1
|
Pipertzis A, Chroni A, Pispas S, Swenson J. Molecular Dynamics and Self-Assembly in Double Hydrophilic Block and Random Copolymers. J Phys Chem B 2024; 128:11267-11276. [PMID: 39497577 PMCID: PMC11571219 DOI: 10.1021/acs.jpcb.4c05398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 10/22/2024] [Accepted: 10/25/2024] [Indexed: 11/15/2024]
Abstract
We investigate the self-assembly and dynamics of double hydrophilic block copolymers (DHBCs) composed of densely grafted poly[oligo(ethylene glycol) methacrylate] (POEGMA) and poly(vinyl benzyl trimethylammonium chloride) (PVBTMAC) parent blocks by means of calorimetry, small- and wide-angle X-ray scattering (SAXS/WAXS), and dielectric spectroscopy. A weak segregation strength is evident from X-ray measurements, implying a disordered state and reflecting the inherent miscibility between the host homopolymers. The presence of intermixed POEGMA/PVBTMAC nanodomains results in homogeneous molecular dynamics, as evidenced through isothermal dielectric and temperature-modulated DSC measurements. The intermixed process undergoes a glass transition at a temperature approximately 40 K higher than the vitrification of bulk POEGMA segments, and it shifts to an even higher temperature by increasing the content of the hard block. At temperatures below the intermixed glass transition temperature, the confined POEGMA segments between the glassy intermixed regions contribute to a segmental process featuring (i) reduced glass transition temperature (Tg), (ii) reduced dielectric strength, (iii) broader distribution of relaxation times, and (iv) reduced fragility compared to the POEGMA homopolymer. We also observe two glass transition temperatures of dry PVBTMAC, which we attribute to the backbone and side chain segmental relaxation. To the best of our knowledge, this is the first time in the literature that these glass transitions of dry PVBTMAC have been reported. Finally, this study shows that excellent mixing of the two homopolymers is obtained, and this implies that different properties of this copolymer system can be tailored by adjusting the concentration of each homopolymer.
Collapse
Affiliation(s)
- Achilleas Pipertzis
- Department
of Physics, Chalmers University of Technology, 41296 Gothenburg, Sweden
| | - Angeliki Chroni
- Theoretical
and Physical Chemistry Institute, National
Hellenic Research Foundation, 48 Vassileos Constantinou Ave., 11635 Athens, Greece
| | - Stergios Pispas
- Theoretical
and Physical Chemistry Institute, National
Hellenic Research Foundation, 48 Vassileos Constantinou Ave., 11635 Athens, Greece
| | - Jan Swenson
- Department
of Physics, Chalmers University of Technology, 41296 Gothenburg, Sweden
| |
Collapse
|
2
|
Theodoropoulou S, Vardaxi A, Kagkoura A, Tagmatarchis N, Pispas S. Hybrid Nanoparticles from Random Polyelectrolytes and Carbon Dots. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2462. [PMID: 38793527 PMCID: PMC11123412 DOI: 10.3390/ma17102462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/10/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024]
Abstract
The present study concerns the preparation of hybrid nanostructures composed of carbon dots (CDs) synthesized in our lab and a double-hydrophilic poly(2-dimethylaminoethyl methacrylate-co-oligo(ethylene glycol) methyl ether methacrylate) (P(DMAEMA-co-OEGMA)) random copolymer through electrostatic interactions between the negatively charged CDs and the positively charged DMAEMA segments of the copolymer. The synthesis of P(DMAEMA-co-OEGMA) copolymer was conducted through RAFT polymerization. Furthermore, the copolymer was converted into a strong cationic random polyelectrolyte through quaternization of the amine groups of DMAEMA segments with methyl iodide (CH3I), and it was subsequently utilized for the complexation with the carbon dots. The molecular, physicochemical, and photophysical characterization of the aqueous solution of the copolymers and their hybrid nanoparticles was conducted using dynamic and electrophoretic light scattering (DLS, ELS) and spectroscopic techniques, such as UV-Vis, fluorescence (FS), and FT-IR spectroscopy. In addition, studies of their aqueous solution using DLS and ELS showed their responsiveness to external stimuli (pH, temperature, ionic strength). Finally, the interaction of selected hybrid nanoparticles with iron (III) ions was confirmed through FS spectroscopy, demonstrating their potential application for heavy metal ions sensing.
Collapse
Affiliation(s)
- Sophia Theodoropoulou
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vasileos Konstantinou Avenue, 11635 Athens, Greece; (S.T.); (A.V.); (A.K.)
- Department of Chemistry, National and Kapodistrian University of Athens, Panepistimioupolis Zografou, 15771 Athens, Greece
| | - Antiopi Vardaxi
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vasileos Konstantinou Avenue, 11635 Athens, Greece; (S.T.); (A.V.); (A.K.)
| | - Antonia Kagkoura
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vasileos Konstantinou Avenue, 11635 Athens, Greece; (S.T.); (A.V.); (A.K.)
| | - Nikos Tagmatarchis
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vasileos Konstantinou Avenue, 11635 Athens, Greece; (S.T.); (A.V.); (A.K.)
| | - Stergios Pispas
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vasileos Konstantinou Avenue, 11635 Athens, Greece; (S.T.); (A.V.); (A.K.)
| |
Collapse
|
3
|
Ren Y, Li Z, Li X, Su J, Li Y, Gao Y, Zhou J, Ji C, Zhu S, Yu M. The Influence of Thermal Parameters on the Self-Nucleation Behavior of Polyphenylene Sulfide (PPS) during Secondary Thermoforming. MATERIALS (BASEL, SWITZERLAND) 2024; 17:890. [PMID: 38399144 PMCID: PMC10890424 DOI: 10.3390/ma17040890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/04/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024]
Abstract
During the secondary thermoforming of carbon fiber-reinforced polyphenylene sulfide (CF/PPS) composites, a vital material for the aerospace field, varied thermal parameters profoundly influence the crystallization behavior of the PPS matrix. Notably, PPS exhibits a distinctive self-nucleation (SN) behavior during repeated thermal cycles. This behavior not only affects its crystallization but also impacts the processing and mechanical properties of PPS and CF/PPS composites. In this article, the effects of various parameters on the SN and non-isothermal crystallization behavior of PPS during two thermal cycles were systematically investigated by differential scanning calorimetry. It was found that the SN behavior was not affected by the cooling rate in the second thermal cycle. Furthermore, the lamellar annealing resulting from the heating process in both thermal cycles affected the temperature range for forming the special SN domain, because of the refined lamellar structure, and expelled various defects. Finally, this study indicated that to control the strong melt memory effect in the first thermal cycle, both the heating rate and processing melt temperature need to be controlled simultaneously. This work reveals that through collaborative control of these parameters, the crystalline morphology, crystallization temperature and crystallization rate in two thermal cycles are controlled. Furthermore, it presents a new perspective for controlling the crystallization behavior of the thermoplastic composite matrix during the secondary thermoforming process.
Collapse
Affiliation(s)
- Yi Ren
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Collaborative Innovation Center of High-Performance Fibers and Composites (Province-Ministry Joint), Key Laboratory of High-Performance Fibers & Products, Ministry of Education, Center for Civil Aviation Composites, Donghua University, Shanghai 201620, China
- Key Laboratory of Shanghai City for Lightweight Composites, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Zhouyang Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Collaborative Innovation Center of High-Performance Fibers and Composites (Province-Ministry Joint), Key Laboratory of High-Performance Fibers & Products, Ministry of Education, Center for Civil Aviation Composites, Donghua University, Shanghai 201620, China
| | - Xinguo Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Collaborative Innovation Center of High-Performance Fibers and Composites (Province-Ministry Joint), Key Laboratory of High-Performance Fibers & Products, Ministry of Education, Center for Civil Aviation Composites, Donghua University, Shanghai 201620, China
- Key Laboratory of Shanghai City for Lightweight Composites, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Jiayu Su
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Collaborative Innovation Center of High-Performance Fibers and Composites (Province-Ministry Joint), Key Laboratory of High-Performance Fibers & Products, Ministry of Education, Center for Civil Aviation Composites, Donghua University, Shanghai 201620, China
- Key Laboratory of Shanghai City for Lightweight Composites, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yue Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 201306, China
| | - Yu Gao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Collaborative Innovation Center of High-Performance Fibers and Composites (Province-Ministry Joint), Key Laboratory of High-Performance Fibers & Products, Ministry of Education, Center for Civil Aviation Composites, Donghua University, Shanghai 201620, China
- Key Laboratory of Shanghai City for Lightweight Composites, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Jianfeng Zhou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Collaborative Innovation Center of High-Performance Fibers and Composites (Province-Ministry Joint), Key Laboratory of High-Performance Fibers & Products, Ministry of Education, Center for Civil Aviation Composites, Donghua University, Shanghai 201620, China
| | - Chengchang Ji
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Collaborative Innovation Center of High-Performance Fibers and Composites (Province-Ministry Joint), Key Laboratory of High-Performance Fibers & Products, Ministry of Education, Center for Civil Aviation Composites, Donghua University, Shanghai 201620, China
- Key Laboratory of Shanghai City for Lightweight Composites, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Shu Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Collaborative Innovation Center of High-Performance Fibers and Composites (Province-Ministry Joint), Key Laboratory of High-Performance Fibers & Products, Ministry of Education, Center for Civil Aviation Composites, Donghua University, Shanghai 201620, China
- Key Laboratory of Shanghai City for Lightweight Composites, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Muhuo Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Collaborative Innovation Center of High-Performance Fibers and Composites (Province-Ministry Joint), Key Laboratory of High-Performance Fibers & Products, Ministry of Education, Center for Civil Aviation Composites, Donghua University, Shanghai 201620, China
- Key Laboratory of Shanghai City for Lightweight Composites, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| |
Collapse
|
4
|
Stimuli-Responsive Self-Assembly of Poly(2-(Dimethylamino)ethyl Methacrylate-co-(oligo ethylene glycol)methacrylate) Random Copolymers and Their Modified Derivatives. Polymers (Basel) 2023; 15:polym15061519. [PMID: 36987299 PMCID: PMC10059824 DOI: 10.3390/polym15061519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/15/2023] [Accepted: 03/17/2023] [Indexed: 03/22/2023] Open
Abstract
In this work, the synthesis and the stimuli-responsive self-assembly behavior of novel double-hydrophilic poly(2-(dimethylamino)ethyl methacrylate-co-(oligo ethylene glycol)methacrylate) random copolymers and their chemically modified derivatives are presented. The synthesis of P(DMAEMA-co-OEGMA) copolymers of different DMAEMA mass compositions was successfully conducted through RAFT polymerization, further followed by the hydrophilic/hydrophobic quaternization with methyl iodide (CH3I), 1-iodohexane (C6H13I), and 1-iodododecane (C12H25I). The tertiary and quaternary amines are randomly arranged within the DMAEMA segment, responding thus to pH, temperature, and salt alterations in aqueous solutions. Light scattering techniques elucidated the intramolecular self-folding and intermolecular self-assembly of polymer chains of P(DMAEMA-co-OEGMA) copolymers upon exposure to different pHs and temperatures. Q(P(DMAEMA-co-OEGMA)) cationic polyelectrolytes demonstrated moderate response to pH, temperature, and ionic strength as a result of the permanent hydrophilic/hydrophobic profile, closely connected with the attached alkyl chains and the quaternization degree. Moreover, fluorescence spectroscopy measurements confirmed the internal micropolarity and the picture of the aggregate inner structure.
Collapse
|
5
|
Chrysostomou V, Foryś A, Trzebicka B, Demetzos C, Pispas S. Amphiphilic Copolymer-Lipid Chimeric Nanosystems as DNA Vectors. Polymers (Basel) 2022; 14:polym14224901. [PMID: 36433029 PMCID: PMC9699196 DOI: 10.3390/polym14224901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/08/2022] [Accepted: 11/11/2022] [Indexed: 11/15/2022] Open
Abstract
Lipid-polymer chimeric (hybrid) nanosystems are promising platforms for the design of effective gene delivery vectors. In this regard, we developed DNA nanocarriers comprised of a novel poly[(stearyl methacrylate-co-oligo(ethylene glycol) methyl ether methacrylate] [P(SMA-co-OEGMA)] amphiphilic random copolymer, the cationic 1,2-dioleoyl-3-(trimethylammonium) propane (DOTAP), and the zwitterionic L-α-phosphatidylcholine, hydrogenated soybean (soy) (HSPC) lipids. Chimeric HSPC:DOTAP:P[(SMA-co-OEGMA)] nanosystems, and pure lipid nanosystems as reference, were prepared in several molar ratios of the components. The colloidal dispersions obtained presented well-defined physicochemical characteristics and were further utilized for the formation of lipoplexes with a model DNA of linear topology containing 113 base pairs. Nanosized complexes were formed through the electrostatic interaction of the cationic lipid and phosphate groups of DNA, as observed by dynamic, static, and electrophoretic light scattering techniques. Ultraviolet-visible (UV-Vis) and fluorescence spectroscopy disclosed the strong binding affinity of the chimeric and also the pure lipid nanosystems to DNA. Colloidally stable chimeric/lipid complexes were formed, whose physicochemical characteristics depend on the N/P ratio and on the molar ratio of the building components. Cryogenic transmission electron microscopy (Cryo-TEM) revealed the formation of nanosystems with vesicular morphology. The results suggest the successful fabrication of these novel chimeric nanosystems with well-defined physicochemical characteristics, which can form stable lipoplexes.
Collapse
Affiliation(s)
- Varvara Chrysostomou
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimioupolis Zografou, 15771 Athens, Greece
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece
| | - Aleksander Foryś
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 ul. M. Curie-Skłodowskiej, 41-819 Zabrze, Poland
| | - Barbara Trzebicka
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 ul. M. Curie-Skłodowskiej, 41-819 Zabrze, Poland
| | - Costas Demetzos
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimioupolis Zografou, 15771 Athens, Greece
| | - Stergios Pispas
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece
- Correspondence: ; Tel.: +30-2107273824
| |
Collapse
|
6
|
Revisiting Non-Conventional Crystallinity-Induced Effects on Molecular Mobility in Sustainable Diblock Copolymers of Poly(propylene adipate) and Polylactide. Molecules 2022; 27:molecules27217449. [PMID: 36364274 PMCID: PMC9655265 DOI: 10.3390/molecules27217449] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022] Open
Abstract
This work deals with molecular mobility in renewable block copolymers based on polylactide (PLA) and poly(propylene adipate) (PPAd). In particular, we assess non-trivial effects on the mobility arising from the implementation of crystallization. Differential scanning calorimetry, polarized light microscopy and broadband dielectric spectroscopy were employed in combination for this study. The materials were subjected to various thermal treatments aiming at the manipulation of crystallization, namely, fast and slow cooling, isothermal melt- and cold-crystallization. Subsequently, we evaluated the changes recorded in the overall thermal behavior, semicrystalline morphology and molecular mobility (segmental and local). The molecular dynamics map for neat PPAd is presented here for the first time. Unexpectedly, the glass transition temperature, Tg, in the amorphous state drops upon crystallization by 8–50 K. The drop becomes stronger with the increase in the PPAd fraction. Compared to the amorphous state, crystallization leads to significantly faster segmental dynamics with severely suppressed cooperativity. For the PLA/PPAd copolymers, the effects are systematically stronger in the cold- as compared to the melt-crystallization, whereas the opposite happens for neat PLA. The local βPLA relaxation of PLA was, interestingly, recorded to almost vanish upon crystallization. This suggests that the corresponding molecular groups (carbonyl) are strongly involved and immobilized within the semicrystalline regions. The overall results suggest the involvement of either spatial nanoconfinement imposed on the mobile chains within the inter-crystal amorphous areas and/or a crystallization-driven effect of nanophase separation. The latter phase separation seems to be at the origins of the significant discrepancy recorded between the calorimetric and dielectric recordings on Tg in the copolymers. Once again, compared to more conventional techniques such as calorimetry, dielectric spectroscopy was proved a powerful and quite sensitive tool in recording such effects as well as in providing indirect indications for the polymer chains’ topology.
Collapse
|
7
|
Klonos PA, Lazaridou M, Samiotaki C, Kyritsis A, Bikiaris DN. Dielectric and calorimetric study in renewable polymer blends based on poly(ethylene adipate) and poly(lactic acid) with microphase separation. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
8
|
Tzoumani I, Soto Beobide A, Iatridi Z, Voyiatzis GA, Bokias G, Kallitsis JK. Glycidyl Methacrylate-Based Copolymers as Healing Agents of Waterborne Polyurethanes. Int J Mol Sci 2022; 23:ijms23158118. [PMID: 35897694 PMCID: PMC9332020 DOI: 10.3390/ijms23158118] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/15/2022] [Accepted: 07/21/2022] [Indexed: 11/22/2022] Open
Abstract
Self-healing materials and self-healing mechanisms are two topics that have attracted huge scientific interest in recent decades. Macromolecular chemistry can provide appropriately tailored functional polymers with desired healing properties. Herein, we report the incorporation of glycidyl methacrylate-based (GMA) copolymers in waterborne polyurethanes (WPUs) and the study of their potential healing ability. Two types of copolymers were synthesized, namely the hydrophobic P(BA-co-GMAy) copolymers of GMA with n-butyl acrylate (BA) and the amphiphilic copolymers P(PEGMA-co-GMAy) of GMA with a poly(ethylene glycol) methyl ether methacrylate (PEGMA) macromonomer. We demonstrate that the blending of these types of copolymers with two WPUs leads to homogenous composites. While the addition of P(BA-co-GMAy) in the WPUs leads to amorphous materials, the addition of P(PEGMA-co-GMAy) copolymers leads to hybrid composite systems varying from amorphous to semi-crystalline, depending on copolymer or blend composition. The healing efficiency of these copolymers was explored upon application of two external triggers (addition of water or heating). Promising healing results were exhibited by the final composites when water was used as a healing trigger.
Collapse
Affiliation(s)
- Ioanna Tzoumani
- Department of Chemistry, University of Patras, GR-26504 Patras, Greece; (I.T.); (A.S.B.); (G.B.); (J.K.K.)
| | - Amaia Soto Beobide
- Department of Chemistry, University of Patras, GR-26504 Patras, Greece; (I.T.); (A.S.B.); (G.B.); (J.K.K.)
- FORTH/ICE-HT, Stadiou Street, P.O. Box 1414, GR-26504 Patras, Greece;
| | - Zacharoula Iatridi
- Department of Chemistry, University of Patras, GR-26504 Patras, Greece; (I.T.); (A.S.B.); (G.B.); (J.K.K.)
- Correspondence:
| | | | - Georgios Bokias
- Department of Chemistry, University of Patras, GR-26504 Patras, Greece; (I.T.); (A.S.B.); (G.B.); (J.K.K.)
| | - Joannis K. Kallitsis
- Department of Chemistry, University of Patras, GR-26504 Patras, Greece; (I.T.); (A.S.B.); (G.B.); (J.K.K.)
| |
Collapse
|
9
|
Klonos PA, Terzopoulou Z, Zamboulis A, Valera MÁ, Mangas A, Kyritsis A, Pissis P, Bikiaris DN. Direct and indirect effects on molecular mobility in renewable polylactide-poly(propylene adipate) block copolymers as studied via dielectric spectroscopy and calorimetry. SOFT MATTER 2022; 18:3725-3737. [PMID: 35503564 DOI: 10.1039/d2sm00261b] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In this work, we study a series of sustainable block copolymers based on polylactide, PLA, and poly(propylene adipate), PPAd, both polymers being prepared from renewable resources. Envisaging a wide range of future applications in the frame of a green and circular economy, e.g., packaging materials replacing conventional petrochemicals, the employment of PPAd aims at lowering the glass transition and melting temperatures of PLA and, finally, facilitation of the enzymatic degradation and compostability. The copolymers have been synthesized via ring opening polymerization of lactides in the presence of propylene adipate oligomers (5, 15 and 25%). The direct effects on the molecular mobility by the structure/composition are assessed in the amorphous state employing broadband dielectric spectroscopy (BDS) and calorimetry. BDS allowed the recording of local PLA and PPAd dynamics in all cases. The effects on local relaxations suggest favoring of interchain interactions, both PLA-PPAd and PPAd-PPAd. Regarding the more important segmental dynamics, the presence of PPAd leads to faster polymer chain diffusion, as monitored by the significant lowering of the dielectric and calorimetric glass transition temperature, Tg. This suggests the plasticizing role of PPAd on PLA (majority) in combination with the lowering of the average molar mass, Mn, in the copolymers from ∼75 to ∼30 kg mol-1, which is the actual scope for the synthesis of these materials. Interestingly, a strong suppression in fragility (chain cooperativity) is additionally recorded. In contrast to calorimetry and due to the high resolving power of BDS, for the higher PPAd fraction, the weak segmental relaxation of PPAd was additionally recorded. Overall, the recordings suggest a strong increase in free volume and two individual dynamic states, one for 0 and 5% PPAd and another for 15 and 25% PPAd. Within the latter, we gained indications for partial phase nano-separation of PPAd. Regarding indirect effects, these were followed via crystallization. Independent of the method of crystallization, namely, melt or cold, the presence of PPAd led to the systematic lowering of crystallization and melting temperatures and enthalpies. The effects reflect the decrease of crystalline nuclei, which is confirmed by optical microscopy as in the copolymers fewer although larger crystals are formed.
Collapse
Affiliation(s)
- Panagiotis A Klonos
- Department of Chemistry, Laboratory of Polymer Chemistry and Technology, Aristotle University of Thessaloniki, GR-541 24, Thessaloniki, Greece.
- Department of Physics, National Technical University of Athens (NTUA), Zografou Campus, 15780, Athens, Greece
| | - Zoi Terzopoulou
- Department of Chemistry, Laboratory of Polymer Chemistry and Technology, Aristotle University of Thessaloniki, GR-541 24, Thessaloniki, Greece.
| | - Alexandra Zamboulis
- Department of Chemistry, Laboratory of Polymer Chemistry and Technology, Aristotle University of Thessaloniki, GR-541 24, Thessaloniki, Greece.
| | - Miguel Ángel Valera
- AIMPLAS, Asociación de Investigación de Materiales Plásticos Y Conexas, Carrer de Gustave Eiffel, 4, 46980 Valencia, Spain
| | - Ana Mangas
- AIMPLAS, Asociación de Investigación de Materiales Plásticos Y Conexas, Carrer de Gustave Eiffel, 4, 46980 Valencia, Spain
| | - Apostolos Kyritsis
- Department of Physics, National Technical University of Athens (NTUA), Zografou Campus, 15780, Athens, Greece
| | - Polycarpos Pissis
- Department of Physics, National Technical University of Athens (NTUA), Zografou Campus, 15780, Athens, Greece
| | - Dimitrios N Bikiaris
- Department of Chemistry, Laboratory of Polymer Chemistry and Technology, Aristotle University of Thessaloniki, GR-541 24, Thessaloniki, Greece.
| |
Collapse
|
10
|
Chrysostomou V, Katifelis H, Gazouli M, Dimas K, Demetzos C, Pispas S. Hydrophilic Random Cationic Copolymers as Polyplex-Formation Vectors for DNA. MATERIALS (BASEL, SWITZERLAND) 2022; 15:2650. [PMID: 35407982 PMCID: PMC9000809 DOI: 10.3390/ma15072650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 03/29/2022] [Accepted: 03/31/2022] [Indexed: 12/19/2022]
Abstract
Research on the improvement and fabrication of polymeric systems as non-viral gene delivery carriers is required for their implementation in gene therapy. Random copolymers have not been extensively utilized for these purposes. In this regard, double hydrophilic poly[(2-(dimethylamino) ethyl methacrylate)-co-(oligo(ethylene glycol) methyl ether methacrylate] [P(DMAEMA-co-OEGMA)] random copolymers were synthesized via reversible addition-fragmentation chain transfer (RAFT) polymerization. The copolymers were further modified by quaternization of DMAEMA tertiary amine, producing the cationic P(QDMAEMA-co-OEGMA) derivatives. Fluorescence and ultraviolet-visible (UV-vis) spectroscopy revealed the efficient interaction of copolymers aggregates with linear DNAs of different lengths, forming polyplexes, with the quaternized copolymer aggregates exhibiting stronger binding affinity. Light scattering techniques evidenced the formation of polyplexes whose size, molar mass, and surface charge strongly depend on the N/P ratio (nitrogen (N) of the amine group of DMAEMA/QDMAEMA over phosphate (P) groups of DNA), DNA length, and length of the OEGMA chain. Polyplexes presented colloidal stability under physiological ionic strength as shown by dynamic light scattering. In vitro cytotoxicity of the empty nanocarriers was evaluated on HEK293 as a control cell line. P(DMAEMA-co-OEGMA) copolymer aggregates were further assessed for their biocompatibility on 4T1, MDA-MB-231, MCF-7, and T47D breast cancer cell lines presenting high cell viability rates.
Collapse
Affiliation(s)
- Varvara Chrysostomou
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimioupolis Zografou, 15771 Athens, Greece;
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece
| | - Hector Katifelis
- Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, Michalakopoulou 176, 11527 Athens, Greece; (H.K.); (M.G.)
| | - Maria Gazouli
- Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, Michalakopoulou 176, 11527 Athens, Greece; (H.K.); (M.G.)
- Second Department of Radiology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Konstantinos Dimas
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41500 Larissa, Greece;
| | - Costas Demetzos
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimioupolis Zografou, 15771 Athens, Greece;
| | - Stergios Pispas
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece
| |
Collapse
|
11
|
Zokaei S, Kim D, Järsvall E, Fenton AM, Weisen AR, Hultmark S, Nguyen PH, Matheson AM, Lund A, Kroon R, Chabinyc ML, Gomez ED, Zozoulenko I, Müller C. Tuning of the elastic modulus of a soft polythiophene through molecular doping. MATERIALS HORIZONS 2022; 9:433-443. [PMID: 34787612 DOI: 10.1039/d1mh01079d] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Molecular doping of a polythiophene with oligoethylene glycol side chains is found to strongly modulate not only the electrical but also the mechanical properties of the polymer. An oxidation level of up to 18% results in an electrical conductivity of more than 52 S cm-1 and at the same time significantly enhances the elastic modulus from 8 to more than 200 MPa and toughness from 0.5 to 5.1 MJ m-3. These changes arise because molecular doping strongly influences the glass transition temperature Tg and the degree of π-stacking of the polymer, as indicated by both X-ray diffraction and molecular dynamics simulations. Surprisingly, a comparison of doped materials containing mono- or dianions reveals that - for a comparable oxidation level - the presence of multivalent counterions has little effect on the stiffness. Evidently, molecular doping is a powerful tool that can be used for the design of mechanically robust conducting materials, which may find use within the field of flexible and stretchable electronics.
Collapse
Affiliation(s)
- Sepideh Zokaei
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Göteborg 41296, Sweden.
| | - Donghyun Kim
- Laboratory of Organic Electronics, Linköping University, Norrköping 60174, Sweden
| | - Emmy Järsvall
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Göteborg 41296, Sweden.
| | - Abigail M Fenton
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Albree R Weisen
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Sandra Hultmark
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Göteborg 41296, Sweden.
| | - Phong H Nguyen
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, USA
| | - Amanda M Matheson
- Materials Department, University of California, Santa Barbara, California 93106, USA
| | - Anja Lund
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Göteborg 41296, Sweden.
| | - Renee Kroon
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Göteborg 41296, Sweden.
- Laboratory of Organic Electronics, Linköping University, Norrköping 60174, Sweden
- Wallenberg Wood Science Center, Linköping University, Norrköping 60174, Sweden
| | - Michael L Chabinyc
- Materials Department, University of California, Santa Barbara, California 93106, USA
| | - Enrique D Gomez
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Igor Zozoulenko
- Laboratory of Organic Electronics, Linköping University, Norrköping 60174, Sweden
- Wallenberg Wood Science Center, Linköping University, Norrköping 60174, Sweden
| | - Christian Müller
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Göteborg 41296, Sweden.
- Wallenberg Wood Science Center, Chalmers University of Technology, Göteborg 41296, Sweden
| |
Collapse
|
12
|
Molecular mobility, crystallization and melt-memory investigation of molar mass effects on linear and hydroxyl-terminated Poly(ε-caprolactone). POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124603] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
13
|
Kapourani A, Andriotis EG, Chachlioutaki K, Kontogiannopoulos KN, Klonos PA, Kyritsis A, Pavlidou E, Bikiaris DN, Fatouros DG, Barmpalexis P. High-Drug-Loading Amorphous Solid Dispersions via In Situ Thermal Cross-Linking: Unraveling the Mechanisms of Stabilization. Mol Pharm 2021; 18:4393-4414. [PMID: 34699238 DOI: 10.1021/acs.molpharmaceut.1c00563] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This article takes a step forward in understanding the mechanisms involved during the preparation and performance of cross-linked high-drug-loading (HDL) amorphous solid dispersions (ASDs). Specifically, ASDs, having 90 wt % poorly water-soluble drug indomethacin (IND), were prepared via in situ thermal cross-linking of poly(acrylic acid) (PAA) and poly(vinyl alcohol) (PVA) and thoroughly evaluated in terms of physical stability and in vitro supersaturation. Results showed that HDL ASDs having excellent active pharmaceutical ingredient (API) amorphous stability and prolonged in vitro supersaturation were prepared by fine tuning the cross-linking procedure. Unraveling of the processes involved during ASD's formation shed light on the significant role of the cross-linking conditions (i.e., temperature and time), the physicochemical properties of the API, and the hydrolysis level of the cross-linker as key factors in modulating ASD's stability. In-depth analysis of the prepared systems revealed the (1) reduction of API's molecular motions within the cross-linked polymeric networks (through API's strong spatial confinement), (2) the structural changes in the prepared cross-linked matrices (induced by the high API drug loading), and (3) the tuning of the cross-linking density via utilization of low-hydrolyzed PVA as the major mechanisms responsible for ASD's exceptional performance. Complementary analysis by means of molecular dynamics simulations also highlighted the vital role of strong drug-polymer intermolecular interactions evolving among the ASD components. Overall, the impression of the complexity of in situ cross-linked ASDs has been reinforced with the excessive variation of parameters investigated in the current study, offering thus insights up to the submolecular level to lay the groundwork and foundations for the comprehensive assessment of a new emerging class of HDL amorphous API formulations.
Collapse
Affiliation(s)
- Afroditi Kapourani
- Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Eleftherios G Andriotis
- Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Konstantina Chachlioutaki
- Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Konstantinos N Kontogiannopoulos
- Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece.,Natural Products Research Centre of Excellence-AUTH (NatPro-AUTH), Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Thessaloniki 57001, Greece
| | - Panagiotis A Klonos
- Department of Physics, National Technical University of Athens, Zografou Campus, Athens 15780, Greece
| | - Apostolos Kyritsis
- Department of Physics, National Technical University of Athens, Zografou Campus, Athens 15780, Greece
| | - Eleni Pavlidou
- Solid State Section, Physics Department, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Dimitrios N Bikiaris
- Department of Chemistry, Laboratory of Polymer Chemistry and Technology, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Dimitrios G Fatouros
- Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Panagiotis Barmpalexis
- Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece.,Natural Products Research Centre of Excellence-AUTH (NatPro-AUTH), Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Thessaloniki 57001, Greece
| |
Collapse
|
14
|
Orekhov DV, Kazantsev OA, Orekhov SV, Sivokhin AP, Kamorin DM, Simagin AS, Savinova MV, Bolshakova EA, Korotaev MS. Synthesis of amphiphilic (meth)acrylates with oligo(ethylene glycol) and (or) oligo(propylene glycol) blocks by the esterification of (meth)acrylic acid. J Appl Polym Sci 2021. [DOI: 10.1002/app.50982] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Dmitry V. Orekhov
- Nizhny Novgorod State Technical University n.a. R.E. Alekseev Nizhny Novgorod Russian Federation
| | - Oleg A. Kazantsev
- Nizhny Novgorod State Technical University n.a. R.E. Alekseev Nizhny Novgorod Russian Federation
| | - Sergey V. Orekhov
- Nizhny Novgorod State Technical University n.a. R.E. Alekseev Nizhny Novgorod Russian Federation
| | - Alexey P. Sivokhin
- Nizhny Novgorod State Technical University n.a. R.E. Alekseev Nizhny Novgorod Russian Federation
| | - Denis M. Kamorin
- Nizhny Novgorod State Technical University n.a. R.E. Alekseev Nizhny Novgorod Russian Federation
- Lobachevsky State University of Nizhni Novgorod Nizhny Novgorod Russian Federation
| | - Alexander S. Simagin
- Nizhny Novgorod State Technical University n.a. R.E. Alekseev Nizhny Novgorod Russian Federation
- Lobachevsky State University of Nizhni Novgorod Nizhny Novgorod Russian Federation
| | - Maria V. Savinova
- Nizhny Novgorod State Technical University n.a. R.E. Alekseev Nizhny Novgorod Russian Federation
| | - Evgeniya A. Bolshakova
- Nizhny Novgorod State Technical University n.a. R.E. Alekseev Nizhny Novgorod Russian Federation
| | - Michail S. Korotaev
- Nizhny Novgorod State Technical University n.a. R.E. Alekseev Nizhny Novgorod Russian Federation
| |
Collapse
|
15
|
Xanthopoulou E, Klonos PA, Zamboulis A, Terzopoulou Z, Kyritsis A, Pissis P, Bikiaris DN, Papageorgiou GZ. Molecular mobility investigation of the biobased Poly(ethylene vanillate) and Poly(propylene vanillate). POLYMER 2021. [DOI: 10.1016/j.polymer.2021.124197] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
16
|
Kong P, Deng J, Du Z, Zou W, Zhang C. Construction of lamellar morphology by side‐chain crystalline comb‐like polymers for gas barrier. POLYM ADVAN TECHNOL 2021. [DOI: 10.1002/pat.5515] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Peng Kong
- Key Laboratory of Carbon Fiber and Functional Polymers Beijing University of Chemical Technology, Ministry of Education Beijing China
- College of Materials Science and Engineering Beijing University of Chemical Technology Beijing China
| | - Jingqian Deng
- Key Laboratory of Carbon Fiber and Functional Polymers Beijing University of Chemical Technology, Ministry of Education Beijing China
- College of Materials Science and Engineering Beijing University of Chemical Technology Beijing China
| | - Zhongjie Du
- Changzhou Advanced Materials Research Institute Beijing University of Chemical Technology Jiangsu China
- Scientific Development and Innovation Strategy Department Sinochem Petrochemical Distribution Co., Ltd Shanghai China
| | - Wei Zou
- Key Laboratory of Carbon Fiber and Functional Polymers Beijing University of Chemical Technology, Ministry of Education Beijing China
- College of Materials Science and Engineering Beijing University of Chemical Technology Beijing China
- Changzhou Advanced Materials Research Institute Beijing University of Chemical Technology Jiangsu China
| | - Chen Zhang
- Key Laboratory of Carbon Fiber and Functional Polymers Beijing University of Chemical Technology, Ministry of Education Beijing China
- College of Materials Science and Engineering Beijing University of Chemical Technology Beijing China
- Changzhou Advanced Materials Research Institute Beijing University of Chemical Technology Jiangsu China
| |
Collapse
|
17
|
Karava V, Siamidi A, Vlachou M, Christodoulou E, Zamboulis A, Bikiaris DN, Kyritsis A, Klonos PA. Block copolymers based on poly(butylene adipate) and poly(L-lactic acid) for biomedical applications: synthesis, structure and thermodynamical studies. SOFT MATTER 2021; 17:2439-2453. [PMID: 33491719 DOI: 10.1039/d0sm02053b] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
This work describes the synthesis of poly(butylene adipate) (PBAd), by melt polycondensation, poly(l-lactic acid) (PLLA), by ring opening polymerization, and the new block copolymer PLLA/PBAd in ratios 90/10, 95/5, 75/25 and 50/50. Due to the biocompatibility and low toxicity of neat PBAd and PLLA, these copolymers are suitable to be used in biomedical applications. The 1H and 13C nuclear magnetic resonance spectroscopy techniques were employed for structural characterization. The thermal transitions, with an emphasis on crystallization, were assessed by differential scanning calorimetry, supplemented by X-ray diffraction and polarized optical microscopy. Molecular mobility studies were conducted using two advanced techniques, broadband dielectric spectroscopy and thermally stimulated depolarization currents. The results from the structural techniques, in combination with each other, provided proof of the presence of PLLA and PBAd blocks and, moreover, the successful copolymer synthesis. The overall data showed that the different co-polymer compositions result directly in severe changes in the polymer crystal distribution and, indirectly, the formation of PBAd micro/nano domains surrounded by PLLA. Furthermore, it was demonstrated that both the continuity of the two polymers throughout the copolymer volume and the semicrystalline morphology can be tuned to a wide extent. The latter makes these systems quite promising envisaging biomedical applications, including the encapsulation of small molecules, e.g. drug solutions. The molecular mobility map was constructed for these systems for the first time, revealing the local (short scale) and segmental (larger nm scale) mobility of PBAd and PLLA, as well as intermediate behaviors of the copolymers.
Collapse
Affiliation(s)
- Vasiliki Karava
- Department of Pharmacy, Section of Pharmaceutical Technology, National and Kapodistrian University of Athens, Zografou Campus, 15784, Athens, Greece.
| | - Aggeliki Siamidi
- Department of Pharmacy, Section of Pharmaceutical Technology, National and Kapodistrian University of Athens, Zografou Campus, 15784, Athens, Greece.
| | - Marilena Vlachou
- Department of Pharmacy, Section of Pharmaceutical Technology, National and Kapodistrian University of Athens, Zografou Campus, 15784, Athens, Greece.
| | - Evi Christodoulou
- Department of Chemistry, Laboratory of Polymer Chemistry and Technology, Aristotle University of Thessaloniki, GR-541 24, Thessaloniki, Greece
| | - Alexandra Zamboulis
- Department of Chemistry, Laboratory of Polymer Chemistry and Technology, Aristotle University of Thessaloniki, GR-541 24, Thessaloniki, Greece
| | - Dimitrios N Bikiaris
- Department of Chemistry, Laboratory of Polymer Chemistry and Technology, Aristotle University of Thessaloniki, GR-541 24, Thessaloniki, Greece
| | - Apostolos Kyritsis
- Department of Physics, National Technical University of Athens (NTUA), Zografou Campus, 15780, Athens, Greece.
| | - Panagiotis A Klonos
- Department of Chemistry, Laboratory of Polymer Chemistry and Technology, Aristotle University of Thessaloniki, GR-541 24, Thessaloniki, Greece and Department of Physics, National Technical University of Athens (NTUA), Zografou Campus, 15780, Athens, Greece.
| |
Collapse
|
18
|
PEG-POSS Star Molecules Blended in Polyurethane with Flexible Hard Segments: Morphology and Dynamics. Molecules 2020; 26:molecules26010099. [PMID: 33379358 PMCID: PMC7795770 DOI: 10.3390/molecules26010099] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/23/2020] [Accepted: 12/24/2020] [Indexed: 01/27/2023] Open
Abstract
A star polymer with a polyhedral oligomeric silsesquioxanne (POSS) core and poly(ethylene glycol) (PEG) vertex groups is incorporated in a polyurethane with flexible hard segments in-situ during the polymerization process. The blends are studied in terms of morphology, molecular dynamics, and charge mobility. The methods utilized for this purpose are scanning electron and atomic force microscopies (SEM, AFM), X-ray diffraction (XRD), differential scanning calorimetry (DSC), and to a larger extent dielectric relaxation spectroscopy (DRS). It is found that POSS reduces the degree of crystallinity of the hard segments. Contrary to what was observed in a similar system with POSS pendent along the main chain, soft phase calorimetric glass transition temperature drops as a result of plasticization, and homogenization of the soft phase by the star molecules. The dynamic glass transition though, remains practically unaffected, and a hypothesis is formed to resolve the discrepancy, based on the assumption of different thermal and dielectric responses of slow and fast modes of the system. A relaxation α′, slower than the bulky segmental α and common in polyurethanes, appears here too. A detailed analysis of dielectric spectra provides some evidence that this relaxation has cooperative character. An additional relaxation g, which is not commonly observed, accompanies the Maxwell Wagner Sillars interfacial polarization process, and has dynamics similar to it. POSS is found to introduce conductivity and possibly alter its mechanism. The study points out that different architectures of incorporation of POSS in polyurethane affect its physical properties by different mechanisms.
Collapse
|