1
|
Ming Y, He X, Zhao Z, Meng X, Zhu Y, Tan H, Yang G, Hu Y, Zheng L. Nanocarrier-Assisted Delivery of Berberine Promotes Diabetic Alveolar Bone Regeneration by Scavenging ROS and Improving Mitochondrial Dysfunction. Int J Nanomedicine 2024; 19:10263-10282. [PMID: 39399826 PMCID: PMC11471107 DOI: 10.2147/ijn.s475320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 09/15/2024] [Indexed: 10/15/2024] Open
Abstract
Purpose Oxidative stress and mitochondrial dysfunction are potential contributors to the compromised tissue regeneration capacity of alveolar bone in diabetic patients. Berberine, an active plant alkaloid, exhibits multiple pharmacological effects including antioxidation, blood glucose- and blood lipid-lowering properties. However, it remains uncertain whether berberine can improve impaired osteogenesis in type 2 diabetes mellitus (T2DM), and its poor solubility and oral bioavailability also constrain its applications in bone regeneration. Thus, our study aimed to probe the effects of berberine on bone marrow stem cells (BMSCs) in a diabetic microenvironment, with a greater emphasis on developing a suitable nano-delivery system for berberine and assessing its capability to repair diabetic alveolar bone defects. Methods Firstly, BMSCs were exposed to berberine within a high glucose and palmitate (HG+PA) environment. Reactive oxygen species levels, mitochondrial membrane potential, ATP generation, cell apoptosis, and osteogenic potential were subsequently assessed. Next, we explored the regulatory mechanism of autophagy flux in the positive effects of berberine. Furthermore, a nanocarrier based on emulsion electrospinning for sustained local delivery of berberine (Ber@SF/PCL) was established. We assessed its capacity to enhance bone healing in the alveolar bone defect of T2DM rats through micro-computed tomography and histology analysis. Results Berberine treatment could inhibit reactive oxygen species overproduction, mitochondrial dysfunction, apoptosis, and improve osteogenesis differentiation by restoring autophagy flux under HG+PA conditions. Notably, Ber@SF/PCL electrospun nanofibrous membrane with excellent physicochemical properties and good biological safety had the potential to promote alveolar bone remodeling in T2DM rats. Conclusion Our study shed new lights into the protective role of berberine on BMSCs under T2DM microenvironment. Furthermore, berberine-loaded composite electrospun membrane may serve as a promising approach for regenerating alveolar bone in diabetic patients.
Collapse
Affiliation(s)
- Ye Ming
- College of Stomatology, Chongqing Medical University, Chongqing, People’s Republic of China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, People’s Republic of China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, People’s Republic of China
| | - Xinyi He
- College of Stomatology, Chongqing Medical University, Chongqing, People’s Republic of China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, People’s Republic of China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, People’s Republic of China
| | - Zhenxing Zhao
- College of Stomatology, Chongqing Medical University, Chongqing, People’s Republic of China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, People’s Republic of China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, People’s Republic of China
| | - Xuehuan Meng
- College of Stomatology, Chongqing Medical University, Chongqing, People’s Republic of China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, People’s Republic of China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, People’s Republic of China
| | - Ye Zhu
- College of Stomatology, Chongqing Medical University, Chongqing, People’s Republic of China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, People’s Republic of China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, People’s Republic of China
| | - Hao Tan
- College of Stomatology, Chongqing Medical University, Chongqing, People’s Republic of China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, People’s Republic of China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, People’s Republic of China
| | - Guoyin Yang
- College of Stomatology, Chongqing Medical University, Chongqing, People’s Republic of China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, People’s Republic of China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, People’s Republic of China
| | - Yun Hu
- College of Stomatology, Chongqing Medical University, Chongqing, People’s Republic of China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, People’s Republic of China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, People’s Republic of China
| | - Leilei Zheng
- College of Stomatology, Chongqing Medical University, Chongqing, People’s Republic of China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, People’s Republic of China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, People’s Republic of China
| |
Collapse
|
2
|
Huang T, Zeng Y, Li C, Zhou Z, Xu J, Wang L, Yu DG, Wang K. Application and Development of Electrospun Nanofiber Scaffolds for Bone Tissue Engineering. ACS Biomater Sci Eng 2024; 10:4114-4144. [PMID: 38830819 DOI: 10.1021/acsbiomaterials.4c00028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Nanofiber scaffolds have gained significant attention in the field of bone tissue engineering. Electrospinning, a straightforward and efficient technique for producing nanofibers, has been extensively researched. When used in bone tissue engineering scaffolds, electrospun nanofibers with suitable surface properties promote new bone tissue growth and enhance cell adhesion. Recent advancements in electrospinning technology have provided innovative approaches for scaffold fabrication in bone tissue engineering. This review comprehensively examines the utilization of electrospun nanofibers in bone tissue engineering scaffolds and evaluates the relevant literature. The review begins by presenting the fundamental principles and methodologies of electrospinning. It then discusses various materials used in the production of electrospun nanofiber scaffolds for bone tissue engineering, including natural and synthetic polymers, as well as certain inorganic materials. The challenges associated with these materials are also described. The review focuses on novel electrospinning techniques for scaffold construction in bone tissue engineering, such as multilayer nanofibers, multifluid electrospinning, and the integration of electrospinning with other methods. Recent advancements in electrospinning technology have enabled the fabrication of precisely aligned nanofiber scaffolds with nanoscale architectures. These innovative methods also facilitate the fabrication of biomimetic structures, wherein bioactive substances can be incorporated and released in a controlled manner for drug delivery purposes. Moreover, they address issues encountered with traditional electrospun nanofibers, such as mechanical characteristics and biocompatibility. Consequently, the development and implementation of novel electrospinning technologies have revolutionized scaffold fabrication for bone tissue engineering.
Collapse
Affiliation(s)
- Tianyue Huang
- School of Materials and Chemistry, University of Shanghai for Science and Technology 516 Jungong Road, Shanghai 200093, China
| | - YuE Zeng
- Department of Neurology, RuiJin Hospital Lu Wan Branch, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Chaofei Li
- Department of General Surgery, RuiJin Hospital Lu Wan Branch, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zhengqing Zhou
- School of Materials and Chemistry, University of Shanghai for Science and Technology 516 Jungong Road, Shanghai 200093, China
| | - Jie Xu
- School of Materials and Chemistry, University of Shanghai for Science and Technology 516 Jungong Road, Shanghai 200093, China
| | - Lean Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology 516 Jungong Road, Shanghai 200093, China
| | - Deng-Guang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology 516 Jungong Road, Shanghai 200093, China
| | - Ke Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology 516 Jungong Road, Shanghai 200093, China
| |
Collapse
|
3
|
Zhou H, Zhao Y, Zha X, Zhang Z, Zhang L, Wu Y, Ren R, Zhao Z, Yang W, Zhao L. A Janus, robust, biodegradable bacterial cellulose/Ti 3C 2Tx MXene bilayer membranes for guided bone regeneration. BIOMATERIALS ADVANCES 2024; 161:213892. [PMID: 38795472 DOI: 10.1016/j.bioadv.2024.213892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 04/29/2024] [Accepted: 05/10/2024] [Indexed: 05/28/2024]
Abstract
Guided bone regeneration (GBR) stands as an essential modality for craniomaxillofacial bone defect repair, yet challenges like mechanical weakness, inappropriate degradability, limited bioactivity, and intricate manufacturing of GBR membranes hindered the clinical efficacy. Herein, we developed a Janus bacterial cellulose(BC)/MXene membrane through a facile vacuum filtration and etching strategy. This Janus membrane displayed an asymmetric bilayer structure with interfacial compatibility, where the dense layer impeded cell invasion and the porous layer maintained stable space for osteogenesis. Incorporating BC with Ti3C2Tx MXene significantly enhanced the mechanical robustness and flexibility of the material, enabling clinical operability and lasting GBR membrane supports. It also contributed to a suitable biodegradation rate, which aligned with the long-term bone repair period. After demonstrating the desirable biocompatibility, barrier role, and osteogenic capability in vitro, the membrane's regenerative potential was also confirmed in a rat cranial defect model. The excellent bone repair performance could be attributed to the osteogenic capability of MXene nanosheets, the morphological cues of the porous layer, as well as the long-lasting, stable regeneration space provided by the GBR membrane. Thus, our work presented a facile, robust, long-lasting, and biodegradable BC/MXene GBR membrane, offering a practical solution to craniomaxillofacial bone defect repair.
Collapse
Affiliation(s)
- Hongling Zhou
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China; Center of Stomatology, West China Xiamen Hospital of Sichuan University, Xiamen 361021, Fujian, China
| | - Yifan Zhao
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Xiangjun Zha
- Liver Transplant Center and Laboratory of Liver Transplantation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, 610041, Sichuan, China
| | - Zhengmin Zhang
- College of Polymer Science and Engineering, Sichuan University, State Key Laboratory of Polymer Materials Engineering, Chengdu 610065, Sichuan, China
| | - Linli Zhang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yeke Wu
- Department of Stomatology, Hospital of Chengdu University of Traditional Chinese Medicine, Sichuan, Chengdu, China
| | - Ruiyang Ren
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Wei Yang
- College of Polymer Science and Engineering, Sichuan University, State Key Laboratory of Polymer Materials Engineering, Chengdu 610065, Sichuan, China
| | - Lixing Zhao
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| |
Collapse
|
4
|
Wang Y, Zhang X, Zhang S, Yang G, Li Y, Mao Y, Yang L, Chen J, Wang J. Development of a rapid-shaping and user-friendly membrane with long-lasting space maintenance for guided bone regeneration. J Mater Chem B 2024; 12:1495-1511. [PMID: 38223916 DOI: 10.1039/d3tb02137h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
The success of guided bone regeneration (GBR) surgery depends largely on the use of GBR membranes to maintain space for bone regeneration and prevent soft tissue ingrowth. However, currently available commercial degradable GBR membranes are often limited by poor space maintenance ability and require additional suture or nail for fixation. To overcome these limitations, we developed a rapid-shaping, adhesive, and user-friendly GBR membrane (PLGA film-PGN) with long-lasting space maintenance by immersing an electrospun poly(lactide-co-glycolic acid) film in a photo-crosslinkable hydrogel composed of polyethylene glycol diacrylate, gelatin methacryloyl, and nanosilicate (PGN). The PGN hydrogel significantly improved the mechanical strength of the PLGA film-PGN and endowed it with plasticity and adhesive properties, making it more maneuverable. The maximum bending force that the PLGA film-PGN could withstand was over 55 times higher than that of the HEAL ALL film (a commonly used commercial GBR membrane). PLGA film-PGN also promoted the proliferation and osteogenic differentiation of rBMSCs. According to a critical-size rat calvarial defect model, PLGA film-PGN maintained the space within the defect area and significantly enhanced bone formation 4 weeks after the surgery. To conclude, the study provided a novel perspective on GBR membrane design and the multifunctional PLGA film-PGN membrane demonstrated great potential for bone defect reconstruction.
Collapse
Affiliation(s)
- Yuting Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Xin Zhang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Shu Zhang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Guangmei Yang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Yuanyuan Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Yilin Mao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Linxin Yang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Junyu Chen
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Jian Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| |
Collapse
|
5
|
Nie R, Zhang QY, Tan J, Feng ZY, Huang K, Sheng N, Jiang YL, Song YT, Zou CY, Zhao LM, Li HX, Wang R, Zhou XL, Hu JJ, Wu CY, Li-Ling J, Xie HQ. EGCG modified small intestine submucosa promotes wound healing through immunomodulation. COMPOSITES PART B: ENGINEERING 2023; 267:111005. [DOI: 10.1016/j.compositesb.2023.111005] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2024]
|
6
|
Chen Y, Chen Y, Han T, Xie Z, Yang Y, Chen S, Wang C. Enhanced osteogenic and antibacterial properties of polyetheretherketone by ultraviolet-initiated grafting polymerization of a gelatin methacryloyl/epsilon-poly-L-lysine/laponite hydrogel coating. J Biomed Mater Res A 2023; 111:1808-1821. [PMID: 37548424 DOI: 10.1002/jbm.a.37589] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/30/2023] [Accepted: 06/27/2023] [Indexed: 08/08/2023]
Abstract
Polyetheretherketone (PEEK) is a promising material for use in orthopedic implants, but its bio-inert character and lack of antibacterial activity limit its applications in bone repair. In the present study, considering the advantages of PEEK in self-initiated graft polymerization and of hydrogels in bone tissue engineering, we constructed a hydrogel coating (GPL) consisting of Gelatin methacryloyl (GelMA), methacrylamide-modified ε-poly-l-lysine (ε-PLMA) and Laponite on PEEK through UV-initiated crosslinking. The coating improved the hydrophilicity of PEEK, and the coating degraded slowly so that approximately 80% was retained after incubation in PBS for 8 weeks. In vitro studies revealed that as compared to culturing on PEEK, culturing on PEEK-GPL led to enhanced viability and adhesion of cultured human umbilical cord Wharton's jelly-derived mesenchymal stem cells (hWJ-MSCs). Due to the synergistic effect of the micron-scale three-dimensional surface and Laponite, PEEK-GPL exhibited a significantly improved induction of osteogenic differentiation of hWJ-MSCs compared to PEEK, as demonstrated by increased alkaline phosphatase activity, matrix mineralization, and expression of osteogenesis-related genes. Furthermore, PEEK-GPL showed antibacterial activity upon contact with Staphylococcus aureus and Escherichia coli, and this activity would be maintained before complete degradation of the hydrogel because the ε-PLMA was cross-linked covalently into the coating. Thus, PEEK-GPL achieved both osteogenesis and infection prevention in a single simple step, providing a feasible approach for the extensive use of PEEK in bone implants.
Collapse
Affiliation(s)
- Yuhong Chen
- Department of Prosthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Oral Diseases, Nanjing, China
| | - Yiyi Chen
- Department of Prosthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Oral Diseases, Nanjing, China
| | - Tianlei Han
- Department of Prosthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Oral Diseases, Nanjing, China
| | - Zhe Xie
- Department of Prosthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Oral Diseases, Nanjing, China
| | - Yuchen Yang
- Department of Prosthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Oral Diseases, Nanjing, China
| | - Siyuan Chen
- Department of Prosthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Oral Diseases, Nanjing, China
| | - Chen Wang
- Department of Prosthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Oral Diseases, Nanjing, China
| |
Collapse
|
7
|
Kim YE, Bae YJ, Jang MJ, Um IC. Effect of Sericin Content on the Structural Characteristics and Properties of New Silk Nonwoven Fabrics. Biomolecules 2023; 13:1186. [PMID: 37627251 PMCID: PMC10452508 DOI: 10.3390/biom13081186] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023] Open
Abstract
Recently, natural silk nonwoven fabrics have attracted attention in biomedical and cosmetic applications because of their excellent biocompatibility, mechanical properties, and easy preparation. Herein, silk nonwoven fabrics were prepared by carding silk filaments to improve their productivity, and the effect of sericin content on the structure and properties of silk nonwoven fabrics was investigated. Owing to the binding effect of sericin in silk, a natural silk nonwoven fabric was successfully prepared through carding, wetting, and hot press treatments. Sericin content affected the structural characteristics and properties of the silk nonwoven fabrics. As the sericin content increased, the silk nonwoven fabrics became more compact with reduced porosity and thickness. Further, with increasing sericin content, the crystallinity and elongation of the silk nonwoven fabrics decreased while the moisture regain and the maximum stress increased. The thermal stability of most silk nonwoven fabrics was not affected by the sericin content. However, silk nonwoven fabrics without sericin had a lower thermal decomposition temperature than other nonwoven fabrics. Regardless of the sericin content, all silk nonwoven fabrics exhibited optimal cell viability and are promising candidates for cosmetic and biomedical applications.
Collapse
Affiliation(s)
- Ye Eun Kim
- Department of Biofibers and Biomaterials Science, Kyungpook National University, Daegu 41566, Republic of Korea (Y.J.B.)
| | - Yu Jeong Bae
- Department of Biofibers and Biomaterials Science, Kyungpook National University, Daegu 41566, Republic of Korea (Y.J.B.)
| | - Mi Jin Jang
- Preclinical Research Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Republic of Korea
| | - In Chul Um
- Department of Biofibers and Biomaterials Science, Kyungpook National University, Daegu 41566, Republic of Korea (Y.J.B.)
| |
Collapse
|
8
|
Zhang B, Xing F, Chen L, Zhou C, Gui X, Su Z, Fan S, Zhou Z, Jiang Q, Zhao L, Liu M, Fan Y, Zhang X. DLP fabrication of customized porous bioceramics with osteoinduction ability for remote isolation bone regeneration. BIOMATERIALS ADVANCES 2023; 145:213261. [PMID: 36577193 DOI: 10.1016/j.bioadv.2022.213261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/20/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
Currently, various bioceramics have been widely used in bone regeneration. However, it remains a huge challenge to remote isolation bone regeneration, such as severed finger regeneration. The remote isolation bone tissue has a poor regenerative microenvironment that lacks enough blood and nutrition supply. It is very difficult to repair and regenerate. In this study, well-controlled multi-level porous 3D-printed calcium phosphate (CaP) bioceramic scaffolds with precision customized structures were fabricated by high-resolution digital light projection (DLP) printing technology for remote isolation bone regeneration. In vitro results demonstrated that optimizing material processing procedures could achieve multi-level control of 3D-printed CaP bioceramic scaffolds and enhance the osteoinduction ability of bioceramics effectively. In vivo results indicated that 3D-printed CaP bioceramic scaffolds constructed by optimized processing procedure exhibited a promising ability of bone regeneration and osteoinduction in ectopic osteogenesis and in situ caudal vertebrae regeneration in beagles. This study provided a promising strategy based on 3D-printed CaP bioceramic scaffolds constructed by optimized processing procedures for remote isolation bone regeneration, such as severed finger regeneration.
Collapse
Affiliation(s)
- Boqing Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China; College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Fei Xing
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Li Chen
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan 610064, China
| | - Changchun Zhou
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China; College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Xingyu Gui
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China; College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Zixuan Su
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China; College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Shiqi Fan
- Schools of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, China
| | - Zhigang Zhou
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qing Jiang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China; College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Li Zhao
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Ming Liu
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Yujiang Fan
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China; College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China; College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| |
Collapse
|
9
|
Li Y, Liu Z, Zhao C, Xu C, Shin A, Wu J, Li D, Lin K, Liu J. A sustained-release PDGF-BB nanocomposite hydrogel for DM-associated bone regeneration. J Mater Chem B 2023; 11:974-984. [PMID: 36594257 DOI: 10.1039/d2tb02037h] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Regeneration of bone tissue in the environment of diabetes mellitus (DM) remains one of the clinical challenges, with malfunction of stem cells in a high-glucose microenvironment being the primary obstacle. We designed an injectable sustained-release PDGF-BB nanocomposite hydrogel. PDGF-BB, a star molecule for treating various complications of DM, was used for the first time for DM-associated bone regeneration, and we showed that it restored stem cell proliferation and migration and facilitated osteogenesis inhibition under high glucose stimulation by activating ERK and AKT pathways. To address the requirements for continuous PDGF-BB release in GelMA while also increasing mechanical strength, nanoclay LAPONITE® was added, which may still exhibit pro-osteogenic activity in diabetic environments by releasing bioactive ions (Si4+, Mg2+, and Li+). This injectable hydrogel heals calvarial lesions successfully in diabetic rats and has the potential to be used as a direct and effective tool for treating diabetic patients.
Collapse
Affiliation(s)
- Yaxin Li
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China.
| | - Ziyang Liu
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China.
| | - Chen Zhao
- Department of Orthopedics, Shanghai Key Laboratory of Orthopedic Implant, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Chenci Xu
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China.
| | - Airi Shin
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China.
| | - Jiaqing Wu
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China.
| | - Dejian Li
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China. .,Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201301, China
| | - Kaili Lin
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China.
| | - Jiaqiang Liu
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China.
| |
Collapse
|
10
|
Chen K, Li Y, Li Y, Pan W, Tan G. Silk Fibroin Combined with Electrospinning as a Promising Strategy for Tissue Regeneration. Macromol Biosci 2023; 23:e2200380. [PMID: 36409150 DOI: 10.1002/mabi.202200380] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/14/2022] [Indexed: 11/23/2022]
Abstract
The development of tissue engineering scaffolds is of great significance for the repair and regeneration of damaged tissues and organs. Silk fibroin (SF) is a natural protein polymer with good biocompatibility, biodegradability, excellent physical and mechanical properties and processability, making it an ideal universal tissue engineering scaffold material. Nanofibers prepared by electrospinning have attracted extensive attention in the field of tissue engineering due to their excellent mechanical properties, high specific surface area, and similar morphology as to extracellular matrix (ECM). The combination of silk fibroin and electrospinning is a promising strategy for the preparation of tissue engineering scaffolds. In this review, the research progress of electrospun silk fibroin nanofibers in the regeneration of skin, vascular, bone, neural, tendons, cardiac, periodontal, ocular and other tissues is discussed in detail.
Collapse
Affiliation(s)
- Kai Chen
- Hainan Provincial Key Laboratory of R&D on Tropical Herbs, Haikou Key Laboratory of Li Nationality Medicine, School of Pharmacy, Hainan Medical University, Haikou, 571199, P. R. China
| | - Yonghui Li
- Hainan Provincial Key Laboratory of R&D on Tropical Herbs, Haikou Key Laboratory of Li Nationality Medicine, School of Pharmacy, Hainan Medical University, Haikou, 571199, P. R. China
| | - Youbin Li
- Hainan Provincial Key Laboratory of R&D on Tropical Herbs, Haikou Key Laboratory of Li Nationality Medicine, School of Pharmacy, Hainan Medical University, Haikou, 571199, P. R. China
| | - Weisan Pan
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, P. R. China
| | - Guoxin Tan
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmacy, Hainan University, Haikou, 570228, P. R. China
| |
Collapse
|
11
|
Paladini F, Pollini M. Novel Approaches and Biomaterials for Bone Tissue Engineering: A Focus on Silk Fibroin. MATERIALS (BASEL, SWITZERLAND) 2022; 15:6952. [PMID: 36234293 PMCID: PMC9572978 DOI: 10.3390/ma15196952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/27/2022] [Accepted: 10/04/2022] [Indexed: 05/16/2023]
Abstract
Bone tissue engineering (BTE) represents a multidisciplinary research field involving many aspects of biology, engineering, material science, clinical medicine and genetics to create biological substitutes to promote bone regeneration. The definition of the most appropriate biomaterials and structures for BTE is still a challenge for researchers, aiming at simultaneously combining different features such as tissue generation properties, biocompatibility, porosity and mechanical strength. In this scenario, among the biomaterials for BTE, silk fibroin represents a valuable option for the development of functional devices because of its unique biological properties and the multiple chances of processing. This review article aims at providing the reader with a general overview of the most recent progresses in bone tissue engineering in terms of approaches and materials with a special focus on silk fibroin and the related mechanisms involved in bone regeneration, and presenting interesting results obtained by different research groups, which assessed the great potential of this protein for bone tissue engineering.
Collapse
Affiliation(s)
- Federica Paladini
- Department of Engineering for Innovation, University of Salento, Via Monteroni, 73100 Lecce, Italy
- Caresilk S.r.l.s., Via Monteroni c/o Technological District DHITECH, 73100 Lecce, Italy
| | - Mauro Pollini
- Department of Engineering for Innovation, University of Salento, Via Monteroni, 73100 Lecce, Italy
- Caresilk S.r.l.s., Via Monteroni c/o Technological District DHITECH, 73100 Lecce, Italy
| |
Collapse
|
12
|
Lu M, Sun L, Yao J, Zhao B, Liu Y, Shao Z, Chen X. Protein-inorganic hybrid porous scaffolds for bone tissue engineering. J Mater Chem B 2022; 10:6546-6556. [PMID: 36000545 DOI: 10.1039/d2tb00853j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Porous scaffolds hold promise in the treatment of bone defects for bone tissue engineering due to their interconnected porous structure and suitable mechanical properties. Herein, LAPONITE® (LAP), which is able to promote osteogenic differentiation, was introduced into regenerated silk fibroin (RSF) porous scaffolds. Due to hydrogen bonding and electrostatic interactions between RSF and LAP, RSF/LAP 3D porous scaffolds were successfully prepared. The pore size, porosity, and mechanical properties of the RSF/LAP 3D porous scaffolds were modulated during the preparation process. Evaluation of the proliferation of bone marrow mesenchymal stem cells (BMSCs) on the RSF/LAP 3D porous scaffolds in vitro indicated that the addition of LAP improved the adhesion and proliferation of cells. Additionally, alkaline phosphatase activity and osteospecific gene expression analysis showed that the RSF/LAP 3D porous scaffolds enhanced the osteogenic differentiation of BMSCs compared to the pristine RSF porous scaffolds, especially with a higher LAP content. The subcutaneous implantation of the RSF/LAP 3D porous scaffolds in rats demonstrated good histocompatibility in vivo. Therefore, RSF/LAP 3D porous scaffolds with good biocompatibility and biodegradability have good application prospects in the field of bone tissue engineering.
Collapse
Affiliation(s)
- Minqi Lu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Shanghai Stomatological Hospital & School of Stomatology, Laboratory of Advanced Materials, Fudan University, Shanghai, 200433, People's Republic of China.
| | - Liangyan Sun
- Department of Orthodontics, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, 200433, People's Republic of China. .,Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, 200433, People's Republic of China
| | - Jinrong Yao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Shanghai Stomatological Hospital & School of Stomatology, Laboratory of Advanced Materials, Fudan University, Shanghai, 200433, People's Republic of China.
| | - Bingjiao Zhao
- Department of Orthodontics, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, 200433, People's Republic of China. .,Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, 200433, People's Republic of China
| | - Yuehua Liu
- Department of Orthodontics, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, 200433, People's Republic of China. .,Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, 200433, People's Republic of China
| | - Zhengzhong Shao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Shanghai Stomatological Hospital & School of Stomatology, Laboratory of Advanced Materials, Fudan University, Shanghai, 200433, People's Republic of China.
| | - Xin Chen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Shanghai Stomatological Hospital & School of Stomatology, Laboratory of Advanced Materials, Fudan University, Shanghai, 200433, People's Republic of China.
| |
Collapse
|
13
|
Taghiyar H, Yadollahi B, Kajani AA. Controlled drug delivery and cell adhesion for bone tissue regeneration by Keplerate polyoxometalate (Mo 132)/metronidazole/PMMA scaffolds. Sci Rep 2022; 12:14443. [PMID: 36002474 PMCID: PMC9402948 DOI: 10.1038/s41598-022-18622-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/16/2022] [Indexed: 11/17/2022] Open
Abstract
The aim of this study is to fabricate a new scaffold appropriate for tissue regeneration with antimicrobial activity and ability of controlled drug delivery. In this regard, scaffold nanofibers were produced using poly (methyl methacrylate) (PMMA), Mo132 as a Keplerate polyoxometalate and metronidazole. The final scaffolds, obtained by electrospinning, represent the intrinsic features including exceptional doubling tensile strength, high hydrophilicity (126 ± 5.2° to 83.9 ± 3.2° for contact angle and 14.18 ± 0.62% to 35.62 ± 0.24% for water uptake), proper bioactivity and cell adhesion. Moreover, the addition of Mo132 and metronidazole enhances the biodegradation rate of resulted scaffolds compared to the pure PMMA membrane. The controlled release of metronidazole over 14 days efficiently inhibits the colonization of anaerobic microorganisms. Overall, the results demonstrate high potential of Mo132 and metronidazole-loaded PMMA scaffold for guided bone regeneration/guided tissue regeneration.
Collapse
Affiliation(s)
- Hamid Taghiyar
- Department of Chemistry, University of Isfahan, Isfahan, 81746-73441, Iran
| | - Bahram Yadollahi
- Department of Chemistry, University of Isfahan, Isfahan, 81746-73441, Iran.
| | - Abolghasem Abbasi Kajani
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, 81746-73441, Iran
| |
Collapse
|
14
|
Silk/Rayon Webs and Nonwoven Fabrics: Fabrication, Structural Characteristics, and Properties. Int J Mol Sci 2022; 23:ijms23147511. [PMID: 35886857 PMCID: PMC9321737 DOI: 10.3390/ijms23147511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/05/2022] [Accepted: 07/05/2022] [Indexed: 02/04/2023] Open
Abstract
Silk is a naturally occurring material and has been widely used in biomedical and cosmetic applications owing to its unique properties, including blood compatibility, excellent cytocompatibility, and a low inflammatory response in the body. A natural silk nonwoven fabric with good mechanical properties was recently developed using the binding property of sericin. In this study, silk/rayon composite nonwoven fabrics were developed to increase productivity and decrease production costs, and the effect of the silk/rayon composition on the structure and properties of the fabric was examined. The crystalline structure of silk and rayon was maintained in the fabric. As the silk content increased, the porosity and moisture regain of the silk/rayon web and nonwoven fabric decreased. As the silk content increased, the maximum stress of the web and nonwoven fabric increased, and the elongation decreased. Furthermore, the silk/rayon web exhibited the highest values of maximum stress and elongation at ~200 °C. Regardless of the silk/rayon composition, all silk/rayon nonwoven fabrics showed good cytocompatibility. Thus, the silk/rayon fabric is a promising material for cosmetic and biomedical applications owing to its diverse properties and high cell viability.
Collapse
|
15
|
Fan J, Abedi-Dorcheh K, Sadat Vaziri A, Kazemi-Aghdam F, Rafieyan S, Sohrabinejad M, Ghorbani M, Rastegar Adib F, Ghasemi Z, Klavins K, Jahed V. A Review of Recent Advances in Natural Polymer-Based Scaffolds for Musculoskeletal Tissue Engineering. Polymers (Basel) 2022; 14:polym14102097. [PMID: 35631979 PMCID: PMC9145843 DOI: 10.3390/polym14102097] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/09/2022] [Accepted: 05/17/2022] [Indexed: 02/01/2023] Open
Abstract
The musculoskeletal (MS) system consists of bone, cartilage, tendon, ligament, and skeletal muscle, which forms the basic framework of the human body. This system plays a vital role in appropriate body functions, including movement, the protection of internal organs, support, hematopoiesis, and postural stability. Therefore, it is understandable that the damage or loss of MS tissues significantly reduces the quality of life and limits mobility. Tissue engineering and its applications in the healthcare industry have been rapidly growing over the past few decades. Tissue engineering has made significant contributions toward developing new therapeutic strategies for the treatment of MS defects and relevant disease. Among various biomaterials used for tissue engineering, natural polymers offer superior properties that promote optimal cell interaction and desired biological function. Natural polymers have similarity with the native ECM, including enzymatic degradation, bio-resorb and non-toxic degradation products, ability to conjugate with various agents, and high chemical versatility, biocompatibility, and bioactivity that promote optimal cell interaction and desired biological functions. This review summarizes recent advances in applying natural-based scaffolds for musculoskeletal tissue engineering.
Collapse
Affiliation(s)
- Jingzhi Fan
- Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre of RTU, Institute of General Chemical Engineering, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Pulka St 3, LV-1007 Riga, Latvia;
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Pulka St 3, LV-1007 Riga, Latvia
| | - Keyvan Abedi-Dorcheh
- Biomedical Engineering Division, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran 14117-13116, Iran; (K.A.-D.); (A.S.V.); (F.K.-A.); (S.R.); (M.S.); (M.G.); (F.R.A.); (Z.G.)
| | - Asma Sadat Vaziri
- Biomedical Engineering Division, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran 14117-13116, Iran; (K.A.-D.); (A.S.V.); (F.K.-A.); (S.R.); (M.S.); (M.G.); (F.R.A.); (Z.G.)
| | - Fereshteh Kazemi-Aghdam
- Biomedical Engineering Division, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran 14117-13116, Iran; (K.A.-D.); (A.S.V.); (F.K.-A.); (S.R.); (M.S.); (M.G.); (F.R.A.); (Z.G.)
| | - Saeed Rafieyan
- Biomedical Engineering Division, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran 14117-13116, Iran; (K.A.-D.); (A.S.V.); (F.K.-A.); (S.R.); (M.S.); (M.G.); (F.R.A.); (Z.G.)
| | - Masoume Sohrabinejad
- Biomedical Engineering Division, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran 14117-13116, Iran; (K.A.-D.); (A.S.V.); (F.K.-A.); (S.R.); (M.S.); (M.G.); (F.R.A.); (Z.G.)
| | - Mina Ghorbani
- Biomedical Engineering Division, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran 14117-13116, Iran; (K.A.-D.); (A.S.V.); (F.K.-A.); (S.R.); (M.S.); (M.G.); (F.R.A.); (Z.G.)
| | - Fatemeh Rastegar Adib
- Biomedical Engineering Division, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran 14117-13116, Iran; (K.A.-D.); (A.S.V.); (F.K.-A.); (S.R.); (M.S.); (M.G.); (F.R.A.); (Z.G.)
| | - Zahra Ghasemi
- Biomedical Engineering Division, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran 14117-13116, Iran; (K.A.-D.); (A.S.V.); (F.K.-A.); (S.R.); (M.S.); (M.G.); (F.R.A.); (Z.G.)
| | - Kristaps Klavins
- Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre of RTU, Institute of General Chemical Engineering, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Pulka St 3, LV-1007 Riga, Latvia;
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Pulka St 3, LV-1007 Riga, Latvia
- Correspondence: (K.K.); (V.J.)
| | - Vahid Jahed
- Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre of RTU, Institute of General Chemical Engineering, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Pulka St 3, LV-1007 Riga, Latvia;
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Pulka St 3, LV-1007 Riga, Latvia
- Correspondence: (K.K.); (V.J.)
| |
Collapse
|
16
|
Magalhães LSSM, Andrade DB, Bezerra RDS, Morais AIS, Oliveira FC, Rizzo MS, Silva-Filho EC, Lobo AO. Nanocomposite Hydrogel Produced from PEGDA and Laponite for Bone Regeneration. J Funct Biomater 2022; 13:53. [PMID: 35645261 PMCID: PMC9149996 DOI: 10.3390/jfb13020053] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/25/2022] [Accepted: 04/28/2022] [Indexed: 01/03/2023] Open
Abstract
Herein, a nanocomposite hydrogel was produced using laponite and polyethylene-glycol diacrylate (PEGDA), with or without Irgacure (IG), for application in bone tissue regeneration. The nanocomposites were characterized by X-ray diffraction (XRD), Fourier-Transform infrared spectroscopy (FTIR), and thermal analysis (TG/DTG). The XRD results showed that the crystallographic structure of laponite was preserved in the nanocomposite hydrogels after the incorporation of PEGDA and IG. The FTIR results indicated that PEGDA polymer chains were entangled on laponite in hydrogels. The TG/DTG found that the presence of laponite (Lap) improved the thermal stability of nanocomposite hydrogel. The toxicity tests by Artemia salina indicated that the nanocomposite hydrogels were not toxic, because the amount of live nauplii was 80.0%. In addition, in vivo tests demonstrated that the hydrogels had the ability to regenerate bone in a bone defect model of the tibiae of osteopenic rats. For the nanocomposite hydrogel (PEGDA + Lap nanocomposites + UV light), the formation of intramembranous bone in the soft callus was more intense in 66.7% of the animals. Thus, the results presented in this study evidence that nanocomposite hydrogels obtained from laponite and PEGDA have the potential for use in bone regeneration.
Collapse
Affiliation(s)
- Leila S. S. M. Magalhães
- LIMAV—Interdisciplinary Advanced Materials Laboratory, PPGCM—Materials Science and Engineering Graduate Program, UFPI—Federal University of Piaui, Teresina 64049-550, Brazil; (L.S.S.M.M.); (D.B.A.); (A.I.S.M.); (M.S.R.); (E.C.S.-F.)
| | - Danielle B. Andrade
- LIMAV—Interdisciplinary Advanced Materials Laboratory, PPGCM—Materials Science and Engineering Graduate Program, UFPI—Federal University of Piaui, Teresina 64049-550, Brazil; (L.S.S.M.M.); (D.B.A.); (A.I.S.M.); (M.S.R.); (E.C.S.-F.)
- Federal Institute of Education, Science and Technology of Piauí, Teresina-Central Campus, IFPI, Teresina 64000-040, Brazil;
| | - Roosevelt D. S. Bezerra
- Federal Institute of Education, Science and Technology of Piauí, Teresina-Central Campus, IFPI, Teresina 64000-040, Brazil;
| | - Alan I. S. Morais
- LIMAV—Interdisciplinary Advanced Materials Laboratory, PPGCM—Materials Science and Engineering Graduate Program, UFPI—Federal University of Piaui, Teresina 64049-550, Brazil; (L.S.S.M.M.); (D.B.A.); (A.I.S.M.); (M.S.R.); (E.C.S.-F.)
| | | | - Márcia S. Rizzo
- LIMAV—Interdisciplinary Advanced Materials Laboratory, PPGCM—Materials Science and Engineering Graduate Program, UFPI—Federal University of Piaui, Teresina 64049-550, Brazil; (L.S.S.M.M.); (D.B.A.); (A.I.S.M.); (M.S.R.); (E.C.S.-F.)
| | - Edson C. Silva-Filho
- LIMAV—Interdisciplinary Advanced Materials Laboratory, PPGCM—Materials Science and Engineering Graduate Program, UFPI—Federal University of Piaui, Teresina 64049-550, Brazil; (L.S.S.M.M.); (D.B.A.); (A.I.S.M.); (M.S.R.); (E.C.S.-F.)
| | - Anderson O. Lobo
- LIMAV—Interdisciplinary Advanced Materials Laboratory, PPGCM—Materials Science and Engineering Graduate Program, UFPI—Federal University of Piaui, Teresina 64049-550, Brazil; (L.S.S.M.M.); (D.B.A.); (A.I.S.M.); (M.S.R.); (E.C.S.-F.)
| |
Collapse
|
17
|
3D-printed, bi-layer, biomimetic artificial periosteum for boosting bone regeneration. Biodes Manuf 2022. [DOI: 10.1007/s42242-022-00191-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
18
|
Duan K, Ling Z, Sun M, Zhi W, Zhang Y, Han S, Xu J, Wang H, Li J. A novel high mechanical and excellent hydrophilic electrospun polyurethane
‐silk‐
bioactive glass nanofiber film for rotator cuff injury repair. J Appl Polym Sci 2022. [DOI: 10.1002/app.51746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Kaikai Duan
- School of Chemistry and Chemical Engineering Shanghai University of Engineering Science Shanghai China
| | - Ziao Ling
- School of Life Science and Technology ShanghaiTech University Shanghai China
| | - Minghui Sun
- School of Life Science and Technology ShanghaiTech University Shanghai China
| | - Weiliang Zhi
- School of Life Science and Technology ShanghaiTech University Shanghai China
| | - Yifeng Zhang
- School of Life Science and Technology ShanghaiTech University Shanghai China
| | - Sheng Han
- School of Chemical and Environmental Engineering Shanghai Institute of Technology Shanghai China
| | - Jingli Xu
- School of Chemistry and Chemical Engineering Shanghai University of Engineering Science Shanghai China
| | - Hui Wang
- Green Chemical Engineering Technology Research and Development Center Shanghai Advanced Research Institute, Chinese Academy of Sciences Shanghai China
| | - Jiusheng Li
- Green Chemical Engineering Technology Research and Development Center Shanghai Advanced Research Institute, Chinese Academy of Sciences Shanghai China
| |
Collapse
|
19
|
A long-lasting guided bone regeneration membrane from sequentially functionalised photoactive atelocollagen. Acta Biomater 2022; 140:190-205. [PMID: 34896269 DOI: 10.1016/j.actbio.2021.12.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 11/30/2021] [Accepted: 12/03/2021] [Indexed: 02/08/2023]
Abstract
The fast degradation of collagen-based membranes in the biological environment remains a critical challenge, resulting in underperforming Guided Bone Regeneration (GBR) therapy leading to compromised clinical results. Photoactive atelocollagen (AC) systems functionalised with ethylenically unsaturated monomers, such as 4-vinylbenzyl chloride (4VBC), have been shown to generate mechanically competent materials for wound healing, inflammation control and drug delivery, whereby control of the molecular architecture of the AC network is key. Building on this platform, the sequential functionalisation with 4VBC and methacrylic anhydride (MA) was hypothesised to generate UV-cured AC hydrogels with reduced swelling ratio, increased proteolytic stability and barrier functionality for GBR therapy. The sequentially functionalised atelocollagen precursor (SAP) was characterised via TNBS and ninhydrin colourimetric assays, circular dichroism and UV-curing rheometry, which confirmed nearly complete consumption of collagen's primary amino groups, preserved triple helices and fast (< 180 s) gelation kinetics, respectively. Hydrogel's swelling ratio and compression modulus were adjusted depending on the aqueous environment used for UV-curing, whilst the sequential functionalisation of AC successfully generated hydrogels with superior proteolytic stability in vitro compared to both 4VBC-functionalised control and the commercial dental membrane Bio-Gide®. These in vitro results were confirmed in vivo via both subcutaneous implantation and a proof-of-concept study in a GBR calvarial model, indicating integrity of the hydrogel and barrier defect, as well as tissue formation following 1-month implantation in rats. STATEMENT OF SIGNIFICANCE: Collagen-based membranes remain a key component in Guided Bone Regeneration (GBR) therapy, but their properties, e.g. proteolytic stability and soft tissue barrier functionality, are still far from optimal. This is largely attributed to the complex molecular configuration of collagen, which makes chemical accessibility and structure-function relations challenging. Here, we fabricated a UV-cured hydrogel network of atelocollagen, whereby triple helices were sequentially functionalised with two distinct ethylenically unsaturated monomers. The effects of the sequential functionalisation and UV-curing on the macroscopic properties, degradation behaviour and GBR capability were investigated in vitro and in vivo. The results highlight the key role of the sequential functionalisation and provide important insights for the design of future, longer-lasting resorbable membranes for GBR therapy.
Collapse
|
20
|
Zhao B, Chen Q, Zhao L, Mao J, Huang W, Han X, Liu Y. Periodontal Ligament Stem Cell-Derived Small Extracellular Vesicles Embedded in Matrigel Enhance Bone Repair Through the Adenosine Receptor Signaling Pathway. Int J Nanomedicine 2022; 17:519-536. [PMID: 35140462 PMCID: PMC8819539 DOI: 10.2147/ijn.s346755] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/11/2022] [Indexed: 12/13/2022] Open
Abstract
Purpose Small extracellular vesicles (sEVs) are natural biocarriers for biomolecule transfer between cells and promising therapeutic strategies for bone defect repair. In this study, human periodontal ligament stem cell (PDLSC)-derived sEVs (P-EVs) were immobilized in Matrigel to establish a topical cell-free transplantation strategy for bone repair. Methods PDLSCs were cultured and P-EVs were isolated from the culture supernatant. In a rat bilateral calvarial defect model, P-EV/Matrigel was plugged into one defect and PBS/Matrigel was applied to the other. Bone repair in vivo was assessed by micro-computed tomography, histomorphometry, and immunohistochemical staining. In vitro, we investigated the effects of P-EVs on the proliferation and migration capabilities of bone marrow mesenchymal stem cells (BMMSCs) and explored the potential mechanism of action. Results The in vivo study showed that P-EV/Matrigel accelerated bone tissue repair by increasing cell infiltration when compared with the control. In vitro, P-EVs enhanced proliferation and migration of BMMSCs via increased phosphorylation of AKT and extracellular signal-regulated kinase 1/2 (ERK1/2). The role of P-EV-induced adenosine receptor signaling in AKT and ERK1/2 phosphorylation was a key mediator during enhanced BMMSC migration. Conclusion These results are the first to demonstrate that P-EVs accelerated the repair of bone defects, partially through promoting cell proliferation and migration. P-EV/Matrigel, which combines topical EV-implantation and extracellular matrix scaffolds, provides a new cell-free strategy for bone tissue repair.
Collapse
Affiliation(s)
- Bingjiao Zhao
- Department of Orthodontics, Shanghai Stomatological Hospital, Fudan University, Shanghai, 200001, People’s Republic of China
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, 200001, People’s Republic of China
| | - Qingqing Chen
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, 200001, People’s Republic of China
| | - Liru Zhao
- Department of Orthodontics, School of Stomatology, Hebei Medical University, Shijiazhuang, 050017, People’s Republic of China
| | - Jiaqi Mao
- Department of Orthodontics, School of Stomatology, Hebei Medical University, Shijiazhuang, 050017, People’s Republic of China
| | - Wei Huang
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, 200001, People’s Republic of China
| | - Xinxin Han
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, 200001, People’s Republic of China
| | - Yuehua Liu
- Department of Orthodontics, Shanghai Stomatological Hospital, Fudan University, Shanghai, 200001, People’s Republic of China
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, 200001, People’s Republic of China
- Correspondence: Yuehua Liu, Department of Orthodontics, Shanghai Stomatological Hospital, Fudan University, 356 East Beijing Road, Shanghai, 200001, People’s Republic of China, Tel +86-63298475, Fax +86-63614515, Email
| |
Collapse
|
21
|
He H, Zhang Y, Zhang W, Li Y, Zhu X, Wang P, Hu D. Porous Carbon Nanofibers Derived from Silk Fibroin through Electrospinning as N-Doped Metal-Free Catalysts for Hydrogen Evolution Reaction in Acidic and Alkaline Solutions. ACS APPLIED MATERIALS & INTERFACES 2022; 14:834-849. [PMID: 34962770 DOI: 10.1021/acsami.1c19334] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Water electrolysis is considered as one promising strategy for hydrogen production, and thus, preparing electrocatalysts of superior efficiency and low cost for a hydrogen evolution reaction (HER) in a wide pH range is of paramount importance. In this research, N-doped porous carbon nanofibers derived from silk fibroin by KCl chemical activation are successfully synthesized as the metal-free catalyst for the HER under both acidic and alkaline conditions. After chemical activation of KCl, hierarchical porous structures are formed. Besides, it is found that the concentration of KCl in the electrospun membrane will affect the maintenance of the fibrous morphology for the carbonized samples due to the destruction of β-sheets in silk fibroin induced by KCl. The specific surface area of the optimized sample, 4%-SPCNF, increased by nearly nine times compared with that without activation because of the hierarchical pores and large through pores between fibers. Meanwhile, the porosity increases from 59.87 to 80.28% due to the existence of through pores. Moreover, the 4%-SPCNF has remarkable stability and durability since the carbon substrate is resistant against the corrosion of the electrolyte. Our work provides insights into the design and engineering of silk fibroin-derived carbon nanofibers for metal-free catalysts of the HER under acidic and alkaline conditions.
Collapse
Affiliation(s)
- Hongzhe He
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Yan Zhang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Wenqin Zhang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Yuanyuan Li
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Xing Zhu
- Analysis and Testing Center, Soochow University, Suzhou 215123, China
| | - Ping Wang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Dongmei Hu
- Key Laboratory of Multifunctional and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| |
Collapse
|
22
|
Tang S, Wang W. Preparation and characterization of a novel composite membrane of natural silk fiber/nano-hydroxyapatite/chitosan for guided bone tissue regeneration. E-POLYMERS 2021. [DOI: 10.1515/epoly-2021-0068] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Abstract
Natural silk fiber (SF) was introduced into the chitosan/nano-hydroxyapatite (CS/n-HA) system to fabricate a novel guided bone tissue regeneration (GBR) membrane. The effect of different treatment methods (degummed, un-degummed, or dissolved SF) and different contents of SF on the properties of the CS/n-HA composite membrane was investigated. Results demonstrated that the degummed SF/CS/n-HA composite membrane with a weight ratio of 2:6:2 possessed the highest mechanical strength, where SF supported the composite membrane as a skeleton frame in the form of primeval state, while the un-degummed SF and dissolved SF had weaker reinforce effect due to the poor interface or poor interaction between SF and CS, and the dissolved SF/CS/n-HA composite membrane displayed the fastest degradation. However, the three SF could all improve the cell biocompatibility of the CS/n-HA composite membrane. Conclusively, the study revealed that degummed SF could in situ reinforce the CS/n-HA composite membrane with a simple and green processing method, which would provide an important guidance significant to develop a novel GBR membrane.
Collapse
Affiliation(s)
- Shuo Tang
- College of Chemistry and Chemical Engineering, Hunan Normal University , Changsha 410081 , China
| | - Weijia Wang
- College of Chemistry and Chemical Engineering, Hunan Normal University , Changsha 410081 , China
| |
Collapse
|
23
|
Zhang W, Zhang Y, Zhang A, Ling C, Sheng R, Li X, Yao Q, Chen J. Enzymatically crosslinked silk-nanosilicate reinforced hydrogel with dual-lineage bioactivity for osteochondral tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 127:112215. [PMID: 34225867 DOI: 10.1016/j.msec.2021.112215] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/27/2021] [Accepted: 05/25/2021] [Indexed: 01/28/2023]
Abstract
Osteochondral defects are characterized by damage to both articular cartilage and subchondral bone. Various tissue engineering strategies have been developed for osteochondral defect repair. However, strong mechanical properties and dual-lineage (osteogenesis and chondrogenesis) bioactivity still pose challenges for current biomaterial design. Silicate nanoclay has been reported to improve the mechanical properties and biofunctionality of polymer systems, but its effect on in vitro dual-lineage differentiation or in vivo osteochondral regeneration has not been extensively investigated before. Here, a novel enzymatically crosslinked silk fibroin (SF)-Laponite (LAP) nanocomposite hydrogel was fabricated and evaluated for osteochondral regeneration. The incorporation of a small amount of LAP (1% w/v) accelerated the gelation process of SF and greatly enhanced the mechanical properties and hydrophilicity of the hydrogel. In vitro investigations showed that the developed SF-LAP hydrogel was biocompatible and was able to induce osteogenic and chondrogenic differentiation of bone marrow-derived mesenchymal stem cells (BMSCs), validated by Alizarin red/Alcian blue staining, qPCR, and immunofluorescent staining. During an 8-week implantation into rabbit full-thickness osteochondral defects, the SF-LAP hydrogel promoted the simultaneous and enhanced regeneration of cartilage and subchondral bone. The repaired tissue in the chondral region was constituted mainly of hyaline cartilage with typical chondrocyte morphology and cartilaginous extracellular matrix (ECM). These findings suggested that the SF-LAP nanocomposite hydrogel developed in this study served as a promising biomaterial for osteochondral regeneration due to its mechanical reinforcement and dual-lineage bioactivity.
Collapse
Affiliation(s)
- Wei Zhang
- School of Medicine, Southeast University, 210009 Nanjing, China; Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, 210096 Nanjing, China; China Orthopedic Regenerative Medicine Group (CORMed), China.
| | - Yanan Zhang
- School of Medicine, Southeast University, 210009 Nanjing, China
| | - Aini Zhang
- School of Medicine, Southeast University, 210009 Nanjing, China
| | - Chen Ling
- Department of Orthopaedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, 210006 Nanjing, China
| | - Renwang Sheng
- School of Medicine, Southeast University, 210009 Nanjing, China
| | - Xiaolong Li
- School of Medicine, Southeast University, 210009 Nanjing, China
| | - Qingqiang Yao
- Department of Orthopaedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, 210006 Nanjing, China; China Orthopedic Regenerative Medicine Group (CORMed), China.
| | - Jialin Chen
- School of Medicine, Southeast University, 210009 Nanjing, China; Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, 210096 Nanjing, China; China Orthopedic Regenerative Medicine Group (CORMed), China.
| |
Collapse
|
24
|
He H, Zhang Y, Zhang W, Li Y, Wang Y, Wang P, Hu D. Dual Metal-Loaded Porous Carbon Materials Derived from Silk Fibroin as Bifunctional Electrocatalysts for Hydrogen Evolution Reaction and Oxygen Evolution Reaction. ACS APPLIED MATERIALS & INTERFACES 2021; 13:30678-30692. [PMID: 34167298 DOI: 10.1021/acsami.1c07058] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Developing electrocatalysts with high efficiency and long-term stability for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is significant to massively generate hydrogen energy by water splitting. In this work, cobalt and tungsten dual metal-loaded N-doped porous carbon electrocatalysts derived from silk fibroin were successfully prepared through facile carbonization and chemical activation by KCl and applied as efficient electrocatalysts for HER and OER. After chemical activation, the resulting catalysts present a unique hierarchical porous structure with micro-, meso-, and macropores, which is able to expose more implantation sites for catalytic active metals and will in turn promote the efficient diffusion of the electrolyte. The catalyst under the optimized condition (CoW@ACSF) has a specific area of 326.01 m2 g-1. The overpotential at a current density of 10 mA cm -2 of CoW@ACSF is 138.42 ± 10.39 mV toward HER and 492.05 ± 19.04 mV toward OER. Furthermore, the overpotential only increases 101.2 mV toward HER and 66.00 mV toward OER after the long-term stability test of chronopotentiometric test over 10 h, which confirms the excellent stability of the CoW@ACSF, owing to its unique carbon shell structure. This work gives an insight into the design and engineering of silk fibroin-derived carbon materials for electrocatalysis toward HER and OER.
Collapse
Affiliation(s)
- Hongzhe He
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Yan Zhang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Wenqin Zhang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Yuanyuan Li
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Ying Wang
- Analysis and Testing Center, Soochow University, Suzhou 215123, China
| | - Ping Wang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Dongmei Hu
- Key Laboratory of Multifunctional and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| |
Collapse
|
25
|
Zou S, Wang X, Fan S, Yao X, Zhang Y, Shao H. Electrospun regenerated Antheraea pernyi silk fibroin scaffolds with improved pore size, mechanical properties and cytocompatibility using mesh collectors. J Mater Chem B 2021; 9:5514-5527. [PMID: 34152355 DOI: 10.1039/d1tb00944c] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Generally, electrospun silk fibroin scaffolds collected by traditional plates present limited pore size and mechanical properties, which may restrict their biomedical applications. Herein, regenerated Antheraea pernyi silk fibroin (RASF) with excellent inherent cell adhesion property was chosen as a raw material and the conductive metal meshes were used as collectors to prepare modified RASF scaffolds by electrospinning from its aqueous solution. A traditional intact plate was used as a control. The morphology and mechanical properties of the obtained scaffolds were investigated. Schwann cells were further used to assess the cytocompatibility and cell migration ability of the typical scaffolds. Interestingly, compared with the traditional intact plate, the mesh collector with an appropriate gap size (circa 7 mm) could significantly improve the pore size, porosity and mechanical properties of the RASF scaffolds simultaneously. In addition, the scaffold collected under this condition (RASF-7mmG) showed higher cell viability, deeper cell permeation and faster cell migration of Schwann cells. Combined with the excellent inherent properties of ASF and the obviously enhanced scaffold cytocompatibility and mechanical properties, the RASF-7mmG scaffold is expected to be a candidate with great potential for biomedical applications.
Collapse
Affiliation(s)
- Shengzhi Zou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Materials Science and Engineering, Donghua University, Shanghai 201620, People's Republic of China.
| | - Xinru Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Materials Science and Engineering, Donghua University, Shanghai 201620, People's Republic of China. and Jiangsu Provincial Engineering Research Center for Biomedical Materials and Advanced Medical Devices, Faculty of Mechanical & Materials Engineering, Huaiyin Institute of Technology, Huai'an, 223003, People's Republic of China
| | - Suna Fan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Materials Science and Engineering, Donghua University, Shanghai 201620, People's Republic of China.
| | - Xiang Yao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Materials Science and Engineering, Donghua University, Shanghai 201620, People's Republic of China.
| | - Yaopeng Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Materials Science and Engineering, Donghua University, Shanghai 201620, People's Republic of China.
| | - Huili Shao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Materials Science and Engineering, Donghua University, Shanghai 201620, People's Republic of China.
| |
Collapse
|