1
|
Yuan J, Bai Y, Lenz C, Reilly-Schott V, Schneider H, Lai B, Krömer JO. The Impact of Redox Mediators on the Electrogenic and Physiological Properties of Synechocystis sp. PCC 6803 in a Biophotovoltaic System. CHEMSUSCHEM 2025:e2402543. [PMID: 40222956 DOI: 10.1002/cssc.202402543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 04/11/2025] [Accepted: 04/13/2025] [Indexed: 04/15/2025]
Abstract
Biophotovoltaics (BPV) is a novel biohybrid solution to utilize solar energy potentially at high energy efficiency, by exploiting the water splitting in oxygenic photoautotrophs and electrochemical electron harvest. Unlike model electrogens, known phototrophic microbes benefit from redox mediators for extracting the photosynthetic electrons and transferring them to the external electron sink for further utilization. In this work, three representative mediators, i.e., 1,4-benzoquinone (BQ), [Co(bpy)3]2+ (CoBP), and ferricyanide, are chosen and systematically evaluated for their impacts on the microbial physiology and electrogenic activity of Synechocystis sp. PCC6803. This work aimed to generate a knowledge base to guide future mediator selection and design. The results suggest ferricyanide remains the best option, as being the only mediator that promoted long-term current output. However, both BQ and CoBP produce higher current densities than ferricyanide, albeit only for a short time. Comprehensive analysis of the photosystem using fluorometric methods suggests that BQ strongly increases the PQ/PQH2 ratio, while CoBP inhibits the electron flow from plastoquinone to photosystem I at high concentrations. Both mediators interrupt the photosynthetic electron flow and consequently cell growth. Eliminating the contribution of storage carbon to the intracellular electron flux demonstrates that all three chemicals can extract electrons originating from water splitting.
Collapse
Affiliation(s)
- Jianqi Yuan
- Department of Microbial Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318, Leipzig, Germany
| | - Yu Bai
- Department of Microbial Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318, Leipzig, Germany
| | - Claudius Lenz
- Department of Microbial Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318, Leipzig, Germany
| | - Vincent Reilly-Schott
- Department of Microbial Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318, Leipzig, Germany
| | - Hans Schneider
- Department of Microbial Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318, Leipzig, Germany
| | - Bin Lai
- Department of Microbial Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318, Leipzig, Germany
| | - Jens Olaf Krömer
- Department of Microbial Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318, Leipzig, Germany
| |
Collapse
|
2
|
Li F, Zhang B, Long X, Yu H, Shi S, You Z, Liu Q, Li C, Tang R, Wu S, An X, Li Y, Shi L, Nealson KH, Song H. Dynamic synthesis and transport of phenazine-1-carboxylic acid to boost extracellular electron transfer rate. Nat Commun 2025; 16:2882. [PMID: 40128539 PMCID: PMC11933291 DOI: 10.1038/s41467-025-57497-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 02/24/2025] [Indexed: 03/26/2025] Open
Abstract
Electron shuttle plays a decisive role in extracellular electron transfer (EET) of exoelectrogens. However, neither identifying the most efficient electron shuttle molecule nor programming its optimal synthesis level that boosts EET has been established. Here, the phenazine-1-carboxylic acid (PCA) biosynthesis pathway is first constructed to synthesize PCA at an optimal level for EET in Shewanella oneidensis MR-1. To facilitate PCA transport, the porin OprF is expressed to improve cell membrane permeability, the cytotoxicity of which, however, impaired cell growth. To mitigate cytotoxicity, PCA biosensor is designed to dynamically decouple PCA biosynthesis and transport, resulting in the maximum output power density reaching 2.85 ± 0.10 W m-2, 33.75-fold higher than wild-type strain. Moreover, extensive analyses of cellular electrophysiology, metabolism, and behaviors reveal PCA shuttles electrons from cell to electrode, which is the dominant mechanism underlying PCA-boosted EET. We conclude dynamic synthesis and transport of PCA is an efficient strategy for enhancing EET.
Collapse
Affiliation(s)
- Feng Li
- State Key Laboratory of Synthetic Biology, and School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Baocai Zhang
- State Key Laboratory of Synthetic Biology, and School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- College of Life and Health Sciences, Northeastern University, Shenyang, 110169, China
| | - Xizi Long
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Huan Yu
- State Key Laboratory of Synthetic Biology, and School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- College of Life and Health Sciences, Northeastern University, Shenyang, 110169, China
| | - Sicheng Shi
- State Key Laboratory of Synthetic Biology, and School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Zixuan You
- State Key Laboratory of Synthetic Biology, and School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Qijing Liu
- State Key Laboratory of Synthetic Biology, and School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Chao Li
- State Key Laboratory of Synthetic Biology, and School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Rui Tang
- State Key Laboratory of Synthetic Biology, and School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Shengbo Wu
- State Key Laboratory of Synthetic Biology, and School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Xingjuan An
- State Key Laboratory of Synthetic Biology, and School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Yuanxiu Li
- State Key Laboratory of Synthetic Biology, and School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Liang Shi
- Department of Biological Sciences and Technology, School of Environmental Studies, China University of Geoscience in Wuhan, Wuhan, Hubei, 430074, China
| | - Kenneth H Nealson
- Departments of Earth Science & Biological Sciences, University of Southern California, 4953 Harriman Ave., South Pasadena, CA, 91030, USA
| | - Hao Song
- State Key Laboratory of Synthetic Biology, and School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.
- College of Life and Health Sciences, Northeastern University, Shenyang, 110169, China.
| |
Collapse
|
3
|
Langford D, Reva Y, Bo Y, Gubanov K, Wu M, Günay-Gürer A, Mai LA, Crisp RW, Engelmann I, Spiecker E, Fink RH, Kahnt A, Jana B, Guldi DM. Improving Photocatalytic Hydrogen Generation via Polycitric Acid-based Carbon Nanodots. Angew Chem Int Ed Engl 2025; 64:e202418626. [PMID: 39791497 DOI: 10.1002/anie.202418626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 12/18/2024] [Accepted: 01/07/2025] [Indexed: 01/12/2025]
Abstract
Bottom-up syntheses of carbon nanodots (CND) using solvothermal treatment of citric acid are known to afford nanometer-sized, amorphous polycitric acid-based materials. The addition of suitable co-reactants in the form of in situ synthesized N-hetero-π-conjugated chromophores facilitates hereby the overall functionalization. Reports regarding the influence of CND on the properties of, for example, N-hetero-π-conjugated chromophores are scarce. Thus, our incentive was to design a CND model that features phenazine (P-CND) - a well-known N-hetero-π-conjugated chromophore - to investigate the influence of the CND matrix on its redox chemistry as well as photochemistry. The scope of our work was to go beyond investigating the electrochemical properties of the resulting P-CND by shedding light onto differences relative to nano-aggregates of phenazine (PNZNA), which served as reference. In particular, chemical as well as electrochemical reduction of PNZNA initiated a reaction cascade that affords the primary reduction intermediate, that is, the reduced and protonated (PNZ-H)⋅. In accordance with existing literature, the final product of a bimolecular disproportionation was 5,10-dihydrophenazine (PNZ-H2). Reducing P-CND also resulted in the formation of (PNZ-H)⋅. But, no evidence for a subsequent bimolecular disproportionation was gathered. Instead, (PNZ-H)⋅ as an integrative part of P-CND was found to be actively involved in a H2 generation reaction. A more than twofold increase in efficiency compared to PNZNA under identical conditions was the consequence.
Collapse
Affiliation(s)
- Daniel Langford
- Friedrich-Alexander-Universität Erlangen-Nürnberg, FAU Profile Center Solar, Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM), Egerlandstraße 3, 91058, Erlangen, Germany
| | - Yana Reva
- Friedrich-Alexander-Universität Erlangen-Nürnberg, FAU Profile Center Solar, Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM), Egerlandstraße 3, 91058, Erlangen, Germany
| | - Yifan Bo
- Friedrich-Alexander-Universität Erlangen-Nürnberg, FAU Profile Center Solar, Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM), Egerlandstraße 3, 91058, Erlangen, Germany
| | - Kirill Gubanov
- Department of Chemistry and Pharmacy, Physical Chemistry II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058, Erlangen, Germany
| | - Mingjian Wu
- Institute of Micro- and Nanostructure Research (IMN), Center for Nanoanalysis and Electron Microscopy (CENEM), Interdisciplinary Center for Nanostructured Films (IZNF), Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058, Erlangen, Germany
| | - Ayşe Günay-Gürer
- Friedrich-Alexander-Universität Erlangen-Nürnberg, FAU Profile Center Solar, Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM), Egerlandstraße 3, 91058, Erlangen, Germany
| | - Lukas A Mai
- Friedrich-Alexander-Universität Erlangen-Nürnberg, FAU Profile Center Solar, Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM), Egerlandstraße 3, 91058, Erlangen, Germany
| | - Ryan W Crisp
- Department of Chemistry and Pharmacy, Chair of Chemistry of Thin Film Materials, Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstraße 3, 91058, Erlangen, Germany
| | - Iryna Engelmann
- Leibniz Institute of Surface Engineering (IOM), Permoserstr. 15, 04318, Leipzig, Germany
| | - Erdmann Spiecker
- Institute of Micro- and Nanostructure Research (IMN), Center for Nanoanalysis and Electron Microscopy (CENEM), Interdisciplinary Center for Nanostructured Films (IZNF), Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058, Erlangen, Germany
| | - Rainer H Fink
- Department of Chemistry and Pharmacy, Physical Chemistry II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058, Erlangen, Germany
| | - Axel Kahnt
- Leibniz Institute of Surface Engineering (IOM), Permoserstr. 15, 04318, Leipzig, Germany
| | - Bikash Jana
- Friedrich-Alexander-Universität Erlangen-Nürnberg, FAU Profile Center Solar, Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM), Egerlandstraße 3, 91058, Erlangen, Germany
- Centre for Cooperative Research in Biomaterials (CIC BiomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, Donostia San Sebastián, Spain
| | - Dirk M Guldi
- Friedrich-Alexander-Universität Erlangen-Nürnberg, FAU Profile Center Solar, Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM), Egerlandstraße 3, 91058, Erlangen, Germany
| |
Collapse
|
4
|
Jacquet M, Izzo M, Wróbel P, Strawski M, Trotta M, Jurczakowski R, Kargul J. Space-confined mediation of electron transfer for efficient biomolecular solar conversion. MATERIALS HORIZONS 2025; 12:1558-1567. [PMID: 39641770 DOI: 10.1039/d4mh01266f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Solar-converting nanosystems using self-renewing biomaterial resources carry great potential for developing sustainable technologies to ameliorate climate change and minimize reliance on fossil fuels. By mimicking natural photosynthesis, diverse proof-of-concept biosolar systems have been used to produce green electricity, fuels and chemicals. Efforts so far have focused on optimizing light harvesting, biocatalyst loading and electron transfer (ET), however, the long-term performance of best-performing systems remains a major challenge due to the intensive use of diffusive, toxic mediators. To overcome this limitation, we developed a rationally designed nanosystem based on the entrapment of non-toxic mediator, ferrocene dimethanol (Fc), localized at the abiotic-biotic molecular interface that efficiently promoted ET between electrode surface and two photosynthetic proteins: cytochrome c and photosystem I. We demonstrate that space-confined Fc mediators (1 nM) are as effective in terms of ET kinetics as a 500 000-fold higher concentration of freely-diffusive Fc. The Fc-confined biophotocathodes showed a milestone photocurrent density of 14 μA cm-2 under oxic conditions compared to analogous planar (2D) biophotoelectrodes, with a photoconductive biolayer stable for over 5 months. The space-confined ET mediation reported in this work opens a new avenue for efficiently interfacing biomachineries, providing a benchmark design advancement in the quest for viable biohybrid technologies.
Collapse
Affiliation(s)
- Margot Jacquet
- Solar Fuels Laboratory, Centre of New Technology, University of Warsaw, Banacha 2C, 02-097 Warsaw, Poland.
| | - Miriam Izzo
- Solar Fuels Laboratory, Centre of New Technology, University of Warsaw, Banacha 2C, 02-097 Warsaw, Poland.
| | - Piotr Wróbel
- Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
| | - Marcin Strawski
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Massimo Trotta
- Institute for Physical Chemical Processes, National Research Council, E. Orabona 4, 70125 Bari, Italy
| | - Rafał Jurczakowski
- Electrochemistry of New Materials, Centre of Biological and Chemical Sciences, Faculty of Chemistry, University of Warsaw, ul. Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Joanna Kargul
- Solar Fuels Laboratory, Centre of New Technology, University of Warsaw, Banacha 2C, 02-097 Warsaw, Poland.
| |
Collapse
|
5
|
Schneider H, Lai B, Krömer JO. Understanding the electron pathway fluidity of Synechocystis in biophotovoltaics. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e17225. [PMID: 39868486 PMCID: PMC11771661 DOI: 10.1111/tpj.17225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/07/2024] [Accepted: 12/13/2024] [Indexed: 01/28/2025]
Abstract
Biophotovoltaics offers a promising low-carbon footprint approach to utilize solar energy. It aims to couple natural oxygenic photosynthetic electrons to an external electron sink. This lays the foundation for a potentially high light-to-energy efficiency of the Biophotovoltaic process. However, there are still uncertainties around demonstrating the direct coupling of electron fluxes between photosystems and the external electrode. The dynamic cellular electron transfer network linked to physiological and environmental parameters poses a particular challenge here. In this work, the active cellular electron transfer network was modulated by tuning the cultivating conditions of Synechocystis and the operating conditions in Biophotovoltaics. The current output during darkness was found to be determined by the intracellular glycogen levels. Minimizing the intracellular glycogen pools also eliminated the dark-current output. Moreover, our results provide strong evidence that water splitting in photosystem II is the electron source enabling photocurrent, bypassing the microbe's metabolism. Eliminating the storage carbon as possible source of electrons did not reduce the specific photocurrent output, indicating an efficient coupling of photosynthetic electron flux to the anode. Furthermore, inhibiting respiration on the one hand increased the photocurrent and on the other hand showed a negative effect on the dark-current output. This suggested a switchable role of the respiratory electron transfer chain in the extracellular electron transfer pathway. Overall, we conclude that Synechocystis dynamically switches electron sources and utilizes different extracellular transfer pathways for the current output toward the external electron sink, depending on the physiological and environmental conditions.
Collapse
Affiliation(s)
- Hans Schneider
- Systems Biotechnology Group, Department Microbial BiotechnologyHelmholtz Centre for Environmental Research – UFZLeipzig04318Germany
| | - Bin Lai
- BMBF Junior Research Group Biophotovoltaics, Department Microbial BiotechnologyHelmholtz Centre for Environmental Research – UFZLeipzig04318Germany
| | - Jens O. Krömer
- Systems Biotechnology Group, Department Microbial BiotechnologyHelmholtz Centre for Environmental Research – UFZLeipzig04318Germany
| |
Collapse
|
6
|
Qi X, Liu X, Gu Y, Liang P. Whole-cell biophotovoltaic systems for renewable energy generation: A systematic analysis of existing knowledge. Bioelectrochemistry 2024; 158:108695. [PMID: 38531227 DOI: 10.1016/j.bioelechem.2024.108695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/20/2024] [Accepted: 03/22/2024] [Indexed: 03/28/2024]
Abstract
The development of carbon-neutral fuel sources is an essential step in addressing the global fossil energy crisis. Whole-cell biophotovoltaic systems (BPVs) are a renewable, non-polluting energy-generating device that utilizes oxygenic photosynthetic microbes (OPMs) to split water molecules and generate bioelectricity under the driving of light energy. Since 2006, BPVs have been widely studied, with the order magnitudes of power density increasing from 10-4 mW/m2 to 103 mW/m2. This review examines the extracellular electron transfer (EET) mechanisms and regulation techniques of BPVs from biofilm to external environment. It is found that the EET of OPMs is mainly mediated by membrane proteins, with terminal oxidase limiting the power output. Synechocystis sp. PCC6803 and Chlorella vulgaris are two species that produce high power density in BPVs. The use of metal nanoparticles mixing, 3D pillar array electrodes, microfluidic technology, and transient-state operation models can significantly enhance power density. Challenges and potential research directions are discussed, including a deeper analysis of EET mechanisms and dynamics, the development of modular devices, integration of multiple regulatory components, and the exploration of novel BPV technologies.
Collapse
Affiliation(s)
- Xiang Qi
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Xinning Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Yuyi Gu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Peng Liang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
7
|
Shi HX, Bao HW, Wu GY. Solvation controlled excited-state dynamics in a donor-acceptor phenazine-imidazole derivative. RSC Adv 2024; 14:17071-17076. [PMID: 38808230 PMCID: PMC11130646 DOI: 10.1039/d4ra02417f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 05/13/2024] [Indexed: 05/30/2024] Open
Abstract
In the past few decades, significant efforts have been devoted to developing phenazine derivatives in various fields such as medicine, pesticides, dyes, and conductive materials owing to their highly Stokes-shifted fluorescence and distinctive photophysical properties. The modulation of the surrounding environment can effectively influence the luminescent behavior of phenazine derivatives, prompting us to investigate the solvent effect on the excited state dynamics. Herein, we present the solvent controlled excited state dynamics of a novel triphenylamine-based phenazine-imidazole molecule (TPAIP) through steady-state spectra and femtosecond transient absorption spectra. The fluorescence emission spectrum exhibited a redshift with increasing solvent polarity, indicating the existence of a charge transfer state. Furthermore, by tracking the femtosecond transient absorption spectra of TPAIP, we found that the nature of the relaxed S1 state was strongly influenced by the solvent polarity: intersystem crossing character appears in apolar solvent, whereas intramolecular charge transfer character occurs in polar solvent because of solvation. These findings provide significant theoretical insights into the impact of solvents on the excited state dynamics within phenazine derivatives. This understanding supports diverse applications ranging from advanced biological probe design to photocatalysis and pharmaceutical research.
Collapse
Affiliation(s)
- Hai-Xiong Shi
- School of Chemical Engineering, Lanzhou University of Arts and Science Lanzhou Gansu 730000 China
| | - Hong-Wei Bao
- School of Chemical Engineering, Lanzhou University of Arts and Science Lanzhou Gansu 730000 China
| | - Gui-Yuan Wu
- Anhui Province Key Laboratory for Control and Applications of Optoelectronic Information Materials, School of Physics and Electronic Information, Anhui Normal University Wuhu 241002 China
| |
Collapse
|
8
|
Zhang J, Li F, Liu D, Liu Q, Song H. Engineering extracellular electron transfer pathways of electroactive microorganisms by synthetic biology for energy and chemicals production. Chem Soc Rev 2024; 53:1375-1446. [PMID: 38117181 DOI: 10.1039/d3cs00537b] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
The excessive consumption of fossil fuels causes massive emission of CO2, leading to climate deterioration and environmental pollution. The development of substitutes and sustainable energy sources to replace fossil fuels has become a worldwide priority. Bio-electrochemical systems (BESs), employing redox reactions of electroactive microorganisms (EAMs) on electrodes to achieve a meritorious combination of biocatalysis and electrocatalysis, provide a green and sustainable alternative approach for bioremediation, CO2 fixation, and energy and chemicals production. EAMs, including exoelectrogens and electrotrophs, perform extracellular electron transfer (EET) (i.e., outward and inward EET), respectively, to exchange energy with the environment, whose rate determines the efficiency and performance of BESs. Therefore, we review the synthetic biology strategies developed in the last decade for engineering EAMs to enhance the EET rate in cell-electrode interfaces for facilitating the production of electricity energy and value-added chemicals, which include (1) progress in genetic manipulation and editing tools to achieve the efficient regulation of gene expression, knockout, and knockdown of EAMs; (2) synthetic biological engineering strategies to enhance the outward EET of exoelectrogens to anodes for electricity power production and anodic electro-fermentation (AEF) for chemicals production, including (i) broadening and strengthening substrate utilization, (ii) increasing the intracellular releasable reducing equivalents, (iii) optimizing c-type cytochrome (c-Cyts) expression and maturation, (iv) enhancing conductive nanowire biosynthesis and modification, (v) promoting electron shuttle biosynthesis, secretion, and immobilization, (vi) engineering global regulators to promote EET rate, (vii) facilitating biofilm formation, and (viii) constructing cell-material hybrids; (3) the mechanisms of inward EET, CO2 fixation pathway, and engineering strategies for improving the inward EET of electrotrophic cells for CO2 reduction and chemical production, including (i) programming metabolic pathways of electrotrophs, (ii) rewiring bioelectrical circuits for enhancing inward EET, and (iii) constructing microbial (photo)electrosynthesis by cell-material hybridization; (4) perspectives on future challenges and opportunities for engineering EET to develop highly efficient BESs for sustainable energy and chemical production. We expect that this review will provide a theoretical basis for the future development of BESs in energy harvesting, CO2 fixation, and chemical synthesis.
Collapse
Affiliation(s)
- Junqi Zhang
- Frontier Science Center for Synthetic Biology (Ministry of Education), Key Laboratory of Systems Bioengineering, and School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.
| | - Feng Li
- Frontier Science Center for Synthetic Biology (Ministry of Education), Key Laboratory of Systems Bioengineering, and School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.
| | - Dingyuan Liu
- Frontier Science Center for Synthetic Biology (Ministry of Education), Key Laboratory of Systems Bioengineering, and School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.
| | - Qijing Liu
- Frontier Science Center for Synthetic Biology (Ministry of Education), Key Laboratory of Systems Bioengineering, and School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.
| | - Hao Song
- Frontier Science Center for Synthetic Biology (Ministry of Education), Key Laboratory of Systems Bioengineering, and School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
9
|
Zhang P, Zhou X, Wang X, Li Z. Enhanced bidirectional extracellular electron transfer based on biointerface interaction of conjugated polymers-bacteria biohybrid system. Colloids Surf B Biointerfaces 2023; 228:113383. [PMID: 37295125 DOI: 10.1016/j.colsurfb.2023.113383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/15/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023]
Abstract
The low bacteria loading capacity and low extracellular electron transfer (EET) efficiency are two major bottlenecks restricting the performance of the bioelectrochemical systems from practical applications. Herein, we demonstrated that conjugated polymers (CPs) could enhance the bidirectional EET efficiency through the intimate biointerface interactions of CPs-bacteria biohybrid system. Upon the formation of CPs/bacteria biohybrid, thick and intact CPs-biofilm formed which ensured close biointerface interactions between bacteria-to-bacteria and bacteria-to-electrode. CPs could promote the transmembrane electron transfer through intercalating into the cell membrane of bacteria. Utilizing the CPs-biofilm biohybrid electrode as anode in microbial fuel cell (MFC), the power generation and lifetime of MFC had greatly improved based on accelerated outward EET. Moreover, using the CPs-biofilm biohybrid electrode as cathode in electrochemical cell, the current density was increased due to the enhanced inward EET. Therefore, the intimate biointerface interaction between CPs and bacteria greatly enhanced the bidirectional EET, indicating that CPs exhibit promising applications in both MFC and microbial electrosynthesis.
Collapse
Affiliation(s)
- Pengbo Zhang
- School of Chemistry and Biological Engineering, University of Science & Technology Beijing, Beijing 100083, PR China
| | - Xin Zhou
- School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, PR China
| | - Xiaoyu Wang
- School of Materials Science and Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, PR China.
| | - Zhengping Li
- School of Chemistry and Biological Engineering, University of Science & Technology Beijing, Beijing 100083, PR China.
| |
Collapse
|
10
|
Thorwall S, Trivedi V, Ottum E, Wheeldon I. Population genomics-guided engineering of phenazine biosynthesis in Pseudomonas chlororaphis. Metab Eng 2023; 78:223-234. [PMID: 37369325 DOI: 10.1016/j.ymben.2023.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 06/07/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023]
Abstract
The emergence of next-generation sequencing (NGS) technologies has made it possible to not only sequence entire genomes, but also identify metabolic engineering targets across the pangenome of a microbial population. This study leverages NGS data as well as existing molecular biology and bioinformatics tools to identify and validate genomic signatures for improving phenazine biosynthesis in Pseudomonas chlororaphis. We sequenced a diverse collection of 34 Pseudomonas isolates using short- and long-read sequencing techniques and assembled whole genomes using the NGS reads. In addition, we assayed three industrially relevant phenotypes (phenazine production, biofilm formation, and growth temperature) for these isolates in two different media conditions. We then provided the whole genomes and phenazine production data to a unitig-based microbial genome-wide association study (mGWAS) tool to identify novel genomic signatures responsible for phenazine production in P. chlororaphis. Post-processing of the mGWAS analysis results yielded 330 significant hits influencing the biosynthesis of one or more phenazine compounds. Based on a quantitative metric (called the phenotype score), we elucidated the most influential hits for phenazine production and experimentally validated them in vivo in the most optimal phenazine producing strain. Two genes significantly increased phenazine-1-carboxamide (PCN) production: a histidine transporter (ProY_1), and a putative carboxypeptidase (PS__04251). A putative MarR-family transcriptional regulator decreased PCN titer when overexpressed in a high PCN producing isolate. Overall, this work seeks to demonstrate the utility of a population genomics approach as an effective strategy in enabling the identification of targets for metabolic engineering of bioproduction hosts.
Collapse
Affiliation(s)
- Sarah Thorwall
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA 92521, USA.
| | - Varun Trivedi
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA 92521, USA.
| | - Eva Ottum
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA 92521, USA
| | - Ian Wheeldon
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA 92521, USA; Center for Industrial Biotechnology, University of California, Riverside, CA 92521, USA; Integrative Institute for Genome Biology, University of California, Riverside, CA 92521, USA.
| |
Collapse
|
11
|
Zhu H, Wang H, Zhang Y, Li Y. Biophotovoltaics: Recent advances and perspectives. Biotechnol Adv 2023; 64:108101. [PMID: 36681132 DOI: 10.1016/j.biotechadv.2023.108101] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 01/02/2023] [Accepted: 01/15/2023] [Indexed: 01/19/2023]
Abstract
Biophotovoltaics (BPV) is a clean power generation technology that uses self-renewing photosynthetic microorganisms to capture solar energy and generate electrical current. Although the internal quantum efficiency of charge separation in photosynthetic microorganisms is very high, the inefficient electron transfer from photosystems to the extracellular electrodes hampered the electrical outputs of BPV systems. This review summarizes the approaches that have been taken to increase the electrical outputs of BPV systems in recent years. These mainly include redirecting intracellular electron transfer, broadening available photosynthetic microorganisms, reinforcing interfacial electron transfer and design high-performance devices with different configurations. Furthermore, three strategies developed to extract photosynthetic electrons were discussed. Among them, the strategy of using synthetic microbial consortia could circumvent the weak exoelectrogenic activity of photosynthetic microorganisms and the cytotoxicity of exogenous electron mediators, thus show great potential in enhancing the power output and prolonging the lifetime of BPV systems. Lastly, we prospected how to facilitate electron extraction and further improve the performance of BPV systems.
Collapse
Affiliation(s)
- Huawei Zhu
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Haowei Wang
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanping Zhang
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yin Li
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
12
|
Franco A, Elbahnasy M, Rosenbaum MA. Screening of natural phenazine producers for electroactivity in bioelectrochemical systems. Microb Biotechnol 2023; 16:579-594. [PMID: 36571174 PMCID: PMC9948232 DOI: 10.1111/1751-7915.14199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 12/05/2022] [Accepted: 12/07/2022] [Indexed: 12/27/2022] Open
Abstract
Mediated extracellular electron transfer (EET) might be a great vehicle to connect microbial bioprocesses with electrochemical control in stirred-tank bioreactors. However, mediated electron transfer to date is not only much less efficient but also much less studied than microbial direct electron transfer to an anode. For example, despite the widespread capacity of pseudomonads to produce phenazine natural products, only Pseudomonas aeruginosa has been studied for its use of phenazines in bioelectrochemical applications. To provide a deeper understanding of the ecological potential for the bioelectrochemical exploitation of phenazines, we here investigated the potential electroactivity of over 100 putative diverse native phenazine producers and the performance within bioelectrochemical systems. Five species from the genera Pseudomonas, Streptomyces, Nocardiopsis, Brevibacterium and Burkholderia were identified as new electroactive bacteria. Electron discharge to the anode and electric current production correlated with the phenazine synthesis of Pseudomonas chlororaphis subsp. aurantiaca. Phenazine-1-carboxylic acid was the dominant molecule with a concentration of 86.1 μg/ml mediating an anodic current of 15.1 μA/cm2 . On the other hand, Nocardiopsis chromatogenes used a wider range of phenazines at low concentrations and likely yet-unknown redox compounds to mediate EET, achieving an anodic current of 9.5 μA/cm2 . Elucidating the energetic and metabolic usage of phenazines in these and other species might contribute to improving electron discharge and respiration. In the long run, this may enhance oxygen-limited bioproduction of value-added compounds based on mediated EET mechanisms.
Collapse
Affiliation(s)
- Angel Franco
- Bio Pilot Plant, Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute (HKI), Jena, Germany
| | - Mahmoud Elbahnasy
- Bio Pilot Plant, Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute (HKI), Jena, Germany.,Faculty of Biological Sciences, Friedrich Schiller University (FSU), Jena, Germany
| | - Miriam A Rosenbaum
- Bio Pilot Plant, Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute (HKI), Jena, Germany.,Faculty of Biological Sciences, Friedrich Schiller University (FSU), Jena, Germany
| |
Collapse
|
13
|
Atkinson JT, Chavez MS, Niman CM, El-Naggar MY. Living electronics: A catalogue of engineered living electronic components. Microb Biotechnol 2023; 16:507-533. [PMID: 36519191 PMCID: PMC9948233 DOI: 10.1111/1751-7915.14171] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 09/26/2022] [Accepted: 11/01/2022] [Indexed: 12/23/2022] Open
Abstract
Biology leverages a range of electrical phenomena to extract and store energy, control molecular reactions and enable multicellular communication. Microbes, in particular, have evolved genetically encoded machinery enabling them to utilize the abundant redox-active molecules and minerals available on Earth, which in turn drive global-scale biogeochemical cycles. Recently, the microbial machinery enabling these redox reactions have been leveraged for interfacing cells and biomolecules with electrical circuits for biotechnological applications. Synthetic biology is allowing for the use of these machinery as components of engineered living materials with tuneable electrical properties. Herein, we review the state of such living electronic components including wires, capacitors, transistors, diodes, optoelectronic components, spin filters, sensors, logic processors, bioactuators, information storage media and methods for assembling these components into living electronic circuits.
Collapse
Affiliation(s)
- Joshua T Atkinson
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California, USA
| | - Marko S Chavez
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California, USA
| | - Christina M Niman
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California, USA
| | - Mohamed Y El-Naggar
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California, USA.,Department of Biological Sciences, University of Southern California, Los Angeles, California, USA.,Department of Chemistry, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
14
|
Wu Y, Zhu X, Wang X, Lin Z, Reinfelder JR, Li F, Liu T. A New Electron Shuttling Pathway Mediated by Lipophilic Phenoxazine via the Interaction with Periplasmic and Inner Membrane Proteins of Shewanella oneidensis MR-1. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:2636-2646. [PMID: 36652548 DOI: 10.1021/acs.est.2c07862] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Although it has been established that electron mediators substantially promote extracellular electron transfer (EET), electron shuttling pathways are not fully understood. Here, a new electron shuttling pathway was found in the EET process by Shewanella oneidensis MR-1 with resazurin, a lipophilic electron mediator. With resazurin, the genes encoding outer-membrane cytochromes (mtrCBA and omcA) were downregulated. Although cytochrome deletion substantially reduced biocurrent generation to 1-12% of that of wild-type (WT) cells, the presence of resazurin restored biocurrent generation to 168 μA·cm-2 (ΔmtrA/omcA/mtrC), nearly equivalent to that of WT cells (194 μA·cm-2), indicating that resazurin-mediated electron transfer was not dependent on the Mtr pathway. Biocurrent generation by resazurin was much lower in ΔcymA and ΔmtrA/omcA/mtrC/fccA/cctA mutants (4 and 6 μA·cm-2) than in WT cells, indicating a key role of FccA, CctA, and CymA in this process. The effectiveness of resazurin in EET of Mtr cytochrome mutants is also supported by cyclic voltammetry, resazurin reduction kinetics, and in situ c-type cytochrome spectroscopy results. The findings demonstrated that low molecular weight, lipophilic electron acceptors, such as phenoxazine and phenazine, may facilitate electron transfer directly from periplasmic and inner membrane proteins, thus providing new insight into the roles of exogenous electron mediators in electron shuttling in natural and engineered biogeochemical systems.
Collapse
Affiliation(s)
- Yundang Wu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Xiao Zhu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
- Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xinxin Wang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
- College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Zhixin Lin
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - John R Reinfelder
- Department of Environmental Sciences, Rutgers University, New Brunswick, New Jersey 08901, United States
| | - Fangbai Li
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Tongxu Liu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| |
Collapse
|
15
|
Schneider H, Lai B, Krömer J. Utilizing Cyanobacteria in Biophotovoltaics: An Emerging Field in Bioelectrochemistry. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2023; 183:281-302. [PMID: 36441187 DOI: 10.1007/10_2022_212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Anthropogenic global warming is driven by the increasing energy demand and the still dominant use of fossil energy carriers to meet these needs. New carbon-neutral energy sources are urgently needed to solve this problem. Biophotovoltaics, a member of the so-called bioelectrochemical systems family, will provide an important piece of the energy puzzle. It aims to harvest the electrons from sunlight-driven water splitting using the natural oxygenic photosystem (e.g., of cyanobacteria) and utilize them in the form of, e.g., electricity or hydrogen. Several key aspects of biophotovoltaics have been intensively studied in recent years like physicochemical properties of electrodes or efficient wiring of microorganisms to electrodes. Yet, the exact mechanisms of electron transfer between the biocatalyst and the electrode remain unresolved today. Most research is conducted on microscale reactors generating small currents over short time-scales, but multiple experiments have shown biophotovoltaics great potential with lab-scale reactors producing currents over weeks to months. Although biophotovoltaics is still in its infancy with many open research questions to be addressed, new promising results from various labs around the world suggest an important opportunity for biophotovoltaics in the decades to come. In this chapter, we will introduce the concept of biophotovoltaics, summarize its recent key progress, and finally critically discuss the potentials and challenges for future rational development of biophotovoltaics.
Collapse
Affiliation(s)
- Hans Schneider
- Department of Solar Materials, Helmholtz Center for Environmental Research, Leipzig, Germany.
| | - Bin Lai
- Department of Solar Materials, Helmholtz Center for Environmental Research, Leipzig, Germany
| | - Jens Krömer
- Department of Solar Materials, Helmholtz Center for Environmental Research, Leipzig, Germany
| |
Collapse
|
16
|
Bedendi G, De Moura Torquato LD, Webb S, Cadoux C, Kulkarni A, Sahin S, Maroni P, Milton RD, Grattieri M. Enzymatic and Microbial Electrochemistry: Approaches and Methods. ACS MEASUREMENT SCIENCE AU 2022; 2:517-541. [PMID: 36573075 PMCID: PMC9783092 DOI: 10.1021/acsmeasuresciau.2c00042] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/12/2022] [Accepted: 08/15/2022] [Indexed: 06/17/2023]
Abstract
The coupling of enzymes and/or intact bacteria with electrodes has been vastly investigated due to the wide range of existing applications. These span from biomedical and biosensing to energy production purposes and bioelectrosynthesis, whether for theoretical research or pure applied industrial processes. Both enzymes and bacteria offer a potential biotechnological alternative to noble/rare metal-dependent catalytic processes. However, when developing these biohybrid electrochemical systems, it is of the utmost importance to investigate how the approaches utilized to couple biocatalysts and electrodes influence the resulting bioelectrocatalytic response. Accordingly, this tutorial review starts by recalling some basic principles and applications of bioelectrochemistry, presenting the electrode and/or biocatalyst modifications that facilitate the interaction between the biotic and abiotic components of bioelectrochemical systems. Focus is then directed toward the methods used to evaluate the effectiveness of enzyme/bacteria-electrode interaction and the insights that they provide. The basic concepts of electrochemical methods widely employed in enzymatic and microbial electrochemistry, such as amperometry and voltammetry, are initially presented to later focus on various complementary methods such as spectroelectrochemistry, fluorescence spectroscopy and microscopy, and surface analytical/characterization techniques such as quartz crystal microbalance and atomic force microscopy. The tutorial review is thus aimed at students and graduate students approaching the field of enzymatic and microbial electrochemistry, while also providing a critical and up-to-date reference for senior researchers working in the field.
Collapse
Affiliation(s)
- Giada Bedendi
- Department
of Inorganic and Analytical Chemistry, Faculty of Sciences, University of Geneva, Quai Ernest-Ansermet 30, 1211 Geneva 4, Switzerland
| | | | - Sophie Webb
- Department
of Inorganic and Analytical Chemistry, Faculty of Sciences, University of Geneva, Quai Ernest-Ansermet 30, 1211 Geneva 4, Switzerland
- National
Centre of Competence in Research (NCCR) Catalysis, University of Geneva, Quai Ernest-Ansermet 30, 1211 Geneva 4, Switzerland
| | - Cécile Cadoux
- Department
of Inorganic and Analytical Chemistry, Faculty of Sciences, University of Geneva, Quai Ernest-Ansermet 30, 1211 Geneva 4, Switzerland
- National
Centre of Competence in Research (NCCR) Catalysis, University of Geneva, Quai Ernest-Ansermet 30, 1211 Geneva 4, Switzerland
| | - Amogh Kulkarni
- Department
of Inorganic and Analytical Chemistry, Faculty of Sciences, University of Geneva, Quai Ernest-Ansermet 30, 1211 Geneva 4, Switzerland
| | - Selmihan Sahin
- Department
of Inorganic and Analytical Chemistry, Faculty of Sciences, University of Geneva, Quai Ernest-Ansermet 30, 1211 Geneva 4, Switzerland
| | - Plinio Maroni
- Department
of Inorganic and Analytical Chemistry, Faculty of Sciences, University of Geneva, Quai Ernest-Ansermet 30, 1211 Geneva 4, Switzerland
| | - Ross D. Milton
- Department
of Inorganic and Analytical Chemistry, Faculty of Sciences, University of Geneva, Quai Ernest-Ansermet 30, 1211 Geneva 4, Switzerland
- National
Centre of Competence in Research (NCCR) Catalysis, University of Geneva, Quai Ernest-Ansermet 30, 1211 Geneva 4, Switzerland
| | - Matteo Grattieri
- Dipartimento
di Chimica, Università degli Studi
di Bari “Aldo Moro”, via E. Orabona 4, Bari 70125, Italy
- IPCF-CNR
Istituto per i Processi Chimico Fisici, Consiglio Nazionale delle Ricerche, via E. Orabona 4, Bari 70125, Italy
| |
Collapse
|
17
|
Chen X, Lawrence JM, Wey LT, Schertel L, Jing Q, Vignolini S, Howe CJ, Kar-Narayan S, Zhang JZ. 3D-printed hierarchical pillar array electrodes for high-performance semi-artificial photosynthesis. NATURE MATERIALS 2022; 21:811-818. [PMID: 35256790 DOI: 10.1038/s41563-022-01205-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 01/18/2022] [Indexed: 06/14/2023]
Abstract
The rewiring of photosynthetic biomachineries to electrodes is a forward-looking semi-artificial route for sustainable bio-electricity and fuel generation. Currently, it is unclear how the electrode and biomaterial interface can be designed to meet the complex requirements for high biophotoelectrochemical performance. Here we developed an aerosol jet printing method for generating hierarchical electrode structures using indium tin oxide nanoparticles. We printed libraries of micropillar array electrodes varying in height and submicrometre surface features, and studied the energy/electron transfer processes across the bio-electrode interfaces. When wired to the cyanobacterium Synechocystis sp. PCC 6803, micropillar array electrodes with microbranches exhibited favourable biocatalyst loading, light utilization and electron flux output, ultimately almost doubling the photocurrent of state-of-the-art porous structures of the same height. When the micropillars' heights were increased to 600 µm, milestone mediated photocurrent densities of 245 µA cm-2 (the closest thus far to theoretical predictions) and external quantum efficiencies of up to 29% could be reached. This study demonstrates how bio-energy from photosynthesis could be more efficiently harnessed in the future and provide new tools for three-dimensional electrode design.
Collapse
Affiliation(s)
- Xiaolong Chen
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | | | - Laura T Wey
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Lukas Schertel
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Qingshen Jing
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, UK
| | - Silvia Vignolini
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | | | - Sohini Kar-Narayan
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, UK
| | - Jenny Z Zhang
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK.
| |
Collapse
|
18
|
Gemünde A, Lai B, Pause L, Krömer J, Holtmann D. Redox mediators in microbial electrochemical systems. ChemElectroChem 2022. [DOI: 10.1002/celc.202200216] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- André Gemünde
- Technische Hochschule Mittelhessen Institute of Bioprocess Engineering and Pharmaceutical Technology Wiesenstraße 14 35390 Gießen GERMANY
| | - Bin Lai
- Helmholtz Centre for Environmental Research UFZ Department of Environmental Microbiology: Helmholtz-Zentrum fur Umweltforschung UFZ Abteilung Umweltmikrobiologie Systems Biotechnology 04318 Leipzig GERMANY
| | - Laura Pause
- Helmholtz Centre for Environmental Research UFZ Environmental Engineering and Biotechnology Research Unit: Helmholtz-Zentrum fur Umweltforschung UFZ Themenbereich Umwelt- und Biotechnologie Systems Biotechnology 04318 Leipzig GERMANY
| | - Jens Krömer
- Helmholtz Centre for Environmental Research UFZ Environmental Engineering and Biotechnology Research Unit: Helmholtz-Zentrum fur Umweltforschung UFZ Themenbereich Umwelt- und Biotechnologie Systems Biotechnology 04318 Leipzig GERMANY
| | - Dirk Holtmann
- Technische Hochschule Mittelhessen IBPT Wiesenstrasse 14 35390 Giessen GERMANY
| |
Collapse
|
19
|
Lawrence JM, Yin Y, Bombelli P, Scarampi A, Storch M, Wey LT, Climent-Catala A, PixCell iGEM Team, Baldwin GS, O’Hare D, Howe CJ, Zhang JZ, Ouldridge TE, Ledesma-Amaro R. Synthetic biology and bioelectrochemical tools for electrogenetic system engineering. SCIENCE ADVANCES 2022; 8:eabm5091. [PMID: 35507663 PMCID: PMC9067924 DOI: 10.1126/sciadv.abm5091] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Synthetic biology research and its industrial applications rely on deterministic spatiotemporal control of gene expression. Recently, electrochemical control of gene expression has been demonstrated in electrogenetic systems (redox-responsive promoters used alongside redox inducers and electrodes), allowing for the direct integration of electronics with biological processes. However, the use of electrogenetic systems is limited by poor activity, tunability, and standardization. In this work, we developed a strong, unidirectional, redox-responsive promoter before deriving a mutant promoter library with a spectrum of strengths. We constructed genetic circuits with these parts and demonstrated their activation by multiple classes of redox molecules. Last, we demonstrated electrochemical activation of gene expression under aerobic conditions using a novel, modular bioelectrochemical device. These genetic and electrochemical tools facilitate the design and improve the performance of electrogenetic systems. Furthermore, the genetic design strategies used can be applied to other redox-responsive promoters to further expand the available tools for electrogenetics.
Collapse
Affiliation(s)
- Joshua M. Lawrence
- Department of Biochemistry, University of Cambridge, Cambridge, UK
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Yutong Yin
- Department of Bioengineering, Imperial College London, London, UK
| | - Paolo Bombelli
- Department of Biochemistry, University of Cambridge, Cambridge, UK
- Department of Bioengineering, Imperial College London, London, UK
- Department of Environmental Science and Policy, Università degli Studi di Milano, Milano, Italy
| | - Alberto Scarampi
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Marko Storch
- London DNA Foundry, Imperial College Translation and Innovation Hub, London, UK
| | - Laura T. Wey
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | | | | | - Geoff S. Baldwin
- Department of Life Sciences, Imperial College London, London, UK
| | - Danny O’Hare
- Department of Bioengineering, Imperial College London, London, UK
| | | | - Jenny Z. Zhang
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | | | - Rodrigo Ledesma-Amaro
- Department of Bioengineering, Imperial College London, London, UK
- Corresponding author.
| |
Collapse
|
20
|
Che Y, Qi X, Qu W, Shi B, Lin Q, Yao H, Zhang Y, Wei T. Synthetic strategies of phenazine derivatives: a review. J Heterocycl Chem 2021. [DOI: 10.1002/jhet.4434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yu‐Xin Che
- Key Laboratory of Eco‐Environment‐Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou Gansu China
| | - Xiao‐Ni Qi
- Key Laboratory of Eco‐Environment‐Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou Gansu China
| | - Wen‐Juan Qu
- Key Laboratory of Eco‐Environment‐Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou Gansu China
| | - Bing‐Bing Shi
- Key Laboratory of Eco‐Environment‐Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou Gansu China
| | - Qi Lin
- Key Laboratory of Eco‐Environment‐Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou Gansu China
| | - Hong Yao
- Key Laboratory of Eco‐Environment‐Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou Gansu China
| | - You‐Ming Zhang
- Key Laboratory of Eco‐Environment‐Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou Gansu China
| | - Tai‐Bao Wei
- Key Laboratory of Eco‐Environment‐Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou Gansu China
| |
Collapse
|
21
|
Dong F, Simoska O, Gaffney E, Minteer SD. Applying synthetic biology strategies to bioelectrochemical systems. ELECTROCHEMICAL SCIENCE ADVANCES 2021. [DOI: 10.1002/elsa.202100197] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Fangyuan Dong
- Department of Chemistry University of Utah Salt Lake City Utah USA
| | - Olja Simoska
- Department of Chemistry University of Utah Salt Lake City Utah USA
| | - Erin Gaffney
- Department of Chemistry University of Utah Salt Lake City Utah USA
| | | |
Collapse
|
22
|
Jia J, Kwon SR, Baek S, Sundaresan V, Cao T, Cutri AR, Fu K, Roberts B, Shrout JD, Bohn PW. Actively Controllable Solid-Phase Microextraction in a Hierarchically Organized Block Copolymer-Nanopore Electrode Array Sensor for Charge-Selective Detection of Bacterial Metabolites. Anal Chem 2021; 93:14481-14488. [PMID: 34661405 DOI: 10.1021/acs.analchem.1c02998] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Pseudomonas aeruginosa produces a number of phenazine metabolites, including pyocyanin (PYO), phenazine-1-carboxamide (PCN), and phenazine-1-carboxylic acid (PCA). Among these, PYO has been most widely studied as a biomarker of P. aeruginosa infection. However, despite its broad-spectrum antibiotic properties and its role as a precursor in the biosynthetic route leading to other secondary phenazines, PCA has attracted less attention, partially due to its relatively low concentration and interference from other highly abundant phenazines. This challenge is addressed here by constructing a hierarchically organized nanostructure consisting of a pH-responsive block copolymer (BCP) membrane with nanopore electrode arrays (NEAs) filled with gold nanoparticles (AuNPs) to separate and detect PCA in bacterial environments. The BCP@NEA strategy is designed such that adjusting the pH of the bacterial medium to 4.5, which is above the pKa of PCA but below the pKa of PYO and PCN, ensures that PCA is negatively charged and can be selectively transported across the BCP membrane. At pH 4.5, only PCA is transported into the AuNP-filled NEAs, while PYO and PCN are blocked. Structural characterization illustrates the rigorous spatial segregation of the AuNPs in the NEA nanopore volume, allowing PCA secreted from P. aeruginosa to be quantitatively determined as a function of incubation time using square-wave voltammetry and surface-enhanced Raman spectroscopy. The strategy proposed in this study can be extended by changing the nature of the hydrophilic block and subsequently applied to detect other redox-active metabolites at a low concentration in complex biological samples and, thus, help understand metabolism in microbial communities.
Collapse
Affiliation(s)
- Jin Jia
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Seung-Ryong Kwon
- Department of Chemistry and Research Institute of Natural Science, Gyeongsang National University, Jinju 52828, South Korea
| | - Seol Baek
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Vignesh Sundaresan
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Tianyuan Cao
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Allison R Cutri
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Kaiyu Fu
- Department of Electrical Engineering, Stanford University, Stanford, California 94305, United States.,Department of Radiology, Stanford University, Stanford, California 94305, United States
| | - Bridget Roberts
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Joshua D Shrout
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, Indiana 46556, United States.,Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Paul W Bohn
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States.,Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
23
|
A biophotoelectrochemical approach to unravelling the role of cyanobacterial cell structures in exoelectrogenesis. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.139214] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
24
|
Weliwatte NS, Grattieri M, Minteer SD. Rational design of artificial redox-mediating systems toward upgrading photobioelectrocatalysis. Photochem Photobiol Sci 2021; 20:1333-1356. [PMID: 34550560 PMCID: PMC8455808 DOI: 10.1007/s43630-021-00099-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 09/03/2021] [Indexed: 12/23/2022]
Abstract
Photobioelectrocatalysis has recently attracted particular research interest owing to the possibility to achieve sunlight-driven biosynthesis, biosensing, power generation, and other niche applications. However, physiological incompatibilities between biohybrid components lead to poor electrical contact at the biotic-biotic and biotic-abiotic interfaces. Establishing an electrochemical communication between these different interfaces, particularly the biocatalyst-electrode interface, is critical for the performance of the photobioelectrocatalytic system. While different artificial redox mediating approaches spanning across interdisciplinary research fields have been developed in order to electrically wire biohybrid components during bioelectrocatalysis, a systematic understanding on physicochemical modulation of artificial redox mediators is further required. Herein, we review and discuss the use of diffusible redox mediators and redox polymer-based approaches in artificial redox-mediating systems, with a focus on photobioelectrocatalysis. The future possibilities of artificial redox mediator system designs are also discussed within the purview of present needs and existing research breadth.
Collapse
Affiliation(s)
- N Samali Weliwatte
- Department of Chemistry, University of Utah, Salt Lake City, UT, 84112, USA
| | - Matteo Grattieri
- Dipartimento Di Chimica, Università Degli Studi Di Bari "Aldo Moro", Via E. Orabona 4, 70125, Bari, Italy.
- IPCF-CNR Istituto Per I Processi Chimico Fisici, Consiglio Nazionale Delle Ricerche, Via E. Orabona 4, 70125, Bari, Italy.
| | - Shelley D Minteer
- Department of Chemistry, University of Utah, Salt Lake City, UT, 84112, USA.
| |
Collapse
|
25
|
Rhodes Z, Simoska O, Dantanarayana A, Stevenson KJ, Minteer SD. Using structure-function relationships to understand the mechanism of phenazine-mediated extracellular electron transfer in Escherichia coli. iScience 2021; 24:103033. [PMID: 34522869 PMCID: PMC8426270 DOI: 10.1016/j.isci.2021.103033] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/19/2021] [Accepted: 08/20/2021] [Indexed: 10/26/2022] Open
Abstract
Phenazines are redox-active nitrogen-containing heterocyclic compounds that can be produced by either bacteria or synthetic approaches. As an electron shuttles (mediators), phenazines are involved in several biological processes facilitating extracellular electron transfer (EET). Therefore, it is of great importance to understand the structural and electronic properties of phenazines that promote EET in microbial electrochemical systems. Our previous study experimentally investigated a phenazine-based library as an exogenous mediator system to facilitate EET in Escherichia coli. Herein, we combine our experimental data with density functional theory (DFT) calculations and multivariate linear regression modeling to understand the structure-function relationships in phenazine-based mediated EET. These calculations demonstrate that the computed redox properties of phenazines in lipophilic environments (e.g., cell membrane) correlate to experimental mediated current densities. Additional DFT-derived molecular properties were considered to develop a predictive model, which could be used in metabolic engineering approaches to introduce phenazines as endogenous mediators into bacteria.
Collapse
Affiliation(s)
- Zayn Rhodes
- Department of Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Olja Simoska
- Department of Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | | | - Keith J Stevenson
- Center for Energy Science and Technology, Skolkovo Institute of Science and Technology, Bolshoi Boulevard 30 Bld. 1, Moscow 121205, Russia
| | - Shelley D Minteer
- Department of Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
26
|
Sayegh A, Perego LA, Arderiu Romero M, Escudero L, Delacotte J, Guille‐Collignon M, Grimaud L, Bailleul B, Lemaître F. Finding Adapted Quinones for Harvesting Electrons from Photosynthetic Algae Suspensions. ChemElectroChem 2021. [DOI: 10.1002/celc.202100757] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Adnan Sayegh
- PASTEUR Département de Chimie Ecole Normale Supérieure PSL University, Sorbonne Université CNRS, 75005 Paris France
| | - Luca A. Perego
- Laboratoire des biomolécules (LBM) Département de chimie Sorbonne Université École normale supérieure PSL University, Sorbonne Université CNRS, 75005 Paris France
| | - Marc Arderiu Romero
- PASTEUR Département de Chimie Ecole Normale Supérieure PSL University, Sorbonne Université CNRS, 75005 Paris France
- Laboratory of Membrane and Molecular Physiology at IBPC UMR 7141 CNRS/Sorbonne Université 13 rue Pierre et Marie Curie 75005 Paris France
| | - Louis Escudero
- PASTEUR Département de Chimie Ecole Normale Supérieure PSL University, Sorbonne Université CNRS, 75005 Paris France
| | - Jérôme Delacotte
- PASTEUR Département de Chimie Ecole Normale Supérieure PSL University, Sorbonne Université CNRS, 75005 Paris France
| | - Manon Guille‐Collignon
- PASTEUR Département de Chimie Ecole Normale Supérieure PSL University, Sorbonne Université CNRS, 75005 Paris France
| | - Laurence Grimaud
- Laboratoire des biomolécules (LBM) Département de chimie Sorbonne Université École normale supérieure PSL University, Sorbonne Université CNRS, 75005 Paris France
| | - Benjamin Bailleul
- Laboratory of Membrane and Molecular Physiology at IBPC UMR 7141 CNRS/Sorbonne Université 13 rue Pierre et Marie Curie 75005 Paris France
| | - Frédéric Lemaître
- PASTEUR Département de Chimie Ecole Normale Supérieure PSL University, Sorbonne Université CNRS, 75005 Paris France
| |
Collapse
|
27
|
Weliwatte NS, Grattieri M, Simoska O, Rhodes Z, Minteer SD. Unbranched Hybrid Conducting Redox Polymers for Intact Chloroplast-Based Photobioelectrocatalysis. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:7821-7833. [PMID: 34132548 DOI: 10.1021/acs.langmuir.1c01167] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Photobioelectrocatalysis (PBEC) adopts the sophistication and sustainability of photosynthetic units to convert solar energy into electrical energy. However, the electrically insulating outer membranes of photosynthetic units hinder efficient extracellular electron transfer from photosynthetic redox centers to an electrode in photobioelectrocatalytic systems. Among the artificial redox-mediating approaches used to enhance electrochemical communication at this biohybrid interface, conducting redox polymers (CRPs) are characterized by high intrinsic electric conductivities for efficient charge transfer. A majority of these CRPs constitute peripheral redox pendants attached to a conducting backbone by a linker. The consequently branched CRPs necessitate maintaining synergistic interactions between the pendant, linker, and backbone for optimal mediator performance. Herein, an unbranched, metal-free CRP, polydihydroxy aniline (PDHA), which has its redox moiety embedded in the polymer mainchain, is used as an exogenous redox mediator and an immobilization matrix at the biohybrid interface. As a proof of concept, the relatively complex membrane system of spinach chloroplasts is used as the photobioelectrocatalyst of choice. A "mixed" deposition of chloroplasts and PDHA generated a 2.4-fold photocurrent density increment. An alternative "layered" PDHA-chloroplast deposition, which was used to control panchromatic light absorbance by the intensely colored PDHA competing with the photoactivity of chloroplasts, generated a 4.2-fold photocurrent density increment. The highest photocurrent density recorded with intact chloroplasts was achieved by the "layered" deposition when used in conjunction with the diffusible redox mediator 2,6-dichlorobenzoquinone (-48 ± 3 μA cm-2). Our study effectively expands the scope of germane CRPs in PBEC, emphasizing the significance of the rational selection of CRPs for electrically insulating photobioelectrocatalysts and of the holistic modulation of the CRP-mediated biohybrids for optimal performance.
Collapse
Affiliation(s)
- N Samali Weliwatte
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Matteo Grattieri
- Dipartimento di Chimica, Università degli Studi di Bari "Aldo Moro", via E. Orabona 4, Bari 70125, Italy
- IPCF-CNR Istituto per i Processi Chimico Fisici, Consiglio Nazionale delle Ricerche, via E. Orabona 4, Bari 70125, Italy
| | - Olja Simoska
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Zayn Rhodes
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Shelley D Minteer
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| |
Collapse
|