1
|
Pereira-Silva M, Veiga F, Paiva-Santos AC, Concheiro A, Alvarez-Lorenzo C. Biomimetic nanosystems for pancreatic cancer therapy: A review. J Control Release 2025; 383:113824. [PMID: 40348133 DOI: 10.1016/j.jconrel.2025.113824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 04/29/2025] [Accepted: 05/05/2025] [Indexed: 05/14/2025]
Abstract
Pancreatic cancer (PC) is a highly lethal and aggressive malignancy, currently one of the leading causes of cancer-related deaths worldwide, in both women and men. PC is highly resistant to standard chemotherapy (CT) because its immunosuppressive and hypoxic tumor microenvironment and a dense desmoplastic stroma compartment extensively limit drug accessibility and perfusion. Although CT is one of the main therapeutic strategies for PC management contributing to tumor eradication through a cytotoxic effect, CT is associated with a poor pharmacokinetic profile and provokes deleterious systemic toxicity. This low efficacy-poor safety scenario urgently calls for innovative and highly specific therapeutic strategies to counteract this urgent clinical challenge. Nanotechnology-based precision materials for cancer may help improve drug stability and minimize the systemic cytotoxic effects by increasing drug tumor accumulation and also enabling controlled release, but several drawbacks still persist, such as the poor targeting efficiency. In the last few years increased attention has been paid to bioinspired nanosystems that can mimic either partially or totally biological systems, including lipid layers as suitable stealth coatings resembling the composition of cell membranes, lipoprotein- and blood protein-based nanosystems, and cell membrane-derived systems, such as extracellular vesicles, cell membrane nanovesicles and cell membrane-coated nanosystems, which display intrinsic cancer-targeting abilities, enhanced biocompatibility, decreased immunogenicity, and prolonged blood circulation profile. This review covers the recent breakthroughs on advanced biomimetic PC-targeted nanosystems, focusing on their design, properties and applications as innovative, multifunctional and versatile tools paving the way to improved PC diagnosis and treatment.
Collapse
Affiliation(s)
- Miguel Pereira-Silva
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548 Coimbra, Portugal; REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548 Coimbra, Portugal; Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma, Facultad de Farmacia, Instituto de Materiales (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Francisco Veiga
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548 Coimbra, Portugal; REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548 Coimbra, Portugal; REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Angel Concheiro
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma, Facultad de Farmacia, Instituto de Materiales (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Carmen Alvarez-Lorenzo
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma, Facultad de Farmacia, Instituto de Materiales (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| |
Collapse
|
2
|
Karabiyik G, Jesorka A, Gözen I. Ring-shaped nanoparticle assembly and cross-linking on lipid vesicle scaffolds. SOFT MATTER 2024; 20:8947-8951. [PMID: 39508507 DOI: 10.1039/d4sm01010h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
We show the assembly of carboxylate-modified polystyrene nanoparticles into flexible circular, ring-shaped structures with micrometer sized diameters around the base of surface-adhered lipid vesicles. The rings remain around the vesicles but disintegrate when the lipid membranes are dissolved in detergent. The aqueous medium allows carbodiimide-based cross-linking chemistry to be applied to the particle assemblies resulting in the preservation of the rings even after the lipid compartments are dissolved.
Collapse
Affiliation(s)
- Gizem Karabiyik
- Centre for Molecular Medicine Norway, Faculty of Medicine, University of Oslo, 0318 Oslo, Norway.
| | - Aldo Jesorka
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Göteborg, SE-412 96, Sweden
| | - Irep Gözen
- Centre for Molecular Medicine Norway, Faculty of Medicine, University of Oslo, 0318 Oslo, Norway.
| |
Collapse
|
3
|
Pote MS, Singh D, M. A A, Suchita J, Gacche RN. Cancer metastases: Tailoring the targets. Heliyon 2024; 10:e35369. [PMID: 39170575 PMCID: PMC11336595 DOI: 10.1016/j.heliyon.2024.e35369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 07/26/2024] [Indexed: 08/23/2024] Open
Abstract
Metastasis is an intricate and formidable pathophysiological process encompassing the dissemination of cancer cells from the primary tumour body to distant organs. It stands as a profound and devastating phenomenon that constitutes the primary driver of cancer-related mortality. Despite great strides of advancements in cancer research and treatment, tailored anti-metastasis therapies are either lacking or have shown limited success, necessitating a deeper understanding of the intrinsic elements driving cancer invasiveness. This comprehensive review presents a contemporary elucidation of pivotal facets within the realm of cancer metastasis, commencing with the intricate processes of homing and invasion. The process of angiogenesis, which supports tumour growth and metastasis, is addressed, along with the pre-metastatic niche, wherein the primary tumour prepares for a favorable microenvironment at distant sites for subsequent metastatic colonization. The landscape of metastasis-related genetic and epigenetic mechanisms, involvement of metastasis genes and metastasis suppressor genes, and microRNAs (miRNA) are also discussed. Furthermore, immune modulators' impact on metastasis and their potential as therapeutic targets are addressed. The interplay between cancer cells and the immune system, including immune evasion mechanisms employed by metastatic cells, is discussed, highlighting the importance of targeting immune modulation in arresting metastatic progression. Finally, this review presents promising treatment opportunities derived from the insights gained into the mechanisms of metastasis. Identifying novel therapeutic targets and developing innovative strategies to disrupt the metastatic cascade holds excellent potential for improving patient outcomes and ultimately reducing cancer-related mortality.
Collapse
Affiliation(s)
| | | | | | | | - Rajesh N. Gacche
- Department of Biotechnology, Savitribai Phule Pune University, Pune, Maharashtra, India
| |
Collapse
|
4
|
Zhu L, Yu X, Cao T, Deng H, Tang X, Lin Q, Zhou Q. Immune cell membrane-based biomimetic nanomedicine for treating cancer metastasis. Acta Pharm Sin B 2023. [DOI: 10.1016/j.apsb.2023.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023] Open
|
5
|
Shao M, Lopes D, Lopes J, Yousefiasl S, Macário-Soares A, Peixoto D, Ferreira-Faria I, Veiga F, Conde J, Huang Y, Chen X, Paiva-Santos AC, Makvandi P. Exosome membrane-coated nanosystems: Exploring biomedical applications in cancer diagnosis and therapy. MATTER 2023; 6:761-799. [DOI: 10.1016/j.matt.2023.01.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
6
|
Xia C, Bai W, Deng T, Li T, Zhang L, Lu Z, Zhang Z, Li M, He Q. Sponge-like nano-system suppresses tumor recurrence and metastasis by restraining myeloid-derived suppressor cells-mediated immunosuppression and formation of pre-metastatic niche. Acta Biomater 2023; 158:708-724. [PMID: 36638937 DOI: 10.1016/j.actbio.2023.01.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 12/18/2022] [Accepted: 01/03/2023] [Indexed: 01/12/2023]
Abstract
Tumor recurrence and metastasis still greatly limit the therapeutic efficiency on the majority of postoperative clinical cases. With the aim to realize more powerful treatment outcomes on postoperative malignant tumors, a sponge-like neutrophil membrane-coated nano-system (NM/PPcDG/D) was fabricated to inhibit tumor recurrence and metastasis by inhibiting the recruitment and functions of myeloid-derived suppressor cell (MDSCs), which reinforced anti-tumor immunity and also suppressed pulmonary metastasis by inhibiting the formation of pre-metastatic niche (PMN). Firstly, PPcDG/D nanoparticles (NPs) were formulated by the self-assembling and crosslinking of synthesized redox-responsive polymer (PPDG) with doxorubicin (DOX) loading in the nanocore (PPcDG/D), followed by coating with activated neutrophils membrane to fabricate biomimetic NM/PPcDG/D. The sponge-like NM/PPcDG/D not only showed obvious natural tropism to postoperative inflammatory site, but also inhibited the recruitment and functions of MDSCs, thus relieved MDSCs-mediated immunosuppression. Additionally, NM/PPcDG/D also suppressed the formation of PMN to inhibit pulmonary metastasis by reducing the recruitment of MDSCs, decreasing the permeability of pulmonary vessels and inhibiting the implantation of circulating tumor cell (CTCs). Eventually, this fabricated NM/PPcDG/D NPs significantly inhibited tumor recurrence and metastasis on postoperative triple negative breast cancer (TNBC) model, presenting a promising therapeutic strategy on postoperative malignant tumors. STATEMENT OF SIGNIFICANCE: Myeloid-derived suppressor cells (MDSCs) play important roles in accelerating tumor recurrence and metastasis by promoting the establishment of immunosuppression in postoperative inflammatory regions and facilitating the formation of pulmonary pre-metastasis niche (PMN). In order to achieve enhanced suppression of recurrence and metastasis, a sponge-like NM/PPcDG/D nano-system was designed and fabricated. This nano-system is also the first attempt to integrate the regulation effects of a nano-sponge and anti-inflammatory agent to achieve enhanced multi-mode manipulation of MDSCs. Ultimately, NM/PPcDG/D powerfully restrained the recurrence and spontaneous metastasis on TNBC model. This article also revealed the particular roles of MDSCs involved in the regulation networks of postoperative recurrence and metastasis, immunosuppression and inflammation.
Collapse
Affiliation(s)
- Chunyu Xia
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Med-X Center for Materials, Sichuan University, Chengdu 610041, China
| | - Wenjing Bai
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Med-X Center for Materials, Sichuan University, Chengdu 610041, China
| | - Tao Deng
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Med-X Center for Materials, Sichuan University, Chengdu 610041, China
| | - Ting Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Med-X Center for Materials, Sichuan University, Chengdu 610041, China
| | - Ling Zhang
- College of Polymer Science and Engineering, Sichuan University, China
| | - Zhengze Lu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Med-X Center for Materials, Sichuan University, Chengdu 610041, China
| | - Zhirong Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Med-X Center for Materials, Sichuan University, Chengdu 610041, China
| | - Man Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Med-X Center for Materials, Sichuan University, Chengdu 610041, China.
| | - Qin He
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Med-X Center for Materials, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
7
|
de Freitas JVB, Reis AVF, Silva ADO, de Sousa ACC, Martins JRP, Nogueira KAB, da Silva Moreira T, Petrilli R, Eloy JO. Monoclonal Antibodies in Nanosystems as a Strategy for Cancer Treatment. Cancer Nanotechnol 2023. [DOI: 10.1007/978-3-031-17831-3_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
8
|
Ishihara K. Biomimetic materials based on zwitterionic polymers toward human-friendly medical devices. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2022; 23:498-524. [PMID: 36117516 PMCID: PMC9481090 DOI: 10.1080/14686996.2022.2119883] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/26/2022] [Accepted: 08/28/2022] [Indexed: 06/01/2023]
Abstract
This review summarizes recent research on the design of polymer material systems based on biomimetic concepts and reports on the medical devices that implement these systems. Biomolecules such as proteins, nucleic acids, and phospholipids, present in living organisms, play important roles in biological activities. These molecules are characterized by heterogenic nature with hydrophilicity and hydrophobicity, and a balance of positive and negative charges, which provide unique reaction fields, interfaces, and functionality. Incorporating these molecules into artificial systems is expected to advance material science considerably. This approach to material design is exceptionally practical for medical devices that are in contact with living organisms. Here, it is focused on zwitterionic polymers with intramolecularly balanced charges and introduce examples of their applications in medical devices. Their unique properties make these polymers potential surface modification materials to enhance the performance and safety of conventional medical devices. This review discusses these devices; moreover, new surface technologies have been summarized for developing human-friendly medical devices using zwitterionic polymers in the cardiovascular, cerebrovascular, orthopedic, and ophthalmology fields.
Collapse
Affiliation(s)
- Kazuhiko Ishihara
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, Osaka, Japan
| |
Collapse
|
9
|
Chen Z, Yue Z, Wang R, Yang K, Li S. Nanomaterials: A powerful tool for tumor immunotherapy. Front Immunol 2022; 13:979469. [PMID: 36072591 PMCID: PMC9441741 DOI: 10.3389/fimmu.2022.979469] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Cancer represents the leading global driver of death and is recognized as a critical obstacle to increasing life expectancy. In recent years, with the development of precision medicine, significant progress has been made in cancer treatment. Among them, various therapies developed with the help of the immune system have succeeded in clinical treatment, recognizing and killing cancer cells by stimulating or enhancing the body’s intrinsic immune system. However, low response rates and serious adverse effects, among others, have limited the use of immunotherapy. It also poses problems such as drug resistance and hyper-progression. Fortunately, thanks to the rapid development of nanotechnology, engineered multifunctional nanomaterials and biomaterials have brought breakthroughs in cancer immunotherapy. Unlike conventional cancer immunotherapy, nanomaterials can be rationally designed to trigger specific tumor-killing effects. Simultaneously, improved infiltration of immune cells into metastatic lesions enhances the efficiency of antigen submission and induces a sustained immune reaction. Such a strategy directly reverses the immunological condition of the primary tumor, arrests metastasis and inhibits tumor recurrence through postoperative immunotherapy. This paper discusses several types of nanoscale biomaterials for cancer immunotherapy, and they activate the immune system through material-specific advantages to provide novel therapeutic strategies. In summary, this article will review the latest advances in tumor immunotherapy based on self-assembled, mesoporous, cell membrane modified, metallic, and hydrogel nanomaterials to explore diverse tumor therapies.
Collapse
Affiliation(s)
- Ziyin Chen
- Clinical Medicine, Harbin Medical University, Harbin, China
| | - Ziqi Yue
- Department of Forensic Medicine, Harbin Medical University, Harbin, China
| | - Ronghua Wang
- Department of Outpatient, Dongying People’s Hospital, Dongying, China
| | - Kaiqi Yang
- Clinical Medicine, Harbin Medical University, Harbin, China
| | - Shenglong Li
- Department of Bone and Soft Tissue Tumor Surgery, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China
- *Correspondence: Shenglong Li, ;
| |
Collapse
|
10
|
Development of a magnetic MoS 2 system camouflaged by lipid for chemo/phototherapy of cancer. Colloids Surf B Biointerfaces 2022; 213:112389. [PMID: 35158219 DOI: 10.1016/j.colsurfb.2022.112389] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 01/03/2022] [Accepted: 01/31/2022] [Indexed: 12/22/2022]
Abstract
Untargeted release of traditional chemotherapeutic drugs can damage normal tissues in the body and cause serious side effects for patients. Therefore, the research of targeted drug delivery system based on nanomaterials has become a hot topic in the field of cancer therapy. Magnetic molybdenum disulfide (mMoS2) was modified by liposomes with a cell membrane-like structure to prepare nanocarrier complex (mMoS2-Lipid) with high biocompatibility and stability. Then, combined photo-chemotherapeutic therapy was realized both in vitro and in vivo by its ultra-high photothermal conversion efficiency and excellent drug loading profile of mMoS2-Lipid. The characterization showed that the lamellar magnetic molybdenum disulfide modified by liposomes was not easy to aggregate in physiological solution, and had a lower non-specific protein adsorption rate, which was beneficial for biomedical application. In vitro cell experiments exhibited a successful cellular uptake profile of MCF-7 cells with no significant cytotoxicity, while a concentration dependent cytotoxicity for both chemotherapy alone and photo-chemotherapy combined therapy. Compared with the unmodified mMoS2, mMoS2-Lipid injected into mice through tail vein can accumulate more in the tumor site, and in vivo anti-tumor studies have shown that the synergistic treatment of the mMoS2-Lipid has an obvious inhibitory effect on the tumor with less toxic and side effects on mice. In conclusion, mMoS2-Lipid treatment system provides a safe, rapid and effective choice for the treatment of breast cancer in the future.
Collapse
|
11
|
Xie M, Deng T, Li J, Shen H. The camouflage of graphene oxide by red blood cell membrane with high dispersibility for cancer chemotherapy. J Colloid Interface Sci 2021; 591:290-299. [PMID: 33609896 DOI: 10.1016/j.jcis.2021.01.088] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 01/05/2021] [Accepted: 01/27/2021] [Indexed: 02/07/2023]
Abstract
Cancer is a serious threat to human health. Graphene oxide (GO) is a good carrier for cancer treatment due to its large surface area and high drug loading, while it's unstable under physiological conditions with a high tendency to be uptaken by macrophages in the body. This paper constructs a red blood cell (RBC) membrane modified GO nanocarrier system for cancer chemotherapy. After the modification of RBC, the stability and hemolysis performance of GO were greatly improved, which is beneficial to the biological application. Moreover, DOX-loaded RBC-GO still able to maintain good stability with a pH-dependent DOX release profile. RBC-GO can be uptaken by MCF-7 cells and DOX-loaded RBC-GO nanocomposites have strong concentration-dependent cytotoxicity. More importantly, in vivo study showed that RBC-GO can accumulate at the tumor site in a large quantity, and among all the experimental groups, RBC-GO-DOX had the best anti-tumor effect after tail vein injection in mice and the lowest systemic toxicity. Experiments have proved that RBC-GO can be used as a drug carrier to achieve targeted drug delivery.
Collapse
Affiliation(s)
- Meng Xie
- School of Pharmacy, Jiangsu University, 212013, China.
| | - Tongtong Deng
- School of Pharmacy, Jiangsu University, 212013, China
| | - Jiaqian Li
- School of Pharmacy, Jiangsu University, 212013, China
| | - Haijun Shen
- Department of Preventive Medicine and Public Health Laboratory Science, School of Medicine, Jiangsu University, 212013, China.
| |
Collapse
|