1
|
Bar-David J, Daaoub A, Chen S, Sibug-Torres SM, Rocchetti S, Kang G, Davidson RJ, Salthouse RJ, Guo C, Mueller NS, Sangtarash S, Bryce MR, Sadeghi H, Baumberg JJ. Electronically Perturbed Vibrational Excitations of the Luminescing Stable Blatter Radical. ACS NANO 2025; 19:7650-7660. [PMID: 39981951 PMCID: PMC11887450 DOI: 10.1021/acsnano.4c09661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 02/02/2025] [Accepted: 02/04/2025] [Indexed: 02/22/2025]
Abstract
Stable radicals are spin-active species with a plethora of proposed applications in fields from energy storage and molecular electronics to quantum communications. However, their optical properties and vibrational modes are so far not well understood. Furthermore, it is not yet clear how these are affected by the radical oxidation state, which is key to understanding their electronic transport. Here, we identify the properties of 1,2,4-benzotriazin-4-yl, a stable doubly thiolated variant of the Blatter radical, using surface-enhanced Raman scattering (SERS). Embedding molecular monolayers in plasmonic nanocavities gives access to their vibrational modes, photoluminescence, and optical response during redox processes. We reveal the influence of the adjacent metallic surfaces and identify fluctuating SERS signals that suggest a coupling between the unpaired radical electron and a spatially overlapping vibrational mode. This can potentially be exploited for information-storage devices and chemically designed molecular qubits.
Collapse
Affiliation(s)
- Jonathan Bar-David
- NanoPhotonics
Centre, Cavendish Laboratory, Dept. of Physics, University of Cambridge, Cambridge CB3 0HE, U.K.
| | - Abdalghani Daaoub
- Device
Modelling Group, School of Engineering, University of Warwick, Coventry CV4 7AL, U.K.
| | - Shangzhi Chen
- NanoPhotonics
Centre, Cavendish Laboratory, Dept. of Physics, University of Cambridge, Cambridge CB3 0HE, U.K.
| | - Sarah May Sibug-Torres
- NanoPhotonics
Centre, Cavendish Laboratory, Dept. of Physics, University of Cambridge, Cambridge CB3 0HE, U.K.
| | - Sara Rocchetti
- NanoPhotonics
Centre, Cavendish Laboratory, Dept. of Physics, University of Cambridge, Cambridge CB3 0HE, U.K.
| | - Gyeongwon Kang
- NanoPhotonics
Centre, Cavendish Laboratory, Dept. of Physics, University of Cambridge, Cambridge CB3 0HE, U.K.
| | | | | | - Chenyang Guo
- NanoPhotonics
Centre, Cavendish Laboratory, Dept. of Physics, University of Cambridge, Cambridge CB3 0HE, U.K.
| | - Niclas Sven Mueller
- NanoPhotonics
Centre, Cavendish Laboratory, Dept. of Physics, University of Cambridge, Cambridge CB3 0HE, U.K.
| | - Sara Sangtarash
- Device
Modelling Group, School of Engineering, University of Warwick, Coventry CV4 7AL, U.K.
| | | | - Hatef Sadeghi
- Device
Modelling Group, School of Engineering, University of Warwick, Coventry CV4 7AL, U.K.
| | - Jeremy J. Baumberg
- NanoPhotonics
Centre, Cavendish Laboratory, Dept. of Physics, University of Cambridge, Cambridge CB3 0HE, U.K.
| |
Collapse
|
2
|
Nowik-Boltyk EM, Junghoefer T, Giangrisostomi E, Ovsyannikov R, Shu C, Rajca A, Droghetti A, Casu MB. Radical-Induced Changes in Transition Metal Interfacial Magnetic Properties: A Blatter Derivative on Polycrystalline Cobalt. Angew Chem Int Ed Engl 2024; 63:e202403495. [PMID: 38843268 DOI: 10.1002/anie.202403495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Indexed: 07/23/2024]
Abstract
In this work, we study the interface obtained by depositing a monolayer of a Blatter radical derivative on polycrystalline cobalt. By examining the occupied and unoccupied states at the interface, using soft X-ray techniques, combined with electronic structure calculations, we could simultaneously determine the electronic structure of both the molecular and ferromagnetic sides of the interface, thus obtaining a full understanding of the interfacial magnetic properties. We found that the molecule is strongly hybridized with the surface. Changes in the core level spectra reflect the modification of the molecule and the cobalt electronic structures inducing a decrease in the magnetic moment of the cobalt atoms bonded to the molecules which, in turn, lose their radical character. Our method allowed us to screen, beforehand, organic/ferromagnetic interfaces given their potential applications in spintronics.
Collapse
Affiliation(s)
| | - Tobias Junghoefer
- Institute of Physical and Theoretical Chemistry, University of Tübingen, 72076, Tübingen, Germany
| | - Erika Giangrisostomi
- Institute Methods and Instrumentation for Synchrotron Radiation Research, Helmholtz-Zentrum Berlin, 12489, Berlin, Germany
| | - Ruslan Ovsyannikov
- Institute Methods and Instrumentation for Synchrotron Radiation Research, Helmholtz-Zentrum Berlin, 12489, Berlin, Germany
| | - Chan Shu
- Department of Chemistry, University of Nebraska, Lincoln, NE 68588, United States
- Current address:, Toyota Research Institute of North America, Ann Arbor, Michigan, 48105, United States
| | - Andrzej Rajca
- Department of Chemistry, University of Nebraska, Lincoln, NE 68588, United States
| | - Andrea Droghetti
- School of Physics and CRANN, Trinity College, the University of Dublin, Dublin, D02, Ireland
| | - Maria Benedetta Casu
- Institute of Physical and Theoretical Chemistry, University of Tübingen, 72076, Tübingen, Germany
| |
Collapse
|
3
|
Yang Z, Pink M, Nowik-Boltyk EM, Lu S, Junghoefer T, Rajca S, Stoll S, Casu MB, Rajca A. Thermally Ultrarobust S = 1/2 Tetrazolinyl Radicals: Synthesis, Electronic Structure, Magnetism, and Nanoneedle Assemblies on Silicon Surface. J Am Chem Soc 2023; 145:13335-13346. [PMID: 37285418 PMCID: PMC10438971 DOI: 10.1021/jacs.3c03402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Open-shell organic molecules, including S = 1/2 radicals, may provide enhanced properties for several emerging technologies; however, relatively few synthesized to date possess robust thermal stability and processability. We report the synthesis of S = 1/2 biphenylene-fused tetrazolinyl radicals 1 and 2. Both radicals possess near-perfect planar structures based on their X-ray structures and density-functional theory (DFT) computations. Radical 1 possesses outstanding thermal stability as indicated by the onset of decomposition at 269 °C, based on thermogravimetric analysis (TGA) data. Both radicals possess very low oxidation potentials <0 V (vs. SCE) and their electrochemical energy gaps, Ecell ≈ 0.9 eV, are rather low. Magnetic properties of polycrystalline 1 are characterized by superconducting quantum interference device (SQUID) magnetometry revealing a one-dimensional S = 1/2 antiferromagnetic Heisenberg chain with exchange coupling constant J'/k ≈ -22.0 K. Radical 1 in toluene glass possesses a long electron spin coherence time, Tm ≈ 7 μs in the 40-80 K temperature range, a property advantageous for potential applications as a molecular spin qubit. Radical 1 is evaporated under ultrahigh vacuum (UHV) forming assemblies of intact radicals on a silicon substrate, as confirmed by high-resolution X-ray photoelectron spectroscopy (XPS). Scanning electron microscope (SEM) images indicate that the radical molecules form nanoneedles on the substrate. The nanoneedles are stable for at least 64 hours under air as monitored by using X-ray photoelectron spectroscopy. Electron paramagnetic resonance (EPR) studies of the thicker assemblies, prepared by UHV evaporation, indicate radical decay according to first-order kinetics with a long half-life of 50 ± 4 days at ambient conditions.
Collapse
Affiliation(s)
- Zhimin Yang
- Department of Chemistry, University of Nebraska, Lincoln, Nebraska 68588-0304, USA
| | - Maren Pink
- IUMSC, Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, USA
| | | | - Shutian Lu
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA
| | - Tobias Junghoefer
- Institute of Physical and Theoretical Chemistry, University of Tübingen, 72076 Tübingen, Germany
| | - Suchada Rajca
- Department of Chemistry, University of Nebraska, Lincoln, Nebraska 68588-0304, USA
| | - Stefan Stoll
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA
| | - Maria Benedetta Casu
- Institute of Physical and Theoretical Chemistry, University of Tübingen, 72076 Tübingen, Germany
| | - Andrzej Rajca
- Department of Chemistry, University of Nebraska, Lincoln, Nebraska 68588-0304, USA
| |
Collapse
|
4
|
Nowik-Boltyk EM, Junghoefer T, Glaser M, Giangrisostomi E, Ovsyannikov R, Zhang S, Shu C, Rajca A, Calzolari A, Casu MB. Long-Term Degradation Mechanisms in Application-Implemented Radical Thin Films. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37319383 DOI: 10.1021/acsami.3c02057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Blatter radical derivatives are very attractive due to their potential applications, ranging from batteries to quantum technologies. In this work, we focus on the latest insights regarding the fundamental mechanisms of radical thin film (long-term) degradation, by comparing two Blatter radical derivatives. We find that the interaction with different contaminants (such as atomic H, Ar, N, and O and molecular H2, N2, O2, H2O, and NH2) affects the chemical and magnetic properties of the thin films upon air exposure. Also, the radical-specific site, where the contaminant interaction takes place, plays a role. Atomic H and NH2 are detrimental to the magnetic properties of Blatter radicals, while the presence of molecular water influences more specifically the magnetic properties of the diradical thin films, and it is believed to be the major cause of the shorter diradical thin film lifetime in air.
Collapse
Affiliation(s)
| | - Tobias Junghoefer
- Institute of Physical and Theoretical Chemistry, University of Tübingen, 72076 Tübingen, Germany
| | - Mathias Glaser
- Institute of Physical and Theoretical Chemistry, University of Tübingen, 72076 Tübingen, Germany
| | - Erika Giangrisostomi
- Institute Methods and Instrumentation for Synchrotron Radiation Research, Helmholtz-Zentrum Berlin, 12489 Berlin, Germany
| | - Ruslan Ovsyannikov
- Institute Methods and Instrumentation for Synchrotron Radiation Research, Helmholtz-Zentrum Berlin, 12489 Berlin, Germany
| | - Shuyang Zhang
- Department of Chemistry, University of Nebraska, Lincoln, Nebraska 68588, United States
| | - Chan Shu
- Department of Chemistry, University of Nebraska, Lincoln, Nebraska 68588, United States
| | - Andrzej Rajca
- Department of Chemistry, University of Nebraska, Lincoln, Nebraska 68588, United States
| | | | - M Benedetta Casu
- Institute of Physical and Theoretical Chemistry, University of Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
5
|
Gutowski Ł, Liszewska M, Bartosewicz B, Budner B, Weyher JL, Jankiewicz BJ. Investigation of organic monoradicals reactivity using surface-enhanced Raman spectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 278:121312. [PMID: 35537259 DOI: 10.1016/j.saa.2022.121312] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/28/2022] [Accepted: 04/23/2022] [Indexed: 06/14/2023]
Abstract
Surface-enhanced Raman spectroscopy (SERS) and self-assembled monolayer (SAM) approaches were used to investigate the reactions of organic monoradicals with methanol. An attempt was made to generate monoradicals from thiophenols and phenylmethanethiols substituted with bromine, iodine, and nitro groups by irradiation with UV light. Monolayers of radical precursors were deposited on SERS substrates, which were then immersed in methanol and irradiated for 1 and/or 3, 6, 12 and 24 h in a UV photochemical reactor. Pre- and postreaction SERS spectra were obtained by using a confocal Raman microscope and compared with the spectra of expected products of the radical reaction with methanol. Our studies have shown that the efficiency of monoradical generation is highly dependent on the chemical structure of the precursor. In addition, it is shown that both the SERS substrate and experimental conditions used strongly influence the obtained results.
Collapse
Affiliation(s)
- Łukasz Gutowski
- Institute of Optoelectronics, Military University of Technology, gen. Sylwestra Kaliskiego 2, 00-908 Warsaw, Poland.
| | - Malwina Liszewska
- Institute of Optoelectronics, Military University of Technology, gen. Sylwestra Kaliskiego 2, 00-908 Warsaw, Poland.
| | - Bartosz Bartosewicz
- Institute of Optoelectronics, Military University of Technology, gen. Sylwestra Kaliskiego 2, 00-908 Warsaw, Poland.
| | - Bogusław Budner
- Institute of Optoelectronics, Military University of Technology, gen. Sylwestra Kaliskiego 2, 00-908 Warsaw, Poland.
| | - Jan L Weyher
- Institute of High-Pressure Physics, Polish Academy of Sciences, Sokołowska 29/37, 01-142 Warsaw, Poland.
| | - Bartłomiej J Jankiewicz
- Institute of Optoelectronics, Military University of Technology, gen. Sylwestra Kaliskiego 2, 00-908 Warsaw, Poland.
| |
Collapse
|
6
|
Zhang S, Pink M, Junghoefer T, Zhao W, Hsu SN, Rajca S, Calzolari A, Boudouris BW, Casu MB, Rajca A. High-Spin ( S = 1) Blatter-Based Diradical with Robust Stability and Electrical Conductivity. J Am Chem Soc 2022; 144:6059-6070. [PMID: 35333507 PMCID: PMC10439714 DOI: 10.1021/jacs.2c01141] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Triplet ground-state organic molecules are of interest with respect to several emerging technologies but usually show limited stability, especially as thin films. We report an organic diradical, consisting of two Blatter radicals, that possesses a triplet ground state with a singlet-triplet energy gap, ΔEST ≈ 0.4-0.5 kcal mol-1 (2J/k ≈ 220-275 K). The diradical possesses robust thermal stability, with an onset of decomposition above 264 °C (TGA). In toluene/chloroform, glassy matrix, and fluid solution, an equilibrium between two conformations with ΔEST ≈ 0.4 kcal mol-1 and ΔEST ≈ -0.7 kcal mol-1 is observed, favoring the triplet ground state over the singlet ground-state conformation in the 110-330 K temperature range. The diradical with the triplet ground-state conformation is found exclusively in crystals and in a polystyrene matrix. The crystalline neutral diradical is a good electrical conductor with conductivity comparable to the thoroughly optimized bis(thiazolyl)-related monoradicals. This is surprising because the triplet ground state implies that the underlying π-system is cross-conjugated and thus is not compatible with either good conductance or electron delocalization. The diradical is evaporated under ultra-high vacuum to form thin films, which are stable in air for at least 18 h, as demonstrated by X-ray photoelectron and electron paramagnetic resonance (EPR) spectroscopies.
Collapse
Affiliation(s)
- Shuyang Zhang
- Department of Chemistry, University of Nebraska, Lincoln, Nebraska 68588-0304, United States
| | - Maren Pink
- IUMSC, Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, United States
| | - Tobias Junghoefer
- Institute of Physical and Theoretical Chemistry, University of Tübingen, 72076 Tübingen, Germany
| | - Wenchao Zhao
- Charles D. Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, United States
| | - Sheng-Ning Hsu
- Charles D. Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, United States
| | - Suchada Rajca
- Department of Chemistry, University of Nebraska, Lincoln, Nebraska 68588-0304, United States
| | | | - Bryan W. Boudouris
- Charles D. Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, United States
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, United States
| | - Maria Benedetta Casu
- Institute of Physical and Theoretical Chemistry, University of Tübingen, 72076 Tübingen, Germany
| | - Andrzej Rajca
- Department of Chemistry, University of Nebraska, Lincoln, Nebraska 68588-0304, United States
| |
Collapse
|
7
|
Kapuściński S, Anand B, Bartos P, Garcia Fernandez JM, Kaszyński P. Tethered Blatter Radical for Molecular Grafting: Synthesis of 6-Hydroxyhexyloxy, Hydroxymethyl, and Bis(hydroxymethyl) Derivatives and Their Functionalization. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27041176. [PMID: 35208966 PMCID: PMC8876519 DOI: 10.3390/molecules27041176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 01/30/2022] [Accepted: 02/01/2022] [Indexed: 02/01/2023]
Abstract
Synthetic access to 7-CF3-1,4-dihydrobenzo[e][1,2,4]triazin-4-yl radicals containing 4-(6-hydroxyhexyloxy)phenyl, 4-hydroxymethylphenyl or 3,5-bis(hydroxymethyl)phenyl groups at the C(3) position and their conversion to tosylates and phosphates are described. The tosylates were used to obtain disulfides and an azide with good yields. The Blatter radical containing the azido group underwent a copper(I)-catalyzed azide-alkyne cycloaddition with phenylacetylene under mild conditions, giving the [1,2,3]triazole product in 84% yield. This indicates the suitability of the azido derivative for grafting Blatter radical onto other molecular objects via the CuAAC "click" reaction. The presented derivatives are promising for accessing surfaces and macromolecules spin-labeled with the Blatter radical.
Collapse
Affiliation(s)
- Szymon Kapuściński
- Faculty of Chemistry, University of Łódź, Tamka 12, 91-403 Łódź, Poland; (S.K.); (P.B.)
- Centre for Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Łódź, Poland;
| | - Bindushree Anand
- Centre for Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Łódź, Poland;
| | - Paulina Bartos
- Faculty of Chemistry, University of Łódź, Tamka 12, 91-403 Łódź, Poland; (S.K.); (P.B.)
| | - Jose M. Garcia Fernandez
- Institute for Chemical Research, CSIC, University of Sevilla, Americo Vespucio 49, 41092 Sevilla, Spain
- Correspondence: (J.M.G.F.); (P.K.)
| | - Piotr Kaszyński
- Faculty of Chemistry, University of Łódź, Tamka 12, 91-403 Łódź, Poland; (S.K.); (P.B.)
- Centre for Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Łódź, Poland;
- Department of Chemistry, Middle Tennessee State University, Murfreesboro, TN 37132, USA
- Correspondence: (J.M.G.F.); (P.K.)
| |
Collapse
|
8
|
Lu Y, Li S, Chen F, Ma H, Gao C, Xue L. Development of coin-shaped ZIF-7 functionalized superhydrophobic polysulfone composite foams for continuous removal of oily contaminants from water. JOURNAL OF HAZARDOUS MATERIALS 2022; 421:126788. [PMID: 34364204 DOI: 10.1016/j.jhazmat.2021.126788] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 06/13/2023]
Abstract
Development of efficient absorbent materials for oil spillage clean-up and environmental pollution remediation is highly desired but remains a challenge. In this work, superhydrophobic/superoleophilic polysulfone based ZIF-7 composite (SPZ) foams were fabricated via chemical modification of polysulfone and integrating with hydrophobic coin-shaped ZIF-7 particles. The synergistic approaches provided the SPZ foams with high porosity, low density and superhydrophobic/superoleophilic features (θwater=162.3°, θoil=0°) and outstanding self-cleaning property. The as-prepared SPZ foams exhibited highly selective absorption capacity (up to 3800 wt%) for various kinds of oils and organic solvents. Furthermore, the SPZ foams still maintained 95.2% of its pristine absorption capacity and the θwater remained at 143.6° after ten absorption/distillation cycles. The SPZ foam showed outstanding separation ability towards different types of emulsions with separation efficiency all above 97%. The high oil/water separation efficiency and robust reusability made the SPZ foams promising absorbent in dealing with practical oil spills.
Collapse
Affiliation(s)
- Yeqiang Lu
- Center for Membrane Separation and Water Science & Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang Province 310014, China.
| | - Shiyang Li
- Center for Membrane Separation and Water Science & Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang Province 310014, China
| | - Fuyou Chen
- Center for Membrane Separation and Water Science & Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang Province 310014, China
| | - Hui Ma
- Center for Membrane Separation and Water Science & Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang Province 310014, China
| | - Congjie Gao
- Center for Membrane Separation and Water Science & Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang Province 310014, China; Huzhou Research Institute, Zhejiang Center for Membrane Separation and Water Treatment, Huzhou, Zhejiang Province 313000, China
| | - Lixin Xue
- Center for Membrane Separation and Water Science & Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang Province 310014, China; Huzhou Research Institute, Zhejiang Center for Membrane Separation and Water Treatment, Huzhou, Zhejiang Province 313000, China.
| |
Collapse
|
9
|
Poggini L, Lunghi A, Collauto A, Barbon A, Armelao L, Magnani A, Caneschi A, Totti F, Sorace L, Mannini M. Chemisorption of nitronyl-nitroxide radicals on gold surface: an assessment of morphology, exchange interaction and decoherence time. NANOSCALE 2021; 13:7613-7621. [PMID: 33881100 DOI: 10.1039/d1nr00640a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A combined Tof-SIMS, XPS and STM characterization has been performed to study the deposition of a sulphur-functionalized nitronyl nitroxide radical on Au(111) clearly demonstrating the chemisorption of intact molecules. Continuous -wave EPR characterization showed that the radical molecules maintain their paramagnetic character. Pulsed EPR measurements allowed to determine the decoherence time of the nanostructure at 80 K, which turned out to be comparable to the one measured in frozen solution and longer than previously reported for many radicals and other paramagnetic molecules at much lower temperatures. Furthermore, we conducted a state-of-the-art ab initio molecular dynamics study, suggesting different possible scenarios for chemisorption geometries and predicting the energetically favoured geometry. Calculation of the magnetic properties indicates a partial non-innocent role of the gold surface in determining the magnetic interactions between radicals in packed structures. This suggests that the observed EPR spectrum is to be attributed to low-density domains of disordered radicals interacting via dipolar interactions.
Collapse
Affiliation(s)
- Lorenzo Poggini
- Department of Chemistry "Ugo Schiff" and INSTM Research Unit, University of Florence, I-50019 Sesto Fiorentino, Italy. and ICCOM-CNR, via Madonna del Piano 10, 50019 Sesto, Fiorentino, Italy.
| | - Alessandro Lunghi
- Department of Chemistry "Ugo Schiff" and INSTM Research Unit, University of Florence, I-50019 Sesto Fiorentino, Italy.
| | - Alberto Collauto
- Department of Chemical Sciences and INSTM Research Unit, University of Padua, I-35131 Padova, Italy
| | - Antonio Barbon
- Department of Chemical Sciences and INSTM Research Unit, University of Padua, I-35131 Padova, Italy
| | - Lidia Armelao
- Department of Chemical Sciences and INSTM Research Unit, University of Padua, I-35131 Padova, Italy and Institute of Condensed Matter Chemistry and Technologies for Energy, National Research Council of Italy, ICMATE-CNR, via Marzolo 1, 35131 Padua, Italy and Department of Chemical Sciences and Materials Technologies, National Research Council of Italy, DSCTM - CNR, Piazzale A. Moro 7, 00185 Rome, Italy
| | - Agnese Magnani
- Department of Biotechnologies, Chemistry and Pharmacy, and INSTM Research Unit, University of Siena, I-53100 Siena, Italy
| | - Andrea Caneschi
- DIEF - Department of Industrial Engineering and INSTM Research Unit, University of Florence, Via S. Marta 3, I-50139 Florence, Italy
| | - Federico Totti
- Department of Chemistry "Ugo Schiff" and INSTM Research Unit, University of Florence, I-50019 Sesto Fiorentino, Italy.
| | - Lorenzo Sorace
- Department of Chemistry "Ugo Schiff" and INSTM Research Unit, University of Florence, I-50019 Sesto Fiorentino, Italy.
| | - Matteo Mannini
- Department of Chemistry "Ugo Schiff" and INSTM Research Unit, University of Florence, I-50019 Sesto Fiorentino, Italy.
| |
Collapse
|
10
|
Shu C, Pink M, Junghoefer T, Nadler E, Rajca S, Casu MB, Rajca A. Synthesis and Thin Films of Thermally Robust Quartet ( S = 3/2) Ground State Triradical. J Am Chem Soc 2021; 143:5508-5518. [PMID: 33787241 DOI: 10.1021/jacs.1c01305] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
High-spin (S = 3/2) organic triradicals may offer enhanced properties with respect to several emerging technologies, but those synthesized to date typically exhibit small doublet quartet energy gaps and/or possess limited thermal stability and processability. We report a quartet ground state triradical 3, synthesized by a Pd(0)-catalyzed radical-radical cross-coupling reaction, which possesses two doublet-quartet energy gaps, ΔEDQ ≈ 0.2-0.3 kcal mol-1 and ΔEDQ2 ≈ 1.2-1.8 kcal mol-1. The triradical has a 70+% population of the quartet ground state at room temperature and good thermal stability with onset of decomposition at >160 °C under an inert atmosphere. Magnetic properties of 3 are characterized by SQUID magnetometry in polystyrene glass and by quantitative EPR spectroscopy. Triradical 3 is evaporated under ultrahigh vacuum to form thin films of intact triradicals on silicon substrate, as confirmed by high-resolution X-ray photoelectron spectroscopy. AFM and SEM images of the ∼1 nm thick films indicate that the triradical molecules form islands on the substrate. The films are stable under ultrahigh vacuum for at least 17 h but show onset of decomposition after 4 h at ambient conditions. The drop-cast films are less prone to degradation in air and have a longer lifetime.
Collapse
Affiliation(s)
- Chan Shu
- Department of Chemistry, University of Nebraska, Lincoln, Nebraska 68588-0304, United States
| | - Maren Pink
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, United States
| | - Tobias Junghoefer
- Institute of Physical and Theoretical Chemistry, University of Tübingen, 72076 Tübingen, Germany
| | - Elke Nadler
- Institute of Physical and Theoretical Chemistry, University of Tübingen, 72076 Tübingen, Germany
| | - Suchada Rajca
- Department of Chemistry, University of Nebraska, Lincoln, Nebraska 68588-0304, United States
| | - Maria Benedetta Casu
- Institute of Physical and Theoretical Chemistry, University of Tübingen, 72076 Tübingen, Germany
| | - Andrzej Rajca
- Department of Chemistry, University of Nebraska, Lincoln, Nebraska 68588-0304, United States
| |
Collapse
|