide insights into the mechanisms of interfacial redox reactions and selective UA recognition. This work demonstrates a significant improvement in POC testing, providing a reliable and non-invasive tool for gout diagnosis.
Collapse
Affiliation(s)
- Noor Shahzad
- Sensors and Diagnostics Lab, School of Chemistry, University of the Punjab, Quaid-I-Azam Campus, Lahore, 54590, Pakistan
| | - Adeel Afzal
- Sensors and Diagnostics Lab, School of Chemistry, University of the Punjab, Quaid-I-Azam Campus, Lahore, 54590, Pakistan.
| |
Collapse
|
3
|
Liu R, Zhao M, Zhang X, Zhang C, Ren B, Ma J. Advances and Challenges in Molecularly Imprinted Electrochemical Sensors for Application in Environmental, Biomedicine, and Food Safety. Crit Rev Anal Chem 2025:1-19. [PMID: 39912733 DOI: 10.1080/10408347.2025.2460751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2025]
Abstract
Molecularly imprinted electrochemical sensors (MIECSs) are a specialized class of sensors based on molecularly imprinted derivative materials (MIDPs), which have been extensively applied in environmental monitoring, biomedicine, and food safety, allowing for high selectivity and sensitivity in detecting target molecules. This review provides an in-depth exploration of the most innovative and successful nanomaterials employed for modifying imprinted polymers, highlighting their crucial role in enhancing sensor performance, including carbon-based nanomaterials, meal derivatives, magnetic nanomaterials, polymeric and composite nanomaterials. In addition to reviewing advances in derivative materials design, this article delves into the current challenges facing molecularly imprinted sensors, such as issues related to template removal, nonspecific binding, and fabrication reproducibility. These challenges limit the practical application of MIECSs, particularly in complex real-world environments. The review also discusses representative applications of these sensors, including environmental monitoring, biomedicine and food safety, which demonstrate their versatility and potential. Finally, the review outlines future research directions aimed at overcoming these challenges. This includes strategies for improving the stability and reusability of MIECSs, enhancing their selectivity and sensitivity, and developing novel imprinting techniques. By addressing these issues, researchers can pave the way for the next generation of electrochemical sensors, which will be more robust, reliable, and suitable for a wide range of industrial and clinical applications.
Collapse
Affiliation(s)
- Rui Liu
- Center of Pharmaceutical Engineering and Technology, Harbin University of Commerce, Harbin, China
| | - Meiting Zhao
- Center of Pharmaceutical Engineering and Technology, Harbin University of Commerce, Harbin, China
| | - Xin Zhang
- Center of Pharmaceutical Engineering and Technology, Harbin University of Commerce, Harbin, China
| | - Chaojun Zhang
- Center of Pharmaceutical Engineering and Technology, Harbin University of Commerce, Harbin, China
| | - Binqiao Ren
- Institute of Advanced Technology, Heilongjiang Academy of Sciences, Harbin, China
| | - Jing Ma
- Department of Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an, China
| |
Collapse
|
4
|
Latif U, Yaqub S, Dickert FL. Sensitive Coatings Based on Molecular-Imprinted Polymers for Triazine Pesticides' Detection. SENSORS (BASEL, SWITZERLAND) 2024; 24:5934. [PMID: 39338679 PMCID: PMC11436188 DOI: 10.3390/s24185934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024]
Abstract
Triazine pesticide (atrazine and its derivatives) detection sensors have been developed to thoroughly check for the presence of these chemicals and ultimately prevent their exposure to humans. Sensitive coatings were designed by utilizing molecular imprinting technology, which aims to create artificial receptors for the detection of chlorotriazine pesticides with gravimetric transducers. Initially, imprinted polymers were developed, using acrylate and methacrylate monomers containing hydrophilic and hydrophobic side chains, specifically for atrazine, which shares a basic heterocyclic triazine structure with its structural analogs. By adjusting the ratio of the acid to the cross-linker and introducing acrylate ester as a copolymer, optimal non-covalent interactions were achieved with the hydrophobic core of triazine molecules and their amino groups. A maximum sensor response of 546 Hz (frequency shift/layer height equal to 87.36) was observed for a sensitive coating composed of 46% methacrylic acid and 54% ethylene glycol dimethacrylate, with a demonstrated layer height of 250 nm (6.25 kHz). The molecularly imprinted copolymer demonstrated fully reversible sensor responses, not only for atrazine but also for its metabolites, like des-ethyl atrazine, and structural analogs, such as propazine and terbuthylazine. The efficiency of modified molecularly imprinted polymers for targeted analytes was tested by combining them with a universally applicable quartz crystal microbalance transducer. The stable selectivity pattern of the developed sensor provides an excellent basis for a pattern recognition procedure.
Collapse
Affiliation(s)
- Usman Latif
- Department of Analytical Chemistry, University of Vienna, Waehringer Str. 38, A-1090 Vienna, Austria
- Interdisciplinary Research Centre in Biomedical Materials, COMSATS University Islamabad-Lahore Campus, Lahore 54600, Pakistan
| | - Sadaf Yaqub
- Department of Analytical Chemistry, University of Vienna, Waehringer Str. 38, A-1090 Vienna, Austria
| | - Franz L. Dickert
- Department of Analytical Chemistry, University of Vienna, Waehringer Str. 38, A-1090 Vienna, Austria
| |
Collapse
|
5
|
Ashraf S, Hussain T, Bajwa SZ, Mujahid A, Afzal A. Portable smartphone-enabled dydrogesterone sensors based on biomimetic polymers for personalized gynecological care. J Mater Chem B 2024; 12:6905-6916. [PMID: 38919127 DOI: 10.1039/d4tb00657g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Dydrogesterone, a frequently prescribed synthetic hormone integral to the treatment of diverse gynecological conditions, necessitates precise quantification in complex human plasma. In this study, the development of a portable, smartphone-based electrochemical sensor employing screen-printed gold electrodes (SPAuEs) modified with a biomimetic, molecularly imprinted poly(methacrylic acid-co-methyl methacrylate) (MIP) is presented for dydrogesterone detection in human plasma. FTIR spectroscopy illustrates the transformation of a pre-polymer mixture into a polymerized matrix, while SEM reveals a uniform MIP/SPAuE surface morphology. The sensor fabrication protocol, encompassing MIP/SPAuE composition, polymerization solvent, incubation time, and scan rate, is optimized to achieve enhanced sensitivity. The MIP/SPAuEs sensor exhibits a linear sensor response to dydrogesterone within the concentration range of 1-500 nM, as evidenced by cyclic and differential pulse voltammetry. The MIP/SPAuE sensor demonstrates exceptional sensitivity, recording 8.2 × 10-3 μA nM-1, with a sub-nanomolar limit of detection (LOD = 370 pM), and low limit of quantification (LOQ = 1.12 nM), along with appreciable selectivity over common interferents. In real-world clinical applications, the designed sensor is effectively employed for the rapid and precise determination of dydrogesterone in human blood plasma, achieving a remarkable recovery of 81%. Furthermore, MIP/SPAuE coatings possess suitable stability over 15 days, indicating the robustness of the sensor material for multiple rounds of analysis. The developed sensor provides a sensitive, selective, and cost-effective solution for monitoring dydrogesterone in plasma during various gynecological disorders, allowing for personalized healthcare applications.
Collapse
Affiliation(s)
- Sobia Ashraf
- Sensors and Diagnostics Lab, School of Chemistry, University of the Punjab, Quaid-i-Azam Campus, Lahore, 54590, Pakistan.
| | - Tajamal Hussain
- Sensors and Diagnostics Lab, School of Chemistry, University of the Punjab, Quaid-i-Azam Campus, Lahore, 54590, Pakistan.
| | - Sadia Zafar Bajwa
- National Institute for Biotechnology and Genetic Engineering, Jhang Road, Faisalabad, 44000, Pakistan
| | - Adnan Mujahid
- Sensors and Diagnostics Lab, School of Chemistry, University of the Punjab, Quaid-i-Azam Campus, Lahore, 54590, Pakistan.
| | - Adeel Afzal
- Sensors and Diagnostics Lab, School of Chemistry, University of the Punjab, Quaid-i-Azam Campus, Lahore, 54590, Pakistan.
| |
Collapse
|
6
|
Saddique Z, Saeed M, Faheem M, Bajwa SZ, Mujahid A, Afzal A. Core-shell niobium(v) oxide@molecularly imprinted polythiophene nanoreceptors for transformative, real-time creatinine analysis. NANOSCALE ADVANCES 2024; 6:3644-3654. [PMID: 38989513 PMCID: PMC11232539 DOI: 10.1039/d4na00300d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 05/23/2024] [Indexed: 07/12/2024]
Abstract
Creatinine, a byproduct of muscle metabolism, is typically filtered by the kidneys. Deviations from normal concentrations of creatinine in human saliva serve as a crucial biomarker for renal diseases. Monitoring these levels becomes particularly essential for individuals undergoing dialysis and those with kidney conditions. This study introduces an innovative disposable point-of-care (PoC) sensor device designed for the prompt detection and continuous monitoring of trace amounts of creatinine. The sensor employs a unique design, featuring a creatinine-imprinted polythiophene matrix combined with niobium oxide nanoparticles. These components are coated onto a screen-printed working electrode. Thorough assessments of creatinine concentrations, spanning from 0 to 1000 nM in a redox solution at pH 7.4 and room temperature, are conducted using cyclic voltammetry (CV), differential pulse voltammetry (DPV), and electrochemical impedance spectroscopy (EIS). The devised sensor exhibits a sensitivity of 4.614 μA cm-2 nM-1, an impressive trace level limit of detection at 34 pM, and remarkable selectivity for creatinine compared to other analytes found in human saliva, such as glucose, glutamine, urea, tyrosine, etc. Real saliva samples subjected to the sensor reveal a 100% recovery rate. This sensor, characterized by its high sensitivity, cost-effectiveness, selectivity, and reproducibility, holds significant promise for real-time applications in monitoring creatinine levels in individuals with kidney and muscle-related illnesses.
Collapse
Affiliation(s)
- Zohaib Saddique
- Sensors and Diagnostics Lab, School of Chemistry, University of the Punjab, Quaid-i-Azam Campus Lahore 54590 Pakistan
| | - Maleeha Saeed
- Sensors and Diagnostics Lab, School of Chemistry, University of the Punjab, Quaid-i-Azam Campus Lahore 54590 Pakistan
| | - Muhammad Faheem
- School of Chemistry and Chemical Engineering, Jiangsu University Zhenjiang Jiangsu 212013 P. R. China
| | - Sadia Z Bajwa
- National Institute for Biotechnology and Genetic Engineering PO Box 577, Jhang Road Faisalabad 38000 Pakistan
| | - Adnan Mujahid
- Sensors and Diagnostics Lab, School of Chemistry, University of the Punjab, Quaid-i-Azam Campus Lahore 54590 Pakistan
| | - Adeel Afzal
- Sensors and Diagnostics Lab, School of Chemistry, University of the Punjab, Quaid-i-Azam Campus Lahore 54590 Pakistan
| |
Collapse
|
7
|
Li Y, Luo L, Kong Y, Li Y, Wang Q, Wang M, Li Y, Davenport A, Li B. Recent advances in molecularly imprinted polymer-based electrochemical sensors. Biosens Bioelectron 2024; 249:116018. [PMID: 38232451 DOI: 10.1016/j.bios.2024.116018] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 01/04/2024] [Accepted: 01/08/2024] [Indexed: 01/19/2024]
Abstract
Molecularly imprinted polymers (MIPs) are the equivalent of natural antibodies and have been widely used as synthetic receptors for the detection of disease biomarkers. Benefiting from their excellent chemical and physical stability, low-cost, relative ease of production, reusability, and high selectivity, MIP-based electrochemical sensors have attracted great interest in disease diagnosis and demonstrated superiority over other biosensing techniques. Here we compare various types of MIP-based electrochemical sensors with different working principles. We then evaluate the state-of-the-art achievements of the MIP-based electrochemical sensors for the detection of different biomarkers, including nucleic acids, proteins, saccharides, lipids, and other small molecules. The limitations, which prevent its successful translation into practical clinical settings, are outlined together with the potential solutions. At the end, we share our vision of the evolution of MIP-based electrochemical sensors with an outlook on the future of this promising biosensing technology.
Collapse
Affiliation(s)
- Yixuan Li
- Institute for Materials Discovery, University College London, London, WC1E 7JE, UK
| | - Liuxiong Luo
- School of Materials Science and Engineering, Central South University, Changsha, 410083, China
| | - Yingqi Kong
- Institute for Materials Discovery, University College London, London, WC1E 7JE, UK
| | - Yujia Li
- Institute for Materials Discovery, University College London, London, WC1E 7JE, UK
| | - Quansheng Wang
- Heilongjiang Academy of Traditional Chinese Medicine, Harbin, 150036, China
| | - Mingqing Wang
- Institute for Materials Discovery, University College London, London, WC1E 7JE, UK
| | - Ying Li
- Department of Brain Repair and Rehabilitation, Institute of Neurology, University College London, WC1N 3BG, UK
| | - Andrew Davenport
- Department of Renal Medicine, University College London, London, NW3 2PF, UK
| | - Bing Li
- Institute for Materials Discovery, University College London, London, WC1E 7JE, UK.
| |
Collapse
|
8
|
Xiao J, Zhu S, Bu L, Zhou S. Molecularly Imprinted Heterostructure-Based Electrochemosensor for Ultratrace and Precise Detection of 2-Methylisoborneol in Water. ACS Sens 2024; 9:524-532. [PMID: 38180350 DOI: 10.1021/acssensors.3c02561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
Ultratrace 2-methylisoborneol (2-MIB, ∼ng/L) in source water is the main odorant in the algae-derived odor episodes, whose accurate on-site detection will have a promising application potential. Due to the chemical inertness of 2-MIB, sensitive and selective detection of 2-MIB remains much challenging. Herein, molecularly imprinted polymer cavities were polymerized on the heterostructure Ti3C2Tx@CuFc-metal-organic framework to selectively capture 2-MIB, where the heterostructure could catalyze the probe redox reaction of [Fe(CN)63-/4-] and amplify the corresponding current signals. The prepared electrochemical sensor showed higher sensitivity on 2-MIB detection than the reported ones. Excellent stability, reusability, and selectivity for 2-MIB detection were also verified. The linear range and limit of detection of our sensor for 2-MIB were optimized to 0.0001-100 μg/L and 30 pg/L, respectively, performing much better than the reported sensors. Comparable performance to gas chromatography-mass spectrometry was achieved when the sensor was applied to real water samples with or without 2-MIB standards. Overall, our research has made great progress in the application of an on-site sensor in 2-MIB detection and well advances the development of molecularly imprinted polymer-based electrochemical sensors.
Collapse
Affiliation(s)
- Jiaxin Xiao
- Hunan Engineering Research Center of Water Security Technology and Application, Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Hunan University, Changsha 410082, China
| | - Shumin Zhu
- Hunan Engineering Research Center of Water Security Technology and Application, Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Hunan University, Changsha 410082, China
| | - Lingjun Bu
- Hunan Engineering Research Center of Water Security Technology and Application, Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Hunan University, Changsha 410082, China
| | - Shiqing Zhou
- Hunan Engineering Research Center of Water Security Technology and Application, Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Hunan University, Changsha 410082, China
| |
Collapse
|
9
|
Mazzotta E, Di Giulio T, Mariani S, Corsi M, Malitesta C, Barillaro G. Vapor-Phase Synthesis of Molecularly Imprinted Polymers on Nanostructured Materials at Room-Temperature. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302274. [PMID: 37222612 DOI: 10.1002/smll.202302274] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/27/2023] [Indexed: 05/25/2023]
Abstract
Molecularly imprinted polymers (MIPs) have recently emerged as robust and versatile artificial receptors. MIP synthesis is carried out in liquid phase and optimized on planar surfaces. Application of MIPs to nanostructured materials is challenging due to diffusion-limited transport of monomers within the nanomaterial recesses, especially when the aspect ratio is >10. Here, the room temperature vapor-phase synthesis of MIPs in nanostructured materials is reported. The vapor phase synthesis leverages a >1000-fold increase in the diffusion coefficient of monomers in vapor phase, compared to liquid phase, to relax diffusion-limited transport and enable the controlled synthesis of MIPs also in nanostructures with high aspect ratio. As proof-of-concept application, pyrrole is used as the functional monomer thanks to its large exploitation in MIP preparation; nanostructured porous silicon oxide (PSiO2 ) is chosen to assess the vapor-phase deposition of PPy-based MIP in nanostructures with aspect ratio >100; human hemoglobin (HHb) is selected as the target molecule for the preparation of a MIP-based PSiO2 optical sensor. High sensitivity and selectivity, low detection limit, high stability and reusability are achieved in label-free optical detection of HHb, also in human plasma and artificial serum. The proposed vapor-phase synthesis of MIPs is immediately transferable to other nanomaterials, transducers, and proteins.
Collapse
Affiliation(s)
- Elisabetta Mazzotta
- Laboratory of Analytical Chemistry, Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, via Monteroni, Lecce, 73100, Italy
| | - Tiziano Di Giulio
- Laboratory of Analytical Chemistry, Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, via Monteroni, Lecce, 73100, Italy
| | - Stefano Mariani
- Information Engineering Department, University of Pisa, via G. Caruso 16, Pisa, 56122, Italy
| | - Martina Corsi
- Information Engineering Department, University of Pisa, via G. Caruso 16, Pisa, 56122, Italy
| | - Cosimino Malitesta
- Laboratory of Analytical Chemistry, Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, via Monteroni, Lecce, 73100, Italy
| | - Giuseppe Barillaro
- Information Engineering Department, University of Pisa, via G. Caruso 16, Pisa, 56122, Italy
| |
Collapse
|
10
|
Jacinto C, Maza Mejía I, Khan S, López R, Sotomayor MDPT, Picasso G. Using a Smartphone-Based Colorimetric Device with Molecularly Imprinted Polymer for the Quantification of Tartrazine in Soda Drinks. BIOSENSORS 2023; 13:639. [PMID: 37367004 DOI: 10.3390/bios13060639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/28/2023]
Abstract
The present study reports the development and application of a rapid, low-cost in-situ method for the quantification of tartrazine in carbonated beverages using a smartphone-based colorimetric device with molecularly imprinted polymer (MIP). The MIP was synthesized using the free radical precipitation method with acrylamide (AC) as the functional monomer, N,N'-methylenebisacrylamide (NMBA) as the cross linker, and potassium persulfate (KPS) as radical initiator. The smartphone (RadesPhone)-operated rapid analysis device proposed in this study has dimensions of 10 × 10 × 15 cm and is illuminated internally by light emitting diode (LED) lights with intensity of 170 lux. The analytical methodology involved the use of a smartphone camera to capture images of MIP at various tartrazine concentrations, and the subsequent application of the Image-J software to calculate the red, green, blue (RGB) color values and hue, saturation, value (HSV) values from these images. A multivariate calibration analysis of tartrazine in the range of 0 to 30 mg/L was performed, and the optimum working range was determined to be 0 to 20 mg/L using five principal components and a limit of detection (LOD) of 1.2 mg/L was obtained. Repeatability analysis of tartrazine solutions with concentrations of 4, 8, and 15 mg/L (n = 10) showed a coefficient of variation (% RSD) of less than 6%. The proposed technique was applied to the analysis of five Peruvian soda drinks and the results were compared with the UHPLC reference method. The proposed technique showed a relative error between 6% and 16% and % RSD lower than 6.3%. The results of this study demonstrate that the smartphone-based device is a suitable analytical tool that offers an on-site, cost-effective, and rapid alternative for the quantification of tartrazine in soda drinks. This color analysis device can be used in other molecularly imprinted polymer systems and offers a wide range of possibilities for the detection and quantification of compounds in various industrial and environmental matrices that generate a color change in the MIP matrix.
Collapse
Affiliation(s)
- Christian Jacinto
- Laboratory of Instrumental Analysis Environment, Faculty of Sciences, National University of Engineering, Av. Tupac Amaru 210, Rimac 15333, Lima, Peru
- Technology of Materials for Environmental Remediation Group (TecMARA), Faculty of Sciences, National University of Engineering, Av. Tupac Amaru 210, Rimac 15333, Lima, Peru
| | - Ily Maza Mejía
- Laboratory of Instrumental Analysis Environment, Faculty of Sciences, National University of Engineering, Av. Tupac Amaru 210, Rimac 15333, Lima, Peru
- Technology of Materials for Environmental Remediation Group (TecMARA), Faculty of Sciences, National University of Engineering, Av. Tupac Amaru 210, Rimac 15333, Lima, Peru
| | - Sabir Khan
- Laboratory of Instrumental Analysis Environment, Faculty of Sciences, National University of Engineering, Av. Tupac Amaru 210, Rimac 15333, Lima, Peru
- Technology of Materials for Environmental Remediation Group (TecMARA), Faculty of Sciences, National University of Engineering, Av. Tupac Amaru 210, Rimac 15333, Lima, Peru
- Chemistry Institute-Araraquara-SP, São Paulo State University (UNESP), Araraquara 14801-900, Brazil
- Department of Natural Sciences, Mathematics, and Statistics, Federal Rural University of the Semi-Arid, Mossoro 59625-900, Brazil
| | - Rosario López
- Laboratory of Instrumental Analysis Environment, Faculty of Sciences, National University of Engineering, Av. Tupac Amaru 210, Rimac 15333, Lima, Peru
- Technology of Materials for Environmental Remediation Group (TecMARA), Faculty of Sciences, National University of Engineering, Av. Tupac Amaru 210, Rimac 15333, Lima, Peru
| | - Maria D P T Sotomayor
- Chemistry Institute-Araraquara-SP, São Paulo State University (UNESP), Araraquara 14801-900, Brazil
| | - Gino Picasso
- Technology of Materials for Environmental Remediation Group (TecMARA), Faculty of Sciences, National University of Engineering, Av. Tupac Amaru 210, Rimac 15333, Lima, Peru
| |
Collapse
|
11
|
Sudjarwo WAA, Dobler MT, Lieberzeit PA. QCM-based assay designs for human serum albumin. Anal Bioanal Chem 2022; 414:731-741. [PMID: 34950982 PMCID: PMC8748353 DOI: 10.1007/s00216-021-03771-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 10/28/2021] [Accepted: 11/02/2021] [Indexed: 12/13/2022]
Abstract
Solid-phase synthesis is an elegant way to create molecularly imprinted polymer nanoparticles (nano-MIPs) comprising a single binding site, i.e. mimics of antibodies. When using human serum albumin (HSA) as the template, one achieves nano-MIPs with 53 ± 19 nm diameter, while non-imprinted polymer nanoparticles (nano-NIPs) reach 191 ± 96 nm. Fluorescence assays lead to Stern-Volmer plots revealing selective binding to HSA with selectivity factors of 1.2 compared to bovine serum albumin (BSA), 1.9 for lysozyme, and 4.1 for pepsin. Direct quartz crystal microbalance (QCM) assays confirm these results: nano-MIPs bind to HSA immobilized on QCM surfaces. This opens the way for competitive QCM-based assays for HSA: adding HSA to nanoparticle solutions indeed reduces binding to the QCM surfaces in a concentration-dependent manner. They achieve a limit of detection (LoD) of 80 nM and a limit of quantification (LoQ) of 244 nM. Furthermore, the assay shows recovery rates around 100% for HSA even in the presence of competing analytes.
Collapse
Affiliation(s)
- Wisnu Arfian A Sudjarwo
- University of Vienna, Faculty for Chemistry, Department of Physical Chemistry, Waehringer Strasse 42, 1090, Vienna, Austria
| | - Mathias Thomas Dobler
- University of Vienna, Faculty for Chemistry, Department of Physical Chemistry, Waehringer Strasse 42, 1090, Vienna, Austria
| | - Peter A Lieberzeit
- University of Vienna, Faculty for Chemistry, Department of Physical Chemistry, Waehringer Strasse 42, 1090, Vienna, Austria.
| |
Collapse
|
12
|
Development of a MIP-Based QCM Sensor for Selective Detection of Penicillins in Aqueous Media. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9120362] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Pharmaceuticals wastes have been recognized as emerging pollutants to the environment. Among those, antibiotics in the aquatic environment are one of the major sources of concern, as chronic, low-dose exposure can lead to antibiotic resistance. Herein, we report on molecularly imprinted polymers (MIP) to recognize penicillin V potassium salt (PenV-K), penicillin G potassium salt (PenG-K), and amoxicillin sodium salt (Amo-Na), which belong to the most widespread group of antibiotics worldwide. Characterization and optimization led to two MIPs comprising methacrylic acid as the monomer and roughly 55% ethylene glycol dimethacrylate as the crosslinker. The obtained layers led to sensitive, selective, repeatable, and reusable sensor responses on quartz crystal microbalances (QCM). The LoD for PenV-K, PenG-K, and Amo-Na sensors are 0.25 mM, 0.30 mM, and 0.28 mM, respectively; imprinting factors reach at least around three. Furthermore, the sensors displayed relative selectivity factors of up to 50% among the three penicillins, which is appreciable given their structural similarity.
Collapse
|