1
|
Czajka T, Neuhaus C, Alfken J, Stammer M, Chushkin Y, Pontoni D, Hoffmann C, Milovanovic D, Salditt T. Lipid vesicle pools studied by passive X-ray microrheology. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2023; 46:123. [PMID: 38060069 PMCID: PMC10703982 DOI: 10.1140/epje/s10189-023-00375-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 11/07/2023] [Indexed: 12/08/2023]
Abstract
Vesicle pools can form by attractive interaction in a solution, mediated by proteins or divalent ions such as calcium. The pools, which are alternatively also denoted as vesicle clusters, form by liquid-liquid phase separation (LLPS) from an initially homogeneous solution. Due to the short range liquid-like order of vesicles in the pool or cluster, the vesicle-rich phase can also be regarded as a condensate, and one would like to better understand not only the structure of these systems, but also their dynamics. The diffusion of vesicles, in particular, is expected to change when vesicles are arrested in a pool. Here we investigate whether passive microrheology based on X-ray photon correlation spectroscopy (XPCS) is a suitable tool to study model systems of artificial lipid vesicles exhibiting LLPS, and more generally also other heterogeneous biomolecular fluids. We show that by adding highly scattering tracer particles to the solution, valuable information on the single vesicle as well as collective dynamics can be inferred. While the correlation functions reveal freely diffusing tracer particles in solutions at low CaCl[Formula: see text] concentrations, the relaxation rate [Formula: see text] shows a nonlinear dependence on [Formula: see text] at a higher concentration of around 8 mM CaCl[Formula: see text], characterised by two linear regimes with a broad cross-over. We explain this finding based on arrested diffusion in percolating vesicle clusters.
Collapse
Affiliation(s)
- Titus Czajka
- Institut für Röntgenphysik, Georg-August-Universität Göttingen, 37077, Göttingen, Germany
| | - Charlotte Neuhaus
- Institut für Röntgenphysik, Georg-August-Universität Göttingen, 37077, Göttingen, Germany
| | - Jette Alfken
- Institut für Röntgenphysik, Georg-August-Universität Göttingen, 37077, Göttingen, Germany
| | - Moritz Stammer
- Institut für Röntgenphysik, Georg-August-Universität Göttingen, 37077, Göttingen, Germany
| | - Yuriy Chushkin
- European Synchrotron Radiation Facility, 38043, Grenoble Cedex 9, France
| | - Diego Pontoni
- European Synchrotron Radiation Facility, 38043, Grenoble Cedex 9, France
| | - Christian Hoffmann
- Laboratory of Molecular Neuroscience, German Center for Neurodegenerative Diseases (DZNE), 10117, Berlin, Germany
| | - Dragomir Milovanovic
- Laboratory of Molecular Neuroscience, German Center for Neurodegenerative Diseases (DZNE), 10117, Berlin, Germany
| | - Tim Salditt
- Institut für Röntgenphysik, Georg-August-Universität Göttingen, 37077, Göttingen, Germany.
| |
Collapse
|
2
|
Sun Y, Li X, Chen R, Liu F, Wei S. Recent advances in structural characterization of biomacromolecules in foods via small-angle X-ray scattering. Front Nutr 2022; 9:1039762. [PMID: 36466419 PMCID: PMC9714470 DOI: 10.3389/fnut.2022.1039762] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 11/03/2022] [Indexed: 08/04/2023] Open
Abstract
Small-angle X-ray scattering (SAXS) is a method for examining the solution structure, oligomeric state, conformational changes, and flexibility of biomacromolecules at a scale ranging from a few Angstroms to hundreds of nanometers. Wide time scales ranging from real time (milliseconds) to minutes can be also covered by SAXS. With many advantages, SAXS has been extensively used, it is widely used in the structural characterization of biomacromolecules in food science and technology. However, the application of SAXS in charactering the structure of food biomacromolecules has not been reviewed so far. In the current review, the principle, theoretical calculations and modeling programs are summarized, technical advances in the experimental setups and corresponding applications of in situ capabilities: combination of chromatography, time-resolved, temperature, pressure, flow-through are elaborated. Recent applications of SAXS for monitoring structural properties of biomacromolecules in food including protein, carbohydrate and lipid are also highlighted, and limitations and prospects for developing SAXS based on facility upgraded and artificial intelligence to study the structural properties of biomacromolecules are finally discussed. Future research should focus on extending machine time, simplifying SAXS data treatment, optimizing modeling methods in order to achieve an integrated structural biology based on SAXS as a practical tool for investigating the structure-function relationship of biomacromolecules in food industry.
Collapse
Affiliation(s)
- Yang Sun
- College of Vocational and Technical Education, Yunnan Normal University, Kunming, China
| | - Xiujuan Li
- Pharmaceutical Department, The Affiliated Taian City Central Hospital of Qingdao University, Taian, China
| | - Ruixin Chen
- College of Vocational and Technical Education, Yunnan Normal University, Kunming, China
| | - Fei Liu
- College of Vocational and Technical Education, Yunnan Normal University, Kunming, China
| | - Song Wei
- Tumor Precise Intervention and Translational Medicine Laboratory, The Affiliated Taian City Central Hospital of Qingdao University, Taian, China
| |
Collapse
|
3
|
Yaghmur A, Hamad I. Microfluidic Nanomaterial Synthesis and In Situ SAXS, WAXS, or SANS Characterization: Manipulation of Size Characteristics and Online Elucidation of Dynamic Structural Transitions. Molecules 2022; 27:4602. [PMID: 35889473 PMCID: PMC9323596 DOI: 10.3390/molecules27144602] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/11/2022] [Accepted: 07/14/2022] [Indexed: 11/27/2022] Open
Abstract
With the ability to cross biological barriers, encapsulate and efficiently deliver drugs and nucleic acid therapeutics, and protect the loaded cargos from degradation, different soft polymer and lipid nanoparticles (including liposomes, cubosomes, and hexosomes) have received considerable interest in the last three decades as versatile platforms for drug delivery applications and for the design of vaccines. Hard nanocrystals (including gold nanoparticles and quantum dots) are also attractive for use in various biomedical applications. Here, microfluidics provides unique opportunities for the continuous synthesis of these hard and soft nanomaterials with controllable shapes and sizes, and their in situ characterization through manipulation of the flow conditions and coupling to synchrotron small-angle X-ray (SAXS), wide-angle scattering (WAXS), or neutron (SANS) scattering techniques, respectively. Two-dimensional (2D) and three-dimensional (3D) microfluidic devices are attractive not only for the continuous production of monodispersed nanomaterials, but also for improving our understanding of the involved nucleation and growth mechanisms during the formation of hard nanocrystals under confined geometry conditions. They allow further gaining insight into the involved dynamic structural transitions, mechanisms, and kinetics during the generation of self-assembled nanostructures (including drug nanocarriers) at different reaction times (ranging from fractions of seconds to minutes). This review provides an overview of recently developed 2D and 3D microfluidic platforms for the continuous production of nanomaterials, and their simultaneous use in in situ characterization investigations through coupling to nanostructural characterization techniques (e.g., SAXS, WAXS, and SANS).
Collapse
Affiliation(s)
- Anan Yaghmur
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen Ø, Denmark
| | - Islam Hamad
- Department of Pharmacy, Faculty of Health Sciences, American University of Madaba, Madaba 11821, Jordan;
| |
Collapse
|
4
|
Palaia I, Goyal A, Del Gado E, Šamaj L, Trizac E. Like-Charge Attraction at the Nanoscale: Ground-State Correlations and Water Destructuring. J Phys Chem B 2022; 126:3143-3149. [PMID: 35420420 DOI: 10.1021/acs.jpcb.2c00028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Like-charge attraction, driven by ionic correlations, challenges our understanding of electrostatics both in soft and hard matter. For two charged planar surfaces confining counterions and water, we prove that, even at relatively low correlation strength, the relevant physics is the ground-state one, oblivious of fluctuations. Based on this, we derive a simple and accurate interaction pressure that fulfills known exact requirements and can be used as an effective potential. We test this equation against implicit-solvent Monte Carlo simulations and against explicit-solvent simulations of cement and several types of clays. We argue that water destructuring under nanometric confinement drastically reduces dielectric screening, enhancing ionic correlations. Our equation of state at reduced permittivity therefore explains the exotic attractive regime reported for these materials, even in the absence of multivalent counterions.
Collapse
Affiliation(s)
- Ivan Palaia
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| | - Abhay Goyal
- Department of Physics, Institute for Soft Matter Synthesis and Metrology, Georgetown University, 37th and O Streets, N.W., Washington, D.C. 20057, United States
| | - Emanuela Del Gado
- Department of Physics, Institute for Soft Matter Synthesis and Metrology, Georgetown University, 37th and O Streets, N.W., Washington, D.C. 20057, United States
| | - Ladislav Šamaj
- Institute of Physics, Slovak Academy of Sciences, 84511 Bratislava, Slovakia
| | | |
Collapse
|
5
|
Terrill NJ, Dent AJ, Dobson B, Beale AM, Allen L, Bras W. Past, present and future-sample environments for materials research studies in scattering and spectroscopy; a UK perspective. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:483002. [PMID: 34479225 DOI: 10.1088/1361-648x/ac2389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 09/03/2021] [Indexed: 06/13/2023]
Abstract
Small angle x-ray scattering and x-ray absorption fine structure are two techniques that have been employed at synchrotron sources ever since their inception. Over the course of the development of the techniques, the introduction of sample environments for added value experiments has grown dramatically. This article reviews past successes, current developments and an exploration of future possibilities for these two x-ray techniques with an emphasis on the developments in the United Kingdom between 1980-2020.
Collapse
Affiliation(s)
| | - Andrew J Dent
- Diamond Light Source, Didcot, Oxfordshire, OX11 0DE, United Kingdom
| | - Barry Dobson
- Sagentia Ltd, Harston Mill, Harston Mill, CB22 7GG, United Kingdom
| | - Andrew M Beale
- Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, United Kingdom
- The Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Campus, Didcot, Oxfordshire, OX11 0FA, United Kingdom
| | - Lisa Allen
- Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, United Kingdom
- The Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Campus, Didcot, Oxfordshire, OX11 0FA, United Kingdom
| | - Wim Bras
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, One Bethel Valley Road TN 37831, United States of America
| |
Collapse
|
6
|
Lone MS, Afzal S, Chat OA, Aswal VK, Dar AA. Temperature- and Composition-Induced Multiarchitectural Transitions in the Catanionic System of a Conventional Surfactant and a Surface-Active Ionic Liquid. ACS OMEGA 2021; 6:11974-11987. [PMID: 34056352 PMCID: PMC8153984 DOI: 10.1021/acsomega.1c00469] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/15/2021] [Indexed: 06/12/2023]
Abstract
The mixture of the cationic surfactant, cetyltrimethylammonium bromide (CTAB), and anionic surface-active ionic liquid, 1-butyl-3-methylimidazoliumdodecyl sulfate (bmimDS), has been studied as a function of the mole fraction of CTAB, X CTAB, with the total surfactant concentration fixed at 50 mM using turbidity measurements, rheology, dynamic light scattering, differential scanning calorimetry, small-angle neutron scattering, and small-angle X-ray scattering techniques. The catanionic mixture has been found to exhibit phase transitions from vesicles to micelles as a function of temperature, with some mole fractions of CTAB showing dual transitions. Solutions of X CTAB = 0.2 to 0.5 exhibited a single transition from vesicles to cylindrical micelles at 45 °C. With an increase in the mole fraction of CTAB from 0.55 to 0.65, dual structural transitions at 30 and 45 °C were observed. The microstructural transition at 30 °C is ascribed to the vesicle aggregation process with smaller vesicles fusing into bigger ones, whereas the transition at 45 °C was evaluated to be the vesicle-to-cylindrical micelle transition. However, at higher mole fractions of CTAB, X CTAB from 0.65 to 0.90, a single transition from vesicles to small cylindrical/spherical micelles was observed in the solutions, at a lower temperature of 30 °C. To the best of our knowledge, such a microstructural transitions as a function of temperature in a single mixture of cationic and anionic surfactants without any additive has not been reported so far.
Collapse
Affiliation(s)
- Mohd Sajid Lone
- Soft
Matter Research Group, Department of Chemistry, University of Kashmir, Hazratbal, Srinagar 190006, Jammu and Kashmir, India
| | - Saima Afzal
- Soft
Matter Research Group, Department of Chemistry, University of Kashmir, Hazratbal, Srinagar 190006, Jammu and Kashmir, India
| | - Oyais Ahmad Chat
- Soft
Matter Research Group, Department of Chemistry, University of Kashmir, Hazratbal, Srinagar 190006, Jammu and Kashmir, India
- Department
of Chemistry, Government Degree College
Pulwama, Pulwama 192301, Jammu and Kashmir, India
| | - Vinod Kumar Aswal
- Solid
State Physics Division, Bhabha Atomic Research
Centre, Mumbai 400 085, India
| | - Aijaz Ahmad Dar
- Soft
Matter Research Group, Department of Chemistry, University of Kashmir, Hazratbal, Srinagar 190006, Jammu and Kashmir, India
| |
Collapse
|
7
|
Advances in microfluidic synthesis and coupling with synchrotron SAXS for continuous production and real-time structural characterization of nano-self-assemblies. Colloids Surf B Biointerfaces 2021; 201:111633. [PMID: 33639513 DOI: 10.1016/j.colsurfb.2021.111633] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 02/03/2021] [Accepted: 02/15/2021] [Indexed: 02/06/2023]
Abstract
Microfluidic platforms have become highly attractive tools for synthesis of nanoparticles, including lipid nano-self-assemblies, owing to unique features and at least three important aspects inherent to miniaturized micro-devices. Firstly, the fluids flow under controlled conditions in the microchannels, providing well-defined flow profiles and shorter diffusion lengths that play important roles in enhancing the continuous production of lipid and polymer nanoparticles with relatively narrow size distributions. Secondly, various geometries adapted to microfluidic device designs can be utilized for enhancing the colloidal stability of nanoparticles and improving their drug loading. Thirdly, microfluidic devices are usually compatible with in situ characterization methods for real-time monitoring of processes occurring inside the microchannels. This is unlike conventional nanoparticle synthesis methods, where a final solution or withdrawn aliquots are separately analysed. These features inherent to microfluidic devices provide a tool-set allowing not only precise nanoparticle size control, but also real-time analyses for process optimization. In this review, we focus on recent advances and developments in the use of microfluidic devices for synthesis of lipid nanoparticles. We present different designs based on hydrodynamic flow focusing, droplet-based methods and controlled microvortices, and discuss integration of microfluidic platforms with synchrotron small-angle X ray scattering (SAXS) for in situ structural characterization of lipid nano-self-assemblies under continuous flow conditions, along with major challenges and future directions in this research area.
Collapse
|
8
|
Šamaj L, Trulsson M, Trizac E. Strong-coupling theory of counterions with hard cores between symmetrically charged walls. Phys Rev E 2020; 102:042604. [PMID: 33212638 DOI: 10.1103/physreve.102.042604] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/16/2020] [Indexed: 06/11/2023]
Abstract
By a combination of Monte Carlo simulations and analytical calculations, we investigate the effective interactions between highly charged planar interfaces, neutralized by mobile counterions (salt-free system). While most previous analysis have focused on pointlike counterions, we treat them as charged hard spheres. We thus work out the fate of like-charge attraction when steric effects are at work. The analytical approach partitions counterions in two subpopulations, one for each plate, and integrates out one subpopulation to derive an effective Hamiltonian for the remaining one. The effective Hamiltonian features plaquette four-particle interactions, and it is worked out by computing a Gibbs-Bogoliubov inequality for the free energy. At the root of the treatment is the fact that under strong electrostatic coupling, the system of charges forms an ordered arrangement, that can be affected by steric interactions. Fluctuations around the reference positions are accounted for. To dominant order at high coupling, it is found that steric effects do not significantly affect the interplate effective pressure, apart at small distances where hard-sphere overlap are unavoidable, and thus rule out configurations.
Collapse
Affiliation(s)
- Ladislav Šamaj
- Institute of Physics, Slovak Academy of Sciences, 84511 Bratislava, Slovakia
| | | | | |
Collapse
|