1
|
Chen S, Yoo JJ, Wang M. The application of tissue engineering strategies for uterine regeneration. Mater Today Bio 2025; 31:101594. [PMID: 40070871 PMCID: PMC11894340 DOI: 10.1016/j.mtbio.2025.101594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/13/2025] [Accepted: 02/17/2025] [Indexed: 03/14/2025] Open
Abstract
Uterine injuries, particularly damages to endometrium, are usually associated with abnormal menstruation, recurrent miscarriage, pregnancy complications, and infertility. Tissue engineering using cell-based, biomolecule-based, or biomaterial and scaffold-based strategies has emerged as a novel and promising approach for uterine regeneration. Stem cells, biomolecules, and porous scaffolds used alone or, very often, used in combination as a more effective treatment means have shown great potential in promoting uterine regeneration. The reported preclinical studies have indicated that appropriate tissue engineering strategies could safely and effectively reconstruct not only endometrium but also partial or even the whole uterine structure. However, the progress in the uterine regeneration area is slow in comparison to that of regenerating many other body tissues and hence it still remains a great challenge to apply uterine tissue engineering for clinical applications. In this review, conventional treatments for uterine-related diseases are briefly reviewed and discussed first. Subsequently, tissue engineering strategies (cell-based, biomolecule-based, biomaterial and scaffold-based, or their combinations) for uterine repair in preclinical studies and clinical trials are presented and analyzed. Finally, the challenges and perspectives in uterine regeneration are pointed and discussed. Despite various limitations and obstacles, the tissue engineering approach is viable and holds high promise for uterine regeneration.
Collapse
Affiliation(s)
- Shangsi Chen
- Department of Mechanical Engineering, Faculty of Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong
| | - James J. Yoo
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Medical Center Blvd, Winston-Salem, NC, 27157, USA
| | - Min Wang
- Department of Mechanical Engineering, Faculty of Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong
| |
Collapse
|
2
|
Liang X, Huang C, Liu H, Chen H, Shou J, Cheng H, Liu G. Natural hydrogel dressings in wound care: Design, advances, and perspectives. CHINESE CHEM LETT 2024; 35:109442. [DOI: 10.1016/j.cclet.2023.109442] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
|
3
|
Apatzidou DA, Iliopoulos JM, Konstantinidis A, Verma M, Hardy P, Lappin DF, Nile CJ. Inflammatory and bone remodelling related biomarkers following periodontal transplantation of the tissue engineered biocomplex. Clin Oral Investig 2024; 28:361. [PMID: 38847929 DOI: 10.1007/s00784-024-05754-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 05/28/2024] [Indexed: 06/13/2024]
Abstract
OBJECTIVES To assess gingival crevicular fluid (GCF) levels of inflammatory and bone remodelling related biomarkers following transplantation of a tissue-engineered biocomplex into intrabony defects at several time-points over 12-months. MATERIALS AND METHODS Group-A (n = 9) received the Minimal Access Flap (MAF) surgical technique combined with a biocomplex of autologous clinical-grade alveolar bone-marrow mesenchymal stem cells in collagen scaffolds enriched with an autologous fibrin/platelet lysate (aFPL). Group-B (n = 10) received the MAF surgery, with collagen scaffolds enriched with aFPL and Group-C (n = 8) received the MAF surgery alone. GCF was collected from the osseous defects of subjects via paper strips/30 sec at baseline, 6-weeks, 3-, 6-, 9-, 12-months post-surgery. Levels of inflammatory and bone remodelling-related biomarkers in GCF were determined by ELISA. RESULTS Group-A demonstrated significantly higher GCF levels of BMP-7 at 6-9 months than baseline, with gradually decreasing levels of pro-inflammatory and pro-osteoclastogenic markers (TNF-α, RANKL) over the study-period; and an overall decrease in the RANKL/OPG ratio at 9-12 months than baseline (all p < 0.001). In comparison, only modest interim changes were observed in Groups-B and -C. CONCLUSIONS At the protein level, the approach of MAF and biocomplex transplantation provided greater tissue regeneration potential as cell-based therapy appeared to modulate inflammation and bone remodelling in residual periodontal defects. CLINICAL RELEVANCE Transplantation of a tissue engineered construct into periodontal intrabony defects demonstrated a biochemical pattern for inflammatory control and tissue regeneration over 12-months compared to the control treatments. Understanding the biological healing events of stem cell transplantation may facilitate the design of novel treatment strategies. CLINICAL DATABASE REGISTRATION ClinicalTrials.gov ID: NCT02449005.
Collapse
Affiliation(s)
- Danae A Apatzidou
- Department of Preventive Dentistry, Periodontology and Implant Biology, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| | - Jordan M Iliopoulos
- School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Antonis Konstantinidis
- Department of Preventive Dentistry, Periodontology and Implant Biology, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Mukul Verma
- Faculty of Medical Sciences, School of Dental Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Philip Hardy
- Faculty of Medical Sciences, School of Dental Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - David F Lappin
- Oral Sciences Research Group, Dental School, University of Glasgow, Glasgow, UK
| | - Christopher J Nile
- Faculty of Medical Sciences, School of Dental Sciences, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
4
|
Deshmukh K, Mitra K, Bit A. Influence of Non-Newtonian Viscosity on Flow Structures and Wall Deformation in Compliant Serpentine Microchannels: A Numerical Study. MICROMACHINES 2023; 14:1661. [PMID: 37763824 PMCID: PMC10536915 DOI: 10.3390/mi14091661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/11/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023]
Abstract
The viscosity of fluid plays a major role in the flow dynamics of microchannels. Viscous drag and shear forces are the primary tractions for microfluidic fluid flow. Capillary blood vessels with a few microns diameter are impacted by the rheology of blood flowing through their conduits. Hence, regenerated capillaries should be able to withstand such impacts. Consequently, there is a need to understand the flow physics of culture media through the lumen of the substrate as it is one of the vital promoting factors for vasculogenesis under optimal shear conditions at the endothelial lining of the regenerated vessel. Simultaneously, considering the diffusive role of capillaries for ion exchange with the surrounding tissue, capillaries have been found to reorient themselves in serpentine form for modulating the flow conditions while developing sustainable shear stress. In the current study, S-shaped (S1) and delta-shaped (S2) serpentine models of capillaries were considered to evaluate the shear stress distribution and the oscillatory shear index (OSI) and relative residual time (RRT) of the derivatives throughout the channel (due to the phenomena of near-wall stress fluctuation), along with the influence of culture media rheology on wall stress parameters. The non-Newtonian power-law formulation was implemented for defining rheological viscosity of the culture media. The flow actuation of the media was considered to be sinusoidal and physiological, realizing the pulsatile blood flow behavior in the circulatory network. A distinct difference in shear stress distributions was observed in both the serpentine models. The S1 model showed higher change in shear stress in comparison to the S2 model. Furthermore, the non-Newtonian viscosity formulation was found to produce more sustainable shear stress near the serpentine walls compared to the Newtonian formulation fluid, emphasizing the influence of rheology on stress generation. Further, cell viability improved in the bending regions of serpentine channels compared to the long run section of the same channel.
Collapse
Affiliation(s)
- Khemraj Deshmukh
- Department of Biomedical Engineering, National Institute of Technology, Raipur 492010, India;
| | - Kunal Mitra
- Biomedical Engineering, Florida Tech, Melbourne, FL 32901, USA
| | - Arindam Bit
- Department of Biomedical Engineering, National Institute of Technology, Raipur 492010, India;
| |
Collapse
|
5
|
Romano IR, D’Angeli F, Vicario N, Russo C, Genovese C, Lo Furno D, Mannino G, Tamburino S, Parenti R, Giuffrida R. Adipose-Derived Mesenchymal Stromal Cells: A Tool for Bone and Cartilage Repair. Biomedicines 2023; 11:1781. [PMID: 37509421 PMCID: PMC10376676 DOI: 10.3390/biomedicines11071781] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
The osteogenic and chondrogenic differentiation ability of adipose-derived mesenchymal stromal cells (ASCs) and their potential therapeutic applications in bone and cartilage defects are reported in this review. This becomes particularly important when these disorders can only be poorly treated by conventional therapeutic approaches, and tissue engineering may represent a valuable alternative. Being of mesodermal origin, ASCs can be easily induced to differentiate into chondrocyte-like and osteocyte-like elements and used to repair damaged tissues. Moreover, they can be easily harvested and used for autologous implantation. A plethora of ASC-based strategies are being developed worldwide: they include the transplantation of freshly harvested cells, in vitro expanded cells or predifferentiated cells. Moreover, improving their positive effects, ASCs can be implanted in combination with several types of scaffolds that ensure the correct cell positioning; support cell viability, proliferation and migration; and may contribute to their osteogenic or chondrogenic differentiation. Examples of these strategies are described here, showing the enormous therapeutic potential of ASCs in this field. For safety and regulatory issues, most investigations are still at the experimental stage and carried out in vitro and in animal models. Clinical applications have, however, been reported with promising results and no serious adverse effects.
Collapse
Affiliation(s)
- Ivana Roberta Romano
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (I.R.R.); (N.V.); (C.R.); (R.P.); (R.G.)
| | - Floriana D’Angeli
- Department of Human Sciences and Quality of Life Promotion, San Raffaele Roma Open University, 00166 Rome, Italy;
| | - Nunzio Vicario
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (I.R.R.); (N.V.); (C.R.); (R.P.); (R.G.)
| | - Cristina Russo
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (I.R.R.); (N.V.); (C.R.); (R.P.); (R.G.)
| | - Carlo Genovese
- Faculty of Medicine and Surgery, “Kore” University of Enna, 94100 Enna, Italy;
| | - Debora Lo Furno
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (I.R.R.); (N.V.); (C.R.); (R.P.); (R.G.)
| | - Giuliana Mannino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98122 Messina, Italy
| | - Serena Tamburino
- Chi.Pla Chirurgia Plastica, Via Suor Maria Mazzarello, 54, 95128 Catania, Italy;
| | - Rosalba Parenti
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (I.R.R.); (N.V.); (C.R.); (R.P.); (R.G.)
| | - Rosario Giuffrida
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (I.R.R.); (N.V.); (C.R.); (R.P.); (R.G.)
| |
Collapse
|
6
|
Souto-Lopes M, Fernandes MH, Monteiro FJ, Salgado CL. Bioengineering Composite Aerogel-Based Scaffolds That Influence Porous Microstructure, Mechanical Properties and In Vivo Regeneration for Bone Tissue Application. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4483. [PMID: 37374666 PMCID: PMC10305395 DOI: 10.3390/ma16124483] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/13/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023]
Abstract
Tissue regeneration of large bone defects is still a clinical challenge. Bone tissue engineering employs biomimetic strategies to produce graft composite scaffolds that resemble the bone extracellular matrix to guide and promote osteogenic differentiation of the host precursor cells. Aerogel-based bone scaffold preparation methods have been increasingly improved to overcome the difficulties in balancing the need for an open highly porous and hierarchically organized microstructure with compression resistance to withstand bone physiological loads, especially in wet conditions. Moreover, these improved aerogel scaffolds have been implanted in vivo in critical bone defects, in order to test their bone regeneration potential. This review addresses recently published studies on aerogel composite (organic/inorganic)-based scaffolds, having in mind the various cutting-edge technologies and raw biomaterials used, as well as the improvements that are still a challenge in terms of their relevant properties. Finally, the lack of 3D in vitro models of bone tissue for regeneration studies is emphasized, as well as the need for further developments to overcome and minimize the requirement for studies using in vivo animal models.
Collapse
Affiliation(s)
- Mariana Souto-Lopes
- i3S—Instituto de Investigação e Inovação em Saúde da Universidade do Porto, 4200-135 Porto, Portugal; (M.S.-L.); (F.J.M.)
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
- Departamento de Engenharia Metalúrgica e de Materiais, Faculdade de Engenharia da Universidade do Porto, 4200-465 Porto, Portugal
| | - Maria Helena Fernandes
- Bonelab–Laboratory for Bone Metabolism and Regeneration, Faculdade de Medicina Dentária da Universidade do Porto, 4200-393 Porto, Portugal
- LAQV/REQUIMTE—Laboratório Associado para a Química Verde/Rede de Química e Tecnologia, 4169-007 Porto, Portugal
| | - Fernando Jorge Monteiro
- i3S—Instituto de Investigação e Inovação em Saúde da Universidade do Porto, 4200-135 Porto, Portugal; (M.S.-L.); (F.J.M.)
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
- Departamento de Engenharia Metalúrgica e de Materiais, Faculdade de Engenharia da Universidade do Porto, 4200-465 Porto, Portugal
- Porto Comprehensive Cancer Center (P.CCC), R. Dr. António Bernardino de Almeida, 4200–072 Porto, Portugal
| | - Christiane Laranjo Salgado
- i3S—Instituto de Investigação e Inovação em Saúde da Universidade do Porto, 4200-135 Porto, Portugal; (M.S.-L.); (F.J.M.)
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
| |
Collapse
|
7
|
Yang S, Wang F, Han H, Santos HA, Zhang Y, Zhang H, Wei J, Cai Z. Fabricated technology of biomedical micro-nano hydrogel. BIOMEDICAL TECHNOLOGY 2023; 2:31-48. [DOI: 10.1016/j.bmt.2022.11.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
8
|
Kreller T, Zimmermann J, van Rienen U, Boccaccini AR, Jonitz-Heincke A, Detsch R. Alternating electric field stimulation: Phenotype analysis and osteoclast activity of differentiated RAW 264.7 macrophages on hydroxyapatite-coated Ti6Al4V surfaces and their crosstalk with MC3T3-E1 pre-osteoblasts. BIOMATERIALS ADVANCES 2023; 146:213285. [PMID: 36640524 DOI: 10.1016/j.bioadv.2023.213285] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/21/2022] [Accepted: 01/06/2023] [Indexed: 01/11/2023]
Affiliation(s)
- T Kreller
- Institute of Biomaterials, Department of Materials Science and Engineering, Friedrich Alexander-University Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - J Zimmermann
- Institute of General Electrical Engineering, University of Rostock, 18051 Rostock, Germany
| | - U van Rienen
- Institute of General Electrical Engineering, University of Rostock, 18051 Rostock, Germany; Department Life, Light and Matter, University of Rostock, 18051 Rostock, Germany; Department Ageing of Individuals and Society, University of Rostock, 18051 Rostock, Germany
| | - A R Boccaccini
- Institute of Biomaterials, Department of Materials Science and Engineering, Friedrich Alexander-University Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - A Jonitz-Heincke
- Research Laboratory for Biomechanics and Implant Technology, Department of Orthopedics, Rostock University Medical Center, 18057 Rostock, Germany
| | - R Detsch
- Institute of Biomaterials, Department of Materials Science and Engineering, Friedrich Alexander-University Erlangen-Nuremberg, 91058 Erlangen, Germany.
| |
Collapse
|
9
|
Advances in cell coculture membranes recapitulating in vivo microenvironments. Trends Biotechnol 2023; 41:214-227. [PMID: 36030108 DOI: 10.1016/j.tibtech.2022.07.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 07/05/2022] [Accepted: 07/25/2022] [Indexed: 01/24/2023]
Abstract
Porous membranes play a critical role in in vitro heterogeneous cell coculture systems because they recapitulate the in vivo microenvironment to mediate physical and biochemical crosstalk between cells. While the conventionally available Transwell® system has been widely used for heterogeneous cell coculture, there are drawbacks to precise control over cell-cell interactions and separation for implantation. The size and numbers of the pores and the thickness of the porous membranes are crucial in determining the efficiency of paracrine signaling and direct junctions between cocultured cells, and significantly impact on the performance of heterogeneous cell cultures. These opportunities and challenges have motivated the design of advanced coculture platforms through improvement of the structural and functional properties of porous membranes.
Collapse
|
10
|
Rojek K, Ćwiklińska M, Kuczak J, Guzowski J. Microfluidic Formulation of Topological Hydrogels for Microtissue Engineering. Chem Rev 2022; 122:16839-16909. [PMID: 36108106 PMCID: PMC9706502 DOI: 10.1021/acs.chemrev.1c00798] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Indexed: 02/07/2023]
Abstract
Microfluidics has recently emerged as a powerful tool in generation of submillimeter-sized cell aggregates capable of performing tissue-specific functions, so-called microtissues, for applications in drug testing, regenerative medicine, and cell therapies. In this work, we review the most recent advances in the field, with particular focus on the formulation of cell-encapsulating microgels of small "dimensionalities": "0D" (particles), "1D" (fibers), "2D" (sheets), etc., and with nontrivial internal topologies, typically consisting of multiple compartments loaded with different types of cells and/or biopolymers. Such structures, which we refer to as topological hydrogels or topological microgels (examples including core-shell or Janus microbeads and microfibers, hollow or porous microstructures, or granular hydrogels) can be precisely tailored with high reproducibility and throughput by using microfluidics and used to provide controlled "initial conditions" for cell proliferation and maturation into functional tissue-like microstructures. Microfluidic methods of formulation of topological biomaterials have enabled significant progress in engineering of miniature tissues and organs, such as pancreas, liver, muscle, bone, heart, neural tissue, or vasculature, as well as in fabrication of tailored microenvironments for stem-cell expansion and differentiation, or in cancer modeling, including generation of vascularized tumors for personalized drug testing. We review the available microfluidic fabrication methods by exploiting various cross-linking mechanisms and various routes toward compartmentalization and critically discuss the available tissue-specific applications. Finally, we list the remaining challenges such as simplification of the microfluidic workflow for its widespread use in biomedical research, bench-to-bedside transition including production upscaling, further in vivo validation, generation of more precise organ-like models, as well as incorporation of induced pluripotent stem cells as a step toward clinical applications.
Collapse
Affiliation(s)
- Katarzyna
O. Rojek
- Institute of Physical Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Monika Ćwiklińska
- Institute of Physical Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Julia Kuczak
- Institute of Physical Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Jan Guzowski
- Institute of Physical Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224 Warsaw, Poland
| |
Collapse
|
11
|
Zhang Z, Yang X, Cao X, Qin A, Zhao J. Current applications of adipose-derived mesenchymal stem cells in bone repair and regeneration: A review of cell experiments, animal models, and clinical trials. Front Bioeng Biotechnol 2022; 10:942128. [PMID: 36159705 PMCID: PMC9490047 DOI: 10.3389/fbioe.2022.942128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
In the field of orthopaedics, bone defects caused by severe trauma, infection, tumor resection, and skeletal abnormalities are very common. However, due to the lengthy and painful process of related surgery, people intend to shorten the recovery period and reduce the risk of rejection; as a result, more attention is being paid to bone regeneration with mesenchymal stromal cells, one of which is the adipose-derived mesenchymal stem cells (ASCs) from adipose tissue. After continuous subculture and cryopreservation, ASCs still have the potential for multidirectional differentiation. They can be implanted in the human body to promote bone repair after induction in vitro, solve the problems of scarce sources and large damage, and are expected to be used in the treatment of bone defects and non-union fractures. However, the diversity of its differentiation lineage and the lack of bone formation potential limit its current applications in bone disease. Here, we concluded the current applications of ASCs in bone repair, especially with the combination and use of physical and biological methods. ASCs alone have been proved to contribute to the repair of bone damage in vivo and in vitro. Attaching to bone scaffolds or adding bioactive molecules can enhance the formation of the bone matrix. Moreover, we further evaluated the efficiency of ASC-committed differentiation in the bone in conditions of cell experiments, animal models, and clinical trials. The results show that ASCs in combination with synthetic bone grafts and biomaterials may affect the regeneration, augmentation, and vascularization of bone defects on bone healing. The specific conclusion of different materials applied with ASCs may vary. It has been confirmed to benefit osteogenesis by regulating osteogenic signaling pathways and gene transduction. Exosomes secreted by ASCs also play an important role in osteogenesis. This review will illustrate the understanding of scientists and clinicians of the enormous promise of ASCs’ current applications and future development in bone repair and regeneration, and provide an incentive for superior employment of such strategies.
Collapse
Affiliation(s)
- Zhengyue Zhang
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedics, Ninth People’s Hospital, Shanghai, China
| | - Xiao Yang
- Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiankun Cao
- Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - An Qin
- Shanghai Jiaotong University School of Medicine, Shanghai, China
- *Correspondence: An Qin, ; Jie Zhao,
| | - Jie Zhao
- Shanghai Jiaotong University School of Medicine, Shanghai, China
- *Correspondence: An Qin, ; Jie Zhao,
| |
Collapse
|
12
|
Yang Y, Wang Z, Xu Y, Xia J, Xu Z, Zhu S, Jin M. Preparation of Chitosan/Recombinant Human Collagen-Based Photo-Responsive Bioinks for 3D Bioprinting. Gels 2022; 8:gels8050314. [PMID: 35621612 PMCID: PMC9141723 DOI: 10.3390/gels8050314] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/11/2022] [Accepted: 05/17/2022] [Indexed: 12/26/2022] Open
Abstract
Collagen and chitosan are frequently used natural biomaterials in tissue engineering. However, most collagen is derived from animal tissue, with inconsistent quality and pathogen transmittance risks. In this context, we aimed to use a reliable Type-III recombinant human collagen (RHC) as an alternative biomaterial together with chitosan to develop novel photo-responsive bioinks for three-dimensional (3D) bioprinting. RHC was modified with methacrylic anhydride to obtain the RHC methacryloyl (RHCMA) and mixed with acidified chitosan (CS) to form composites CS-RHCMA. The characterizations demonstrated that the mechanical properties and the degradation of the bioinks were tunable by introducing the CS. The printabilities improved by adding CS to RHCMA, and various structures were constructed via extrusion-based 3D printing successfully. Moreover, in vitro tests confirmed that these CS-RHCMA bioinks were biocompatible as human umbilical vein endothelial cells (HUVECs) were sustained within the constructs post-printing. The results from the current study illustrated a well-established bioinks system with the potential to construct different tissues through 3D bioprinting.
Collapse
Affiliation(s)
- Yang Yang
- Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China; (Y.X.); (J.X.)
- Correspondence:
| | - Zixun Wang
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; (Z.W.); (Z.X.); (S.Z.); (M.J.)
| | - Yuanyuan Xu
- Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China; (Y.X.); (J.X.)
| | - Jingjing Xia
- Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China; (Y.X.); (J.X.)
| | - Zhaoxian Xu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; (Z.W.); (Z.X.); (S.Z.); (M.J.)
| | - Shuai Zhu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; (Z.W.); (Z.X.); (S.Z.); (M.J.)
| | - Mingjie Jin
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; (Z.W.); (Z.X.); (S.Z.); (M.J.)
| |
Collapse
|
13
|
Zhang Z, Chen W, Tiemessen DM, Oosterwijk E, Kouwer PHJ. A Temperature-Based Easy-Separable (TempEasy) 3D Hydrogel Coculture System. Adv Healthc Mater 2022; 11:e2102389. [PMID: 35029325 PMCID: PMC11469334 DOI: 10.1002/adhm.202102389] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/10/2021] [Indexed: 12/13/2022]
Abstract
Interactions between different cell types are crucial for their behavior in tissues, but are rarely considered in 3D in vitro cell culture experiments. One reason is that such coculture experiments are sometimes difficult to perform in 3D or require specialized equipment or know-how. Here, a new 3D cell coculture system is introduced, TempEasy, which is readily applied in any cell culture lab. The matrix material is based on polyisocyanide hydrogels, which closely resemble the mechanical characteristics of the natural extracellular matrix. Gels with different gelation temperatures, seeded with different cells, are placed on top of each other to form an indirect coculture. Cooling reverses gelation, allowing cell harvesting from each layer separately, which benefits downstream analysis. To demonstrate the potential of TempEasy , human adipose stem cells (hADSCs) with vaginal epithelial fibroblasts are cocultured. The analysis of a 7-day coculture shows that hADSCs promote cell-cell interaction of fibroblasts, while fibroblasts promote proliferation and differentiation of hADSCs. TempEasy provides a straightforward operational platform for indirect cocultures of cells of different lineages in well-defined microenvironments.
Collapse
Affiliation(s)
- Zhaobao Zhang
- Institute for Molecules and MaterialsRadboud University NijmegenHeyendaalseweg 135Nijmegen6525 AJThe Netherlands
| | - Wen Chen
- Institute for Molecules and MaterialsRadboud University NijmegenHeyendaalseweg 135Nijmegen6525 AJThe Netherlands
| | - Dorien M. Tiemessen
- Department of UrologyRadboud Institute for Molecular Life SciencesRadboud University Medical CenterGeert Grooteplein Zuid 28Nijmegen6525 GAThe Netherlands
| | - Egbert Oosterwijk
- Department of UrologyRadboud Institute for Molecular Life SciencesRadboud University Medical CenterGeert Grooteplein Zuid 28Nijmegen6525 GAThe Netherlands
| | - Paul H. J. Kouwer
- Institute for Molecules and MaterialsRadboud University NijmegenHeyendaalseweg 135Nijmegen6525 AJThe Netherlands
| |
Collapse
|
14
|
Abstract
Cell manipulation in droplets has emerged as one of the great successes of microfluidic technologies, with the development of single-cell screening. However, the droplet format has also served to go beyond single-cell studies, namely by considering the interactions between different cells or between cells and their physical or chemical environment. These studies pose specific challenges linked to the need for long-term culture of adherent cells or the diverse types of measurements associated with complex biological phenomena. Here we review the emergence of droplet microfluidic methods for culturing cells and studying their interactions. We begin by characterizing the quantitative aspects that determine the ability to encapsulate cells, transport molecules, and provide sufficient nutrients within the droplets. This is followed by an evaluation of the biological constraints such as the control of the biochemical environment and promoting the anchorage of adherent cells. This first part ends with a description of measurement methods that have been developed. The second part of the manuscript focuses on applications of these technologies for cancer studies, immunology, and stem cells while paying special attention to the biological relevance of the cellular assays and providing guidelines on improving this relevance.
Collapse
Affiliation(s)
- Sébastien Sart
- LadHyX, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, 91120 Palaiseau, France.,Physical Microfluidics and Bioengineering, Institut Pasteur, 25-28 Rue du Dr. Roux, 75015 Paris, France
| | - Gustave Ronteix
- LadHyX, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, 91120 Palaiseau, France.,Physical Microfluidics and Bioengineering, Institut Pasteur, 25-28 Rue du Dr. Roux, 75015 Paris, France
| | - Shreyansh Jain
- LadHyX, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, 91120 Palaiseau, France.,Physical Microfluidics and Bioengineering, Institut Pasteur, 25-28 Rue du Dr. Roux, 75015 Paris, France
| | - Gabriel Amselem
- LadHyX, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, 91120 Palaiseau, France.,Physical Microfluidics and Bioengineering, Institut Pasteur, 25-28 Rue du Dr. Roux, 75015 Paris, France
| | - Charles N Baroud
- LadHyX, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, 91120 Palaiseau, France.,Physical Microfluidics and Bioengineering, Institut Pasteur, 25-28 Rue du Dr. Roux, 75015 Paris, France
| |
Collapse
|
15
|
Yap JX, Leo CP, Mohd Yasin NH, Show PL, Chu DT, Singh V, Derek CJC. Recent advances of natural biopolymeric culture scaffold: synthesis and modification. Bioengineered 2022; 13:2226-2247. [PMID: 35030968 PMCID: PMC8974151 DOI: 10.1080/21655979.2021.2024322] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Traditionally existing 2D culture scaffold has been inappropriately validated due to the failure in generating the precise therapeutic response. Therefore, this leads to the fabrication of 3D culture scaffold resolving the limitations in the in vivo environment. In recent years, tissue engineering played an important role in the field of bio-medical engineering. Biopolymer material, a novel natural material with excellent properties of nontoxic and biodegradable merits can be served as culture scaffold. This review summarizes the modifications of natural biopolymeric culture scaffold with different crosslinkers and their application. In addition, this review provides the recent progress of natural biopolymeric culture scaffold mainly focusing on their properties, synthesizing and modification and application.
Collapse
Affiliation(s)
- Jia Xin Yap
- School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, Nibong Tebal, Malaysia
| | - C P Leo
- School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, Nibong Tebal, Malaysia
| | - Nazlina Haiza Mohd Yasin
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Malaysia
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Semenyih, Malaysia
| | - Dinh-Toi Chu
- Center for Biomedicine and Community Health, International School, Vietnam National University, Hanoi, Vietnam
| | - Vijai Singh
- Department of Biosciences, School of Science, Indrashil University, Rajpur, Mehsana, India
| | - C J C Derek
- School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, Nibong Tebal, Malaysia
| |
Collapse
|
16
|
Ishihara K, Kaneyasu M, Fukazawa K, Zhang R, Teramura Y. Induction of mesenchymal stem cell differentiation by co-culturing with mature cells in double-layered 2-methacryloyloxyethyl phosphorylcholine polymer hydrogel matrices. J Mater Chem B 2021; 10:2561-2569. [PMID: 34878485 DOI: 10.1039/d1tb01817e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The effects of differentiated cells on stem cell differentiation were analyzed via co-culturing using a cell-encapsulated double-layered hydrogel system. As a polymer hydrogel matrix, a water-soluble zwitterionic polymer having both a 2-methacryloyloxyethyl phosphorylcholine unit and a p-vinylphenylboronic acid unit (PMBV), was complexed spontaneously with poly(vinyl alcohol) (PVA) under mild cell culture conditions. The creep modulus of the hydrogel was controlled by changing the composition of the polymer in the solution. Mouse mesenchymal stem cells (MSCs), C3H10T1/2 cells, were encapsulated into PMBV/PVA hydrogels and cultured. In the PMBV/PVA hydrogel with a lower creep modulus (0.40 kPa), proliferation of C3H10T1/2 cells occurred, and the formation of cell aggregates was observed. On the other hand, a higher creep modulus (1.7 kPa) of the hydrogel matrix prevented cell proliferation. Culturing C3H10T1/2 cells encapsulated in the PMBV/PVA hydrogel in the presence of bone morphogenetic protein-2 increased the activity of intracellular alkaline phosphatase (ALP). This indicated that C3H10T1/2 cells differentiated into mature osteoblasts. When the C3H10T1/2 cells encapsulated in the PMBV/PVA hydrogel were cultured in combination with the mature osteoblasts in the hydrogel by a close contacting double-layered hydrogel structure, higher ALP activity was observed compared with the cells cultured separately. It was considered that the differentiation of C3H10T1/2 cells in the hydrogel layer was induced by cytokines diffused from mature osteoblasts encapsulated in another hydrogel layer. It could be concluded that the PMBV/PVA hydrogel system provides a good way to observe the effects of the surrounding cells on cell function in three-dimensional culture.
Collapse
Affiliation(s)
- Kazuhiko Ishihara
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan. .,Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Miu Kaneyasu
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Kyoko Fukazawa
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Ren Zhang
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Yuji Teramura
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
17
|
Liu YC, Ban LK, Lee HHC, Lee HT, Chang YT, Lin YT, Su HY, Hsu ST, Higuchi A. Laminin-511 and recombinant vitronectin supplementation enables human pluripotent stem cell culture and differentiation on conventional tissue culture polystyrene surfaces in xeno-free conditions. J Mater Chem B 2021; 9:8604-8614. [PMID: 34605523 DOI: 10.1039/d1tb01878g] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Human pluripotent stem cells (hPSCs) are typically cultivated on extracellular matrix (ECM) protein-coated dishes in xeno-free culture conditions. We supplemented mixed ECM proteins (laminin-511 and recombinant vitronectin, rVT) in culture medium for hPSC culture on conventional polystyrene dishes. Three hPSC cell lines were successfully cultivated on uncoated polystyrene dishes in medium supplemented with optimal conditions of laminin-511 and rVT. Excellent colony shape and colony size as well as high expansion fold of hPSCs were found under these conditions, whereas the colony size was small and poor expansion fold was found solely on L-511-coated dishes. A small portion of L-511 in the culture medium supported hPSC adhesion and prevented the adhesion from being too strong on the uncoated dishes, and rVT in the culture medium further supported adhesion of hPSCs on the dishes by maintaining their pluripotency. Having the optimal composition of L-511 and rVT in the culture medium was important for generating good hPSC colony shapes and sizes as well as a high expansion fold. After long-term culture of hPSCs on uncoated dishes supplemented with the mixed proteins, the hPSCs successfully showed pluripotent markers and could differentiate into a specific lineage of cells, cardiomyocytes, with high efficiency.
Collapse
Affiliation(s)
- Ya-Chu Liu
- Department of Chemical and Materials Engineering, National Central University, No. 300, Jhongda Rd, Jhongli, Taoyuan, 32001, Taiwan.
| | - Lee-Kiat Ban
- Department of Surgery, Hsinchu Cathay General Hospital, No. 678, Sec 2, Zhonghua Rd, Hsinchu, 30060, Taiwan
| | - Henry Hsin-Chung Lee
- Department of Surgery, Hsinchu Cathay General Hospital, No. 678, Sec 2, Zhonghua Rd, Hsinchu, 30060, Taiwan.,Graduate Institute of Translational and Interdisciplinary Medicine, National Central University, No. 300, Jhongda Rd, Jhongli, Taoyuan, 32001, Taiwan
| | - Hsin-Ting Lee
- Department of Chemical and Materials Engineering, National Central University, No. 300, Jhongda Rd, Jhongli, Taoyuan, 32001, Taiwan.
| | - Yu-Tang Chang
- Department of Chemical and Materials Engineering, National Central University, No. 300, Jhongda Rd, Jhongli, Taoyuan, 32001, Taiwan.
| | - Yun-Ting Lin
- Department of Chemical and Materials Engineering, National Central University, No. 300, Jhongda Rd, Jhongli, Taoyuan, 32001, Taiwan.
| | - Her-Young Su
- Department of Obstetrics and Gynecology, Bobson Yuho Women and Children's Clinic, No. 182, Zhuangjing S. Rd, Zhubei City, Hsinchu 302, Taiwan
| | - Shih-Tien Hsu
- Department of Internal Medicine, Taiwan Landseed Hospital, 77, Kuangtai Road, Pingjen City, Taoyuan 32405, Taiwan
| | - Akon Higuchi
- Department of Chemical and Materials Engineering, National Central University, No. 300, Jhongda Rd, Jhongli, Taoyuan, 32001, Taiwan. .,R&D Center for Membrane Technology, Chung Yuan Christian University, Chungli, Taoyuan 320, Taiwan
| |
Collapse
|
18
|
Apatzidou DA, Bakopoulou AA, Kouzi-Koliakou K, Karagiannis V, Konstantinidis A. A tissue-engineered biocomplex for periodontal reconstruction. A proof-of-principle randomized clinical study. J Clin Periodontol 2021; 48:1111-1125. [PMID: 33899259 DOI: 10.1111/jcpe.13474] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 04/05/2021] [Accepted: 04/11/2021] [Indexed: 12/14/2022]
Abstract
AIM To assess the safety/efficacy of a tissue-engineered biocomplex in periodontal reconstruction. METHODS Twenty-seven intrabony defects were block-randomized across three treatment groups: Group-A (NA = 9) received autologous clinical-grade alveolar bone marrow mesenchymal stem cells (a-BMMSCs), seeded into collagen scaffolds, enriched with autologous fibrin/platelet lysate (aFPL). In Group-B (NB = 10), the collagen scaffold/aFPL devoid of a-BMMSCs filled the osseous defect. Group-C (NC = 8) received Minimal Access Flap surgery retaining the soft tissue wall of defects identically with Groups-A/-B. Subjects were clinically/radiographically assessed before anaesthesia (baseline) and repeatedly over 12 months. RESULTS Quality controls were satisfied before biocomplex transplantation. There were no adverse healing events. All approaches led to significant clinical improvements (p < .001) with no inter-group differences. At 12 months, the estimated marginal means for all groups were as follows: 3.0 (95% CI: 1.9-4.1) mm for attachment gain; 3.7 (2.7-4.8) mm for probing pocket depth reduction; 0.7 (0.2-1.3) mm increase in recession. An overall greater mean reduction in the radiographic Cemento-Enamel Junction to Bottom Defect (CEJ-BD) distance was found for Groups-A/-C over Group-B (p < .023). CONCLUSION Radiographic evidence of bone fill was less pronounced in Group-B, although clinical improvements were similar across groups. All approaches aimed to trigger the innate healing potential of tissues. Cell-based therapy is justified for periodontal reconstruction and remains promising in selected cases.
Collapse
Affiliation(s)
- Danae A Apatzidou
- Department of Preventive Dentistry, Periodontology and Implant Biology, School of Dentistry, Faculty of Health Sciences (FHS), Aristotle University of Thessaloniki (AUTh), Thessaloniki, Greece
| | - Athina A Bakopoulou
- Department of Prosthodontics, School of Dentistry, Faculty of Health Sciences (FHS), Aristotle University of Thessaloniki (AUTh), Thessaloniki, Greece
| | | | - Vassilis Karagiannis
- School of Mathematics, Aristotle University of Thessaloniki, AUTh, Thessaloniki, Greece
| | - Antonis Konstantinidis
- Department of Preventive Dentistry, Periodontology and Implant Biology, School of Dentistry, Faculty of Health Sciences (FHS), Aristotle University of Thessaloniki (AUTh), Thessaloniki, Greece
| |
Collapse
|
19
|
You WL, Xu ZL. Curculigoside promotes osteogenic differentiation of ADSCs to prevent ovariectomized-induced osteoporosis. J Orthop Surg Res 2021; 16:279. [PMID: 33902663 PMCID: PMC8074499 DOI: 10.1186/s13018-021-02389-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 03/30/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Curculigoside is a natural phenolic glycoside compound produced by Curculigo orchioides Gaertn. This study aimed to explore the effects of curculigoside in promoting the osteogenic differentiation of adipose-derived stem cells (ADSCs) as well as the underlying mechanism. METHODS ADSCs were treated with curculigoside at different concentrations (0 μmol/L, 1 μmol/L, 2.5 μmol/L, 5 μmol/L, 10 μmol/L, and 20 μmol/L), and cell viability was assessed by CCK-8 assay. Then, the alkaline phosphatase (ALP) activity was determined, and alizarin red S (ARS) staining was performed to measure the extracellular mineralization of curculigoside. Information about protein-chemical interactions is provided by the search tool for interactions of chemicals (STITCH) database. Then, LY294002 was administered to explore the mechanism by which curculigoside promotes the osteogenic differentiation of ADSCs. Western blot assays were performed to assess changes in the expression of osteogenic-related markers and the phosphorylation of PI3K and AKT. Finally, we established an ovariectomized (OVX)-induced osteoporosis mouse model and administered curculigoside to explore the effects of curculigoside in preventing bone loss in vivo. RESULTS The CCK-8 assay indicated that curculigoside did not induce cytotoxicity at a concentration of 5 μmol/L after 48 h. The ALP and ARS results revealed that the induced group had higher ALP activity and calcium deposition than the control group. Moreover, the curculigoside group exhibited increased biomineralization, ALP activity, and ARS staining compared to the induced and control groups, and these effects were partially inhibited by LY294002. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis indicated that the target genes of curculigoside were mainly involved in the PI3K-Akt signaling pathway. PCR and western blot analysis showed that the expression of RUNX2, ALP, and Osterix was upregulated in curculigoside-treated ADSCs, but this effect was partially reversed by the PI3K inhibitor LY294002. Moreover, the curculigoside-treated group exhibited significantly increased phosphorylation of AKT to P-AKT compared with the osteogenic induction group. After treatment with curculigoside, the mice had a higher bone volume than the OVX mice, suggesting partial protection from cancellous bone loss. In addition, when LY294002 was added, the protective effects of curculigoside could be neutralized. CONCLUSIONS Curculigoside could induce the osteogenic differentiation of ADSCs and prevent bone loss in an OVX model through the PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Wei-Li You
- Department of Pharmacy, The First People's Hospital of Lianyungang, No. 128, Tongguanbei Road, Haizhou District, Lianyungang, 222002, Jiangsu Province, China.
| | - Zheng-Long Xu
- Department of Pharmacy, Xinghua City People's Hospital, Xinghua City, Jiangsu Province, China
| |
Collapse
|