1
|
Ding H, Zhou C, Li T. Nanomedicines with Versatile GSH-Responsive Linkers for Cancer Theranostics. ACS Biomater Sci Eng 2024; 10:5977-5994. [PMID: 39298132 DOI: 10.1021/acsbiomaterials.4c00897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Glutathione (GSH)-responsive nanomedicines have generated significant interest in biochemistry, oncology, and material sciences due to their diverse applications, including chemical and biological sensors, diagnostics, and drug delivery systems. The effectiveness of these smart GSH-responsive nanomedicines depends critically on the choice of GSH-responsive linkers. Despite their crucial role, comprehensive reviews of GSH-responsive linkers are scarce, revealing a gap in the current literature. This review addresses this gap by systematically summarizing various GSH-responsive linkers and exploring their potential applications in cancer treatment. We provide an overview of the mechanisms of action of these linkers and their bioapplications, evaluating their advantages and limitations. The insights presented aim to guide the development of advanced GSH-responsive agents for cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Huamin Ding
- Department of Pharmacy, Punan Hospital, Pudong New District, Shanghai 200125, China
| | - Can Zhou
- School of Medicine, Shanghai University, Shanghai 200444, China
| | - Tiejun Li
- Department of Pharmacy, Punan Hospital, Pudong New District, Shanghai 200125, China
| |
Collapse
|
2
|
Aebisher D, Woźnicki P, Czarnecka-Czapczyńska M, Dynarowicz K, Szliszka E, Kawczyk-Krupka A, Bartusik-Aebisher D. Molecular Determinants for Photodynamic Therapy Resistance and Improved Photosensitizer Delivery in Glioma. Int J Mol Sci 2024; 25:8708. [PMID: 39201395 PMCID: PMC11354549 DOI: 10.3390/ijms25168708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 08/02/2024] [Accepted: 08/06/2024] [Indexed: 09/02/2024] Open
Abstract
Gliomas account for 24% of all the primary brain and Central Nervous System (CNS) tumors. These tumors are diverse in cellular origin, genetic profile, and morphology but collectively have one of the most dismal prognoses of all cancers. Work is constantly underway to discover a new effective form of glioma therapy. Photodynamic therapy (PDT) may be one of them. It involves the local or systemic application of a photosensitive compound-a photosensitizer (PS)-which accumulates in the affected tissues. Photosensitizer molecules absorb light of the appropriate wavelength, initiating the activation processes leading to the formation of reactive oxygen species and the selective destruction of inappropriate cells. Research focusing on the effective use of PDT in glioma therapy is already underway with promising results. In our work, we provide detailed insights into the molecular changes in glioma after photodynamic therapy. We describe a number of molecules that may contribute to the resistance of glioma cells to PDT, such as the adenosine triphosphate (ATP)-binding cassette efflux transporter G2, glutathione, ferrochelatase, heme oxygenase, and hypoxia-inducible factor 1. We identify molecular targets that can be used to improve the photosensitizer delivery to glioma cells, such as the epithelial growth factor receptor, neuropilin-1, low-density lipoprotein receptor, and neuropeptide Y receptors. We note that PDT can increase the expression of some molecules that reduce the effectiveness of therapy, such as Vascular endothelial growth factor (VEGF), glutamate, and nitric oxide. However, the scientific literature lacks clear data on the effects of PDT on many of the molecules described, and the available reports are often contradictory. In our work, we highlight the gaps in this knowledge and point to directions for further research that may enhance the efficacy of PDT in the treatment of glioma.
Collapse
Affiliation(s)
- David Aebisher
- Department of Photomedicine and Physical Chemistry, Medical College of The Rzeszów University, 35-310 Rzeszów, Poland
| | - Paweł Woźnicki
- English Division Science Club, Medical College of The Rzeszów University, 35-310 Rzeszów, Poland;
| | - Magdalena Czarnecka-Czapczyńska
- Department of Internal Medicine, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy, Medical University of Silesia, Batorego 15 Street, 41-902 Bytom, Poland;
| | - Klaudia Dynarowicz
- Center for Innovative Research in Medical and Natural Sciences, Medical College of The University of Rzeszów, 35-310 Rzeszów, Poland;
| | - Ewelina Szliszka
- Department of Microbiology and Immunology, Medical University of Silesia, Poniatowskiego 15, 40-055 Katowice, Poland;
| | - Aleksandra Kawczyk-Krupka
- Department of Internal Medicine, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy, Medical University of Silesia, Batorego 15 Street, 41-902 Bytom, Poland;
| | - Dorota Bartusik-Aebisher
- Department of Biochemistry and General Chemistry, Medical College of The Rzeszów University, 35-310 Rzeszów, Poland;
| |
Collapse
|
3
|
Sharma A, Verwilst P, Li M, Ma D, Singh N, Yoo J, Kim Y, Yang Y, Zhu JH, Huang H, Hu XL, He XP, Zeng L, James TD, Peng X, Sessler JL, Kim JS. Theranostic Fluorescent Probes. Chem Rev 2024; 124:2699-2804. [PMID: 38422393 PMCID: PMC11132561 DOI: 10.1021/acs.chemrev.3c00778] [Citation(s) in RCA: 86] [Impact Index Per Article: 86.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/31/2024] [Accepted: 02/08/2024] [Indexed: 03/02/2024]
Abstract
The ability to gain spatiotemporal information, and in some cases achieve spatiotemporal control, in the context of drug delivery makes theranostic fluorescent probes an attractive and intensely investigated research topic. This interest is reflected in the steep rise in publications on the topic that have appeared over the past decade. Theranostic fluorescent probes, in their various incarnations, generally comprise a fluorophore linked to a masked drug, in which the drug is released as the result of certain stimuli, with both intrinsic and extrinsic stimuli being reported. This release is then signaled by the emergence of a fluorescent signal. Importantly, the use of appropriate fluorophores has enabled not only this emerging fluorescence as a spatiotemporal marker for drug delivery but also has provided modalities useful in photodynamic, photothermal, and sonodynamic therapeutic applications. In this review we highlight recent work on theranostic fluorescent probes with a particular focus on probes that are activated in tumor microenvironments. We also summarize efforts to develop probes for other applications, such as neurodegenerative diseases and antibacterials. This review celebrates the diversity of designs reported to date, from discrete small-molecule systems to nanomaterials. Our aim is to provide insights into the potential clinical impact of this still-emerging research direction.
Collapse
Affiliation(s)
- Amit Sharma
- Amity
School of Chemical Sciences, Amity University
Punjab, Sector 82A, Mohali 140 306, India
| | - Peter Verwilst
- Rega
Institute for Medical Research, Medicinal Chemistry, KU Leuven, Herestraat 49, Box 1041, 3000 Leuven, Belgium
| | - Mingle Li
- College
of Materials Science and Engineering, Shenzhen
University, Shenzhen 518060, China
| | - Dandan Ma
- College
of Materials Science and Engineering, Shenzhen
University, Shenzhen 518060, China
- College
of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Nem Singh
- Department
of Chemistry, Korea University, Seoul 02841, Korea
| | - Jiyoung Yoo
- Department
of Chemistry, Korea University, Seoul 02841, Korea
| | - Yujin Kim
- Department
of Chemistry, Korea University, Seoul 02841, Korea
| | - Ying Yang
- School of
Light Industry and Food Engineering, Guangxi
University, Nanning, Guangxi 530004, China
| | - Jing-Hui Zhu
- College
of Materials Science and Engineering, Shenzhen
University, Shenzhen 518060, China
- College
of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Haiqiao Huang
- College
of Materials Science and Engineering, Shenzhen
University, Shenzhen 518060, China
- College
of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Xi-Le Hu
- Key
Laboratory for Advanced Materials and Joint International Research
Laboratory of Precision Chemistry and Molecular Engineering, Feringa
Nobel Prize Scientist Joint Research Center, School of Chemistry and
Molecular Engineering, East China University
of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Xiao-Peng He
- Key
Laboratory for Advanced Materials and Joint International Research
Laboratory of Precision Chemistry and Molecular Engineering, Feringa
Nobel Prize Scientist Joint Research Center, School of Chemistry and
Molecular Engineering, East China University
of Science and Technology, 130 Meilong Road, Shanghai 200237, China
- National
Center for Liver Cancer, the International Cooperation Laboratory
on Signal Transduction, Eastern Hepatobiliary
Surgery Hospital, Shanghai 200438, China
| | - Lintao Zeng
- School of
Light Industry and Food Engineering, Guangxi
University, Nanning, Guangxi 530004, China
| | - Tony D. James
- Department
of Chemistry, University of Bath, Bath BA2 7AY, United Kingdom
- School
of Chemistry and Chemical Engineering, Henan
Normal University, Xinxiang 453007, China
| | - Xiaojun Peng
- College
of Materials Science and Engineering, Shenzhen
University, Shenzhen 518060, China
- State
Key Laboratory of Fine Chemicals, Dalian
University of Technology, Dalian 116024, China
| | - Jonathan L. Sessler
- Department
of Chemistry, The University of Texas at
Austin, Texas 78712-1224, United
States
| | - Jong Seung Kim
- Department
of Chemistry, Korea University, Seoul 02841, Korea
- TheranoChem Incorporation, Seongbuk-gu, Seoul 02841, Korea
| |
Collapse
|
4
|
Panda SK, Sahu RP, Goswami C, Singh AK. Robust Optical Detection of Ga 3+ by a Rhodamine- and Coumarin-Based Proficient Probe: Theoretical Investigations and Biological Applications. ACS APPLIED BIO MATERIALS 2023; 6:5582-5595. [PMID: 37971315 DOI: 10.1021/acsabm.3c00772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
The present investigation highlights a rhodamine-B- and coumarin-based efficient probe that selectively detects Ga3+ over other metal ions. The active pocket of the ligand for trapping the metal ions and the binding stoichiometry of its Ga3+ complex were discovered by single-crystal X-ray diffraction (SC-XRD) analysis. This binding stoichiometry was further confirmed in the solution state by mass spectrometry and Job's plot. The detection limit was found to be at the nanomolar level. Pyrophosphate being a well-known quencher could easily quench the fluorescence intensity of the RC in the presence of Ga3+ and reversibly recognize Ga3+ in the solution. The spiro ring opening of the ligand after Ga3+ insertion is proposed to be the principal mechanism for the turn-on fluorescence response. This ring opening was confirmed by SC-XRD data and nuclear magnetic resonance (NMR) titration experiments. Both ground- and excited-state calculations of the ligand and complex have been carried out to obtain information about their energy levels and to obtain the theoretical electronic spectra. Furthermore, the live-cell imaging of the probe only and the probe after the addition of Ga3+ have been carried out in HaCaT cells and satisfactory responses were observed. Interestingly, with the help of this probe, Ga3+ can be tracked inside the intracellular organelle such as lysosomes along with other regions of the cell. The article highlights a rhodamine-coumarin-based probe for the detection of Ga3+ over other metal ions with a nanomolar level detection limit. Structural characterization of the ligand and its Ga3+ complex was investigated by SC-XRD. Density functional theory (DFT) and time-dependent DFT (TD-DFT) studies were carried out to explore the excited-state energies and electronic spectra. The application of the probe for the detection of Ga3+ in live cells has been explored, and positive responses were observed.
Collapse
Affiliation(s)
- Suvam Kumar Panda
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Khordha 752050, India
| | - Ram Prasad Sahu
- School of Biological Sciences, National Institute of Science Education and Research, Khordha 752050, India
| | - Chandan Goswami
- School of Biological Sciences, National Institute of Science Education and Research, Khordha 752050, India
| | - Akhilesh Kumar Singh
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Khordha 752050, India
| |
Collapse
|
5
|
Xiong J, Xue EY, Wu Q, Lo PC, Ng DKP. A tetrazine-responsive isonitrile-caged photosensitiser for site-specific photodynamic therapy. J Control Release 2023; 353:663-674. [PMID: 36503072 DOI: 10.1016/j.jconrel.2022.12.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 12/01/2022] [Accepted: 12/07/2022] [Indexed: 12/15/2022]
Abstract
We report herein a versatile and efficient bioorthogonal strategy to actualise targeted delivery and site-specific activation of photosensitisers for precise antitumoural photodynamic therapy. The strategy involved the use of an isonitrile-caged distyryl boron dipyrromethene-based photosensitiser, labelled as NC-DSBDP, of which the photoactivities could be specifically activated upon conversion of the meso ester substituent to carboxylate initiated by the [4 + 1] cycloaddition with a tetrazine derivative. By using two tetrazines conjugated with a galactose moiety or the GE11 peptide, labelled as gal-Tz and GE11-Tz, we could selectively label the cancer cells overexpressed with the asialoglycoprotein receptor and the epidermal growth factor receptor respectively. Upon encountering the internalised NC-DSBDP, these tetrazines triggered the "ester-to-carboxylate" transformation of this compound, activating its fluorescence and reactive oxygen species generation inside the target cells. The bioorthogonal activation was also demonstrated in vivo, leading to effective photo-eradication of the tumour in nude mice.
Collapse
Affiliation(s)
- Junlong Xiong
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Evelyn Y Xue
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Qianqian Wu
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China; Department of Biomedical Sciences, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Pui-Chi Lo
- Department of Biomedical Sciences, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China.
| | - Dennis K P Ng
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China.
| |
Collapse
|
6
|
Shih CP, Choi Y, Yeh CS, Chen P. Editorial: Bioinspired nanomaterials: Design principles for imaging and therapeutic. Front Chem 2022; 10:1079927. [DOI: 10.3389/fchem.2022.1079927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 11/11/2022] [Indexed: 11/22/2022] Open
|
7
|
Ding L, Guo Q, Sun X, Hu G, Hu J, Fan S, Fu Y. Synthesis and Performance Testing of a BODIPY Fluorescent Probe for the Detection of Doxycycline Residues in Water Environment. ChemistrySelect 2022. [DOI: 10.1002/slct.202203410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Lingzhi Ding
- Department of Orthopaedics Sir Run Run Shaw Hospital Affiliated to Zhejiang University Hangzhou Zhejiang 310016 China
- Taizhou Central Hospital (Taizhou University Hospital) Taizhou University Taizhou Zhejiang 318000 China
| | - Qing Guo
- School of Biological and Chemical Engineering Zhejiang University of Science and Technology Hangzhou Zhejiang 310023 China
| | - Xiaolong Sun
- School of Life Science Taizhou University Taizhou Zhejiang 318000 China
| | - Gaowei Hu
- School of Life Science Taizhou University Taizhou Zhejiang 318000 China
| | - Jiahuan Hu
- School of Life Science Taizhou University Taizhou Zhejiang 318000 China
| | - Shunwu Fan
- Department of Orthopaedics Sir Run Run Shaw Hospital Affiliated to Zhejiang University Hangzhou Zhejiang 310016 China
| | - Yongqian Fu
- Taizhou Central Hospital (Taizhou University Hospital) Taizhou University Taizhou Zhejiang 318000 China
- School of Life Science Taizhou University Taizhou Zhejiang 318000 China
| |
Collapse
|
8
|
Thankarajan E, Tuchinsky H, Aviel-Ronen S, Bazylevich A, Gellerman G, Patsenker L. Antibody guided activatable NIR photosensitizing system for fluorescently monitored photodynamic therapy with reduced side effects. J Control Release 2022; 343:506-517. [PMID: 35150812 DOI: 10.1016/j.jconrel.2022.02.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 01/31/2022] [Accepted: 02/07/2022] [Indexed: 01/04/2023]
Abstract
Photodynamic therapy (PDT) utilizing an organic dye (photosensitizer) capable of killing cancer cells in the body upon light irradiation is one of the promising non-invasive treatment modalities for many cancers. A known drawback of PDT is a side-effect caused by existing photosensitizers to organs due to insufficient specificity and accidental light exposure of a patient during the delivery of the photosensitizer in the bloodstream. To overcome this issue, we developed a novel antibody guided, activatable photosensitizing system, Ab-mI2XCy-Ac, where the trastuzumab (Ab) is linked to the non-active (not phototoxic and not fluorescent) dye, mI2XCy-Ac, that contains the hydroxyl group protected by acetyl (Ac). This targeting, non-photo-active conjugate was shown to be safely (without detectable side-effects) delivered to the targeted tumor, where it is activated by the esterase-mediated acetyl group cleavage and effectively treats the tumor upon NIR light irradiation. It was demonstrated in the Her2 positive BT-474 tumor mouse model that the treatment efficacy of the activatable photosensitizing system is about the same as for the permanently active photosensitizer, Ab-mI2XCy, while the side-effects are noticeably reduced. In addition, this activatable system enables fluorescence monitoring of the photosensitizer activation events.
Collapse
Affiliation(s)
- Ebaston Thankarajan
- Department of Chemical Sciences, the Faculty of Natural Sciences, Ariel University, Ariel 40700, Israel
| | - Helena Tuchinsky
- Department of Molecular Biology, the Faculty of Natural Sciences, Ariel University, Ariel 40700, Israel
| | - Sarit Aviel-Ronen
- Adelson School of Medicine, Ariel University, Ariel 40700, Israel; Sheba Medical Center, Tel-Hashomer, Ramat Gan, Israel
| | - Andrii Bazylevich
- Department of Chemical Sciences, the Faculty of Natural Sciences, Ariel University, Ariel 40700, Israel
| | - Gary Gellerman
- Department of Chemical Sciences, the Faculty of Natural Sciences, Ariel University, Ariel 40700, Israel
| | - Leonid Patsenker
- Department of Chemical Sciences, the Faculty of Natural Sciences, Ariel University, Ariel 40700, Israel.
| |
Collapse
|