1
|
Banigo AT, Nauta L, Zoetebier B, Karperien M. Hydrogel-Based Bioinks for Coaxial and Triaxial Bioprinting: A Review of Material Properties, Printing Techniques, and Applications. Polymers (Basel) 2025; 17:917. [PMID: 40219306 PMCID: PMC11991663 DOI: 10.3390/polym17070917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/20/2025] [Accepted: 03/25/2025] [Indexed: 04/14/2025] Open
Abstract
Three-dimensional bioprinting technology has emerged as a rapidly advancing multidisciplinary field with significant potential for tissue engineering applications. This technology enables the formation of complex tissues and organs by utilizing hydrogels, with or without cells, as scaffolds or structural supports. Among various bioprinting methods, advanced bioprinting using coaxial and triaxial nozzles stands out as a promising technique. Coaxial bioprinting technique simultaneously deposits two material streams through a coaxial nozzle, enabling controlled formation of an outer shell and inner core construct. In contrast, triaxial bioprinting utilizes three material streams namely the outer shell, inner shell and inner core to fabricate more complex constructs. Despite the growing interest in 3D bioprinting, the development of suitable cell-laden bioinks for creating complex tissues remains unclear. To address this gap, a systematic review was conducted using the preferred reporting items for systematic reviews and meta-analyses (PRISMA) flowchart, collecting 1621 papers from various databases, including Web of Science, PUBMED, SCOPUS, and Springer Link. After careful selection, 85 research articles focusing on coaxial and triaxial bioprinting were included in the review. Specifically, 77 research articles concentrated on coaxial bioprinting and 11 focused on triaxial bioprinting, with 3 covering both techniques. The search, conducted between 1 April and 30 September 2023, had no restrictions on publication date, and no meta-analyses were carried out due to the heterogeneity of studies. The primary objective of this review is to assess and identify the most commonly occurring cell-laden bioinks critical for successful advancements in bioprinting technologies. Specifically, the review focuses on delineating the commonly explored bioinks utilized in coaxial and triaxial bioprinting approaches. It focuses on evaluating the inherent merits of these bioinks, systematically comparing them while emphasizing their classifications, essential attributes, properties, and potential limitations within the domain of tissue engineering. Additionally, the review considers the applications of these bioinks, offering comprehensive insights into their efficacy and utility in the field of bioprinting technology. Overall, this review provides a comprehensive overview of some conditions of the relevant hydrogel bioinks used for coaxial and triaxial bioprinting of tissue constructs. Future research directions aimed at advancing the field are also briefly discussed.
Collapse
Affiliation(s)
| | | | | | - Marcel Karperien
- Department of Developmental BioEngineering, Faculty of Science and Technology and TechMed Centre, University of Twente, Drienerlolaan 5, 7522 NB Enschede, The Netherlands; (A.T.B.); (L.N.); (B.Z.)
| |
Collapse
|
2
|
Kyser AJ, Mahmoud MY, Fotouh B, Patel R, Armstrong C, Aagard M, Rush I, Lewis W, Lewis A, Frieboes HB. Sustained dual delivery of metronidazole and viable Lactobacillus crispatus from 3D-printed silicone shells. BIOMATERIALS ADVANCES 2024; 165:214005. [PMID: 39208497 PMCID: PMC11443601 DOI: 10.1016/j.bioadv.2024.214005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/01/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
Bacterial vaginosis (BV) is an imbalance of the vaginal microbiome in which there are limited lactobacilli and an overgrowth of anaerobic and fastidious bacteria such as Gardnerella. The propensity for BV recurrence is high, and therapies involving multiple treatment modalities are emerging to meet this need. However, current treatments requiring frequent therapeutic administration are challenging for patients and impact user compliance. Three-dimensional (3D)-printing offers a novel alternative to customize platforms to facilitate sustained therapeutic delivery to the vaginal tract. This study designed a novel vehicle intended for dual sustained delivery of both antibiotic and probiotic. 3D-printed compartmental scaffolds consisting of an antibiotic-containing silicone shell and a core containing probiotic Lactobacillus were developed with multiple formulations including biomaterials sodium alginate (SA), polyethylene glycol (PEG), polyvinyl alcohol (PVA), polyethylene oxide (PEO), and kappa-carrageenan (KC). The vehicles were loaded with 50 μg of metronidazole/mg polymer and 5 × 107 CFU of L. crispatus/mg scaffold. Metronidazole-containing shells exhibited cumulative drug release of 324.2 ± 31.2 μg/mL after 14 days. Multiple polymeric formulations for the probiotic core demonstrated cumulative L. crispatus recovery of >5 × 107 CFU/mg scaffold during this timeframe. L. crispatus-loaded polymeric formulations exhibited ≥2 log CFU/mL reduction in free Gardnerella in the presence of VK2/E6E7 vaginal epithelial cells. As a first step towards the goal of facilitating patient compliance, this study demonstrates in vitro effect of a novel 3D-printed dual antibiotic and probiotic delivery platform to target BV.
Collapse
Affiliation(s)
- Anthony J Kyser
- Department of Bioengineering, University of Louisville, Louisville, KY, USA
| | - Mohamed Y Mahmoud
- Department of Bioengineering, University of Louisville, Louisville, KY, USA; Department of Toxicology and Forensic Medicine, Faculty of Veterinary Medicine, Cairo University, Egypt
| | - Bassam Fotouh
- Department of Bioengineering, University of Louisville, Louisville, KY, USA
| | - Rudra Patel
- Department of Bioengineering, University of Louisville, Louisville, KY, USA
| | - Christy Armstrong
- Glycobiology Research and Training Center, University of California San Diego, La Jolla, CA, USA; Department of Obstetrics, Gynecology and Reproductive Sciences, University of California San Diego, La Jolla, CA, USA
| | - Marnie Aagard
- Glycobiology Research and Training Center, University of California San Diego, La Jolla, CA, USA; Department of Obstetrics, Gynecology and Reproductive Sciences, University of California San Diego, La Jolla, CA, USA
| | - Isaiah Rush
- Department of Chemical Engineering, University of Dayton, Dayton, OH, USA
| | - Warren Lewis
- Glycobiology Research and Training Center, University of California San Diego, La Jolla, CA, USA; Department of Obstetrics, Gynecology and Reproductive Sciences, University of California San Diego, La Jolla, CA, USA
| | - Amanda Lewis
- Glycobiology Research and Training Center, University of California San Diego, La Jolla, CA, USA; Department of Obstetrics, Gynecology and Reproductive Sciences, University of California San Diego, La Jolla, CA, USA
| | - Hermann B Frieboes
- Department of Bioengineering, University of Louisville, Louisville, KY, USA; Center for Predictive Medicine, University of Louisville, Louisville, KY, USA; Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, USA; UofL Health - Brown Cancer Center, University of Louisville, KY, USA.
| |
Collapse
|
3
|
Shi B, Zhu T, Luo Y, Zhang X, Yao J, Cao X, Zhu Y, Miao H, Li L, Song Q, Zhang H, Xu L. Three-dimensional bioprinted cell-adaptive hydrogel with anisotropic micropores for enhancing skin wound healing. Int J Biol Macromol 2024; 280:136106. [PMID: 39343255 DOI: 10.1016/j.ijbiomac.2024.136106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/26/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024]
Abstract
Engineered matrices with aligned microarchitectures are pivotal in regulating the fibroblast-to-myofibroblast transition, a critical process for wound healing and scar reduction. However, developing a three-dimensional (3D) aligned matrix capable of effectively controlling this transition remains challenging. Herein, we developed a cell-adaptive hydrogel with highly oriented microporous structures, fabricated through bioprinting of thermo/ion/photo-crosslinked gelatin methacrylate/sodium alginate (GelMA/SA) incorporating shear-oriented polyethylene oxide (PEO) filler. The synergistic interactions among GelMA, PEO, and SA yield a homogeneous mixture conducive to the printing of biomimetic 3D constructs with anisotropic micropores. These anisotropic micropores, along with the biochemical cues provided by the GelMA/PEO/SA scaffolds, enhance the oriented spreading and organization of fibroblasts. The resultant spread and aligned cellular morphologies promote the transition of fibroblasts into myofibroblasts. By co-culturing human keratinocytes on the engineered dermal layer, we successfully create a bilayer skin construct, wherein the keratinocytes establish tight junctions accompanied by elevated expression of cytokeratin-14, while the fibroblasts display a highly spread morphology with increased fibronectin expression. The printed hydrogels accelerate full-thickness wound closure by establishing a bioactive microenvironment that mitigate inflammation and stimulate angiogenesis, myofibroblast transition, and extracellular matrix remodeling. This anisotropic hydrogel demonstrates substantial promise for applications in skin tissue engineering.
Collapse
Affiliation(s)
- Baozhang Shi
- Ningbo Haishu People's Hospital, Ningbo, Zhejiang 315000, China
| | - Tong Zhu
- Research Institute of Smart Medicine and Biological Engineering, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China; The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315010, China
| | - Yang Luo
- Research Institute of Smart Medicine and Biological Engineering, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Xiang Zhang
- Research Institute of Smart Medicine and Biological Engineering, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China; The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315010, China
| | - Jie Yao
- The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315010, China
| | - Xu Cao
- Research Institute of Smart Medicine and Biological Engineering, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China; The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315010, China
| | - Yingchun Zhu
- The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315010, China
| | - Hongyue Miao
- Ningbo Haishu People's Hospital, Ningbo, Zhejiang 315000, China
| | - Liangliang Li
- Ningbo Haishu People's Hospital, Ningbo, Zhejiang 315000, China
| | - Qin Song
- Zhejiang Pharmaceutical University, Ningbo, Zhejiang 315100, China.
| | - Hua Zhang
- Research Institute of Smart Medicine and Biological Engineering, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China; State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200438, China.
| | - Liping Xu
- Ningbo Haishu People's Hospital, Ningbo, Zhejiang 315000, China; The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315010, China.
| |
Collapse
|
4
|
Li N, He J. Hydrogel-based therapeutic strategies for spinal cord injury repair: Recent advances and future prospects. Int J Biol Macromol 2024; 277:134591. [PMID: 39127289 DOI: 10.1016/j.ijbiomac.2024.134591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/06/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
Spinal cord injury (SCI) is a debilitating condition that can result in significant functional impairment and loss of quality of life. There is a growing interest in developing new therapies for SCI, and hydrogel-based multimodal therapeutic strategies have emerged as a promising approach. They offer several advantages for SCI repair, including biocompatibility, tunable mechanical properties, low immunogenicity, and the ability to deliver therapeutic agents. This article provides an overview of the recent advances in hydrogel-based therapy strategies for SCI repair, particularly within the past three years. We summarize the SCI hydrogels with varied characteristics such as phase-change hydrogels, self-healing hydrogel, oriented fibers hydrogel, and self-assembled microspheres hydrogel, as well as different functional hydrogels such as conductive hydrogels, stimuli-responsive hydrogels, adhesive hydrogel, antioxidant hydrogel, sustained-release hydrogel, etc. The composition, preparation, and therapeutic effect of these hydrogels are briefly discussed and comprehensively evaluated. In the end, the future development of hydrogels in SCI repair is prospected to inspire more researchers to invest in this promising field.
Collapse
Affiliation(s)
- Na Li
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao 266113, China
| | - Jintao He
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao 266113, China.
| |
Collapse
|
5
|
Shao L, Jiang J, Yuan C, Zhang X, Gu L, Wang X. Omnidirectional anisotropic embedded 3D bioprinting. Mater Today Bio 2024; 27:101160. [PMID: 39155942 PMCID: PMC11326905 DOI: 10.1016/j.mtbio.2024.101160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/08/2024] [Accepted: 07/16/2024] [Indexed: 08/20/2024] Open
Abstract
Anisotropic microstructures resulting from a well-ordered arrangement of filamentous extracellular matrix (ECM) components or cells can be found throughout the human body, including skeletal muscle, corneal stroma, and meniscus, which play a crucial role in carrying out specialized physiological functions. At present, due to the isotropic characteristics of conventional hydrogels, the construction of freeform cell-laden anisotropic structures with high-bioactive hydrogels is still a great challenge. Here, we proposed a method for direct embedded 3D cell-printing of freeform anisotropic structure with shear-oriented bioink (GelMA/PEO). This study focuses on the establishment of an anisotropic embedded 3D bioprinting system, which effectively utilizes the shear stress generated during the extrusion process to create cells encapsulating tissues with distinct anisotropy. In conjunction with the water-solubility of PEO and the in-situ encapsulation effect provided by the carrageenan support bath, high-precise cell-laden bioprinting of intricate anisotropic and porous bionic artificial tissues can be effectively implemented in one-step. Additionally, anisotropic permeable blood vessel has been taken as a representation to validate the effectiveness of the shear-oriented bioink system in fabricating intricate structures with distinct directional characteristics. Lastly, the successful preparation of muscle patches with anisotropic properties and their guiding role for cell cytoskeleton extension have provided a significant research foundation for the application of the anisotropic embedded 3D bioprinting system in the ex-vivo production and in-vivo application of anisotropic artificial tissues.
Collapse
Affiliation(s)
- Lei Shao
- Research Institute for Medical and Biological Engineering, Ningbo University, Ningbo, 315211, Zhejiang, China
- State Key Laboratory of Fluid Power and Mechatronic Systems, College of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, Zhejiang, China
- Health Science Center, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Jinhong Jiang
- Research Institute for Medical and Biological Engineering, Ningbo University, Ningbo, 315211, Zhejiang, China
- Health Science Center, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Chenhui Yuan
- Research Institute for Medical and Biological Engineering, Ningbo University, Ningbo, 315211, Zhejiang, China
- School of Materials Science & Chemical Engineering, Ningbo University, Ningbo, 315211, China
| | - Xinyu Zhang
- Research Institute for Medical and Biological Engineering, Ningbo University, Ningbo, 315211, Zhejiang, China
- Health Science Center, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Lin Gu
- Research Institute for Medical and Biological Engineering, Ningbo University, Ningbo, 315211, Zhejiang, China
- Health Science Center, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Xueping Wang
- Research Institute for Medical and Biological Engineering, Ningbo University, Ningbo, 315211, Zhejiang, China
- State Key Laboratory of Fluid Power and Mechatronic Systems, College of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, Zhejiang, China
| |
Collapse
|
6
|
Yuan C, Jiang J, Zhang X, Gu L, Wang X, Shao L. Direct 3D printing of freeform anisotropic bioactive structure based on shear-oriented ink system. Biofabrication 2024; 16:045011. [PMID: 39008993 DOI: 10.1088/1758-5090/ad6375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/15/2024] [Indexed: 07/17/2024]
Abstract
Various anisotropic tissue structures exist in organisms, including muscle tissue, skin tissue, and nerve tissue. Replicating anisotropic tissue structuresin vitrohas posed a significant challenge. Three-dimensional (3D) printing technology is often used to fabricate biomimetic structures due to its advantages in manufacturing principle. However, direct 3D printing of freeform anisotropic bioactive structures has not been reported. To tackle this challenge, we developed a ternary F/G/P ink system that integrates the printability of Pluronic F127 (F), the robust bioactivity and photocrosslinking properties of gelatin methacryloyl (G), and the shear-induced alignment functionality of high-molecular-weight polyethylene glycol (P). And through this strategic ternary system combination, freeform anisotropic tissue structures can be 3D printed directly. Moreover, these anisotropic structures exhibit excellent bioactivity, and promote orientational growth of different cells. This advancement holds promise for the repair and replacement of anisotropic tissues within the human body.
Collapse
Affiliation(s)
- Chenhui Yuan
- Research Institute for Medical and Biological Engineering, Ningbo University, Ningbo, Zhejiang 315211, People's Republic of China
- School of Materials Science & Chemical Engineering, Ningbo University, Ningbo 315211, People's Republic of China
| | - Jinhong Jiang
- Research Institute for Medical and Biological Engineering, Ningbo University, Ningbo, Zhejiang 315211, People's Republic of China
- Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, People's Republic of China
| | - Xinyu Zhang
- Research Institute for Medical and Biological Engineering, Ningbo University, Ningbo, Zhejiang 315211, People's Republic of China
- Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, People's Republic of China
| | - Lin Gu
- Research Institute for Medical and Biological Engineering, Ningbo University, Ningbo, Zhejiang 315211, People's Republic of China
- Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, People's Republic of China
| | - Xueping Wang
- Research Institute for Medical and Biological Engineering, Ningbo University, Ningbo, Zhejiang 315211, People's Republic of China
- State Key Laboratory of Fluid Power and Mechatronic Systems, College of Mechanical Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, People's Republic of China
| | - Lei Shao
- Research Institute for Medical and Biological Engineering, Ningbo University, Ningbo, Zhejiang 315211, People's Republic of China
- State Key Laboratory of Fluid Power and Mechatronic Systems, College of Mechanical Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, People's Republic of China
- Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, People's Republic of China
| |
Collapse
|
7
|
Zhang H, Luo Y, Hu Z, Chen M, Chen S, Yao Y, Yao J, Shao X, Wu K, Zhu Y, Fu J. Cation-crosslinked κ-carrageenan sub-microgel medium for high-quality embedded bioprinting. Biofabrication 2024; 16:025009. [PMID: 38198708 DOI: 10.1088/1758-5090/ad1cf3] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 01/10/2024] [Indexed: 01/12/2024]
Abstract
Three-dimensional (3D) bioprinting embedded within a microgel bath has emerged as a promising strategy for creating intricate biomimetic scaffolds. However, it remains a great challenge to construct tissue-scale structures with high resolution by using embedded 3D bioprinting due to the large particle size and polydispersity of the microgel medium, as well as its limited cytocompatibility. To address these issues, novel uniform sub-microgels of cell-friendly cationic-crosslinked kappa-carrageenan (κ-Car) are developed through an easy-to-operate mechanical grinding strategy. Theseκ-Car sub-microgels maintain a uniform submicron size of around 642 nm and display a rapid jamming-unjamming transition within 5 s, along with excellent shear-thinning and self-healing properties, which are critical for the high resolution and fidelity in the construction of tissue architecture via embedded 3D bioprinting. Utilizing this new sub-microgel medium, various intricate 3D tissue and organ structures, including the heart, lungs, trachea, branched vasculature, kidney, auricle, nose, and liver, are successfully fabricated with delicate fine structures and high shape fidelity. Moreover, the bone marrow mesenchymal stem cells encapsulated within the printed constructs exhibit remarkable viability exceeding 92.1% and robust growth. Thisκ-Car sub-microgel medium offers an innovative avenue for achieving high-quality embedded bioprinting, facilitating the fabrication of functional biological constructs with biomimetic structural organizations.
Collapse
Affiliation(s)
- Hua Zhang
- Research Institute of Smart Medicine and Biological Engineering, Ningbo University, Ningbo, Zhejiang 315211, People's Republic of China
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, Zhejiang 310027, People's Republic of China
- Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, People's Republic of China
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315010, People's Republic of China
| | - Yang Luo
- Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, People's Republic of China
- The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315010, People's Republic of China
| | - Zeming Hu
- Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, People's Republic of China
| | - Mengxi Chen
- Research Institute of Smart Medicine and Biological Engineering, Ningbo University, Ningbo, Zhejiang 315211, People's Republic of China
- Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, People's Republic of China
| | - Shang Chen
- Research Institute of Smart Medicine and Biological Engineering, Ningbo University, Ningbo, Zhejiang 315211, People's Republic of China
- Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, People's Republic of China
| | - Yudong Yao
- Research Institute of Smart Medicine and Biological Engineering, Ningbo University, Ningbo, Zhejiang 315211, People's Republic of China
- Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, People's Republic of China
| | - Jie Yao
- The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315010, People's Republic of China
| | - Xiaoqi Shao
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315010, People's Republic of China
- The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315010, People's Republic of China
| | - Kerong Wu
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315010, People's Republic of China
- The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315010, People's Republic of China
| | - Yabin Zhu
- Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, People's Republic of China
| | - Jun Fu
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510275, People's Republic of China
| |
Collapse
|
8
|
Wang X, Jiang J, Yuan C, Gu L, Zhang X, Yao Y, Shao L. 3D bioprinting of GelMA with enhanced extrusion printability through coupling sacrificial carrageenan. Biomater Sci 2024; 12:738-747. [PMID: 38105707 DOI: 10.1039/d3bm01489d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
The potential of 3D bioprinting in tissue engineering and regenerative medicine is enormous, but its implementation is hindered by the reliance on high-strength materials, which restricts the use of low-viscosity, biocompatible materials. Therefore, a major challenge for incorporating 3D bioprinting into tissue engineering is to develop a novel bioprinting platform that can reversibly provide high biological activity materials with a structural support. This study presents a room temperature printing system based on GelMA combined with carrageenan to address this challenge. By leveraging the wide temperature stability range and lubricating properties of carrageenan the room temperature stability of GelMA could be enhanced, as well as creating a solid ink to improve the performance of solid GelMA. Additionally, by utilizing the solubility of carrageenan at 37 °C, it becomes possible to prepare a porous GelMA structure while mimicking the unique extracellular matrix properties of osteocytes through residual carrageenan content and amplifying BMSCs' osteogenesis potential to some extent. Overall, this study provides an innovative technical platform for incorporating a low-viscosity ink into 3D bioprinting and resolves the long-standing contradiction between material printing performance and biocompatibility in bioprinting technology.
Collapse
Affiliation(s)
- Xueping Wang
- Research Institute for Medical and Biological Engineering, Ningbo University, Ningbo 315211, Zhejiang, China.
- Health Science Center, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Jinhong Jiang
- Research Institute for Medical and Biological Engineering, Ningbo University, Ningbo 315211, Zhejiang, China.
- Health Science Center, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Chenhui Yuan
- Research Institute for Medical and Biological Engineering, Ningbo University, Ningbo 315211, Zhejiang, China.
- Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Lin Gu
- Research Institute for Medical and Biological Engineering, Ningbo University, Ningbo 315211, Zhejiang, China.
- Health Science Center, Ningbo University, Ningbo 315211, Zhejiang, China
| | - XinYu Zhang
- Research Institute for Medical and Biological Engineering, Ningbo University, Ningbo 315211, Zhejiang, China.
- Health Science Center, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Yudong Yao
- Research Institute for Medical and Biological Engineering, Ningbo University, Ningbo 315211, Zhejiang, China.
| | - Lei Shao
- Research Institute for Medical and Biological Engineering, Ningbo University, Ningbo 315211, Zhejiang, China.
- State Key Laboratory of Fluid Power and Mechatronic Systems, College of Mechanical Engineering, Zhejiang University, Hangzhou 310027, Zhejiang, China
- Health Science Center, Ningbo University, Ningbo 315211, Zhejiang, China
| |
Collapse
|
9
|
Ben Messaoud G, Stefanopoulou E, Wachendörfer M, Aveic S, Fischer H, Richtering W. Structuring gelatin methacryloyl - dextran hydrogels and microgels under shear. SOFT MATTER 2024; 20:773-787. [PMID: 38165831 DOI: 10.1039/d3sm01365k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Gelatin methacryloyl (GelMA) is a widely used semi-synthetic polymer for a variety of bioapplications. However, the development of versatile GelMA hydrogels requires tuning of their microstructure. Herein, we report the possibility of preparing hydrogels with various microstructures under shear from an aqueous two-phase system (ATPS) consisting of GelMA and dextran. The influence of an applied preshear on dextran/GelMA droplets and bicontinuous systems is investigated by rheology that allows the application of a constant shear and is immediately followed by in situ UV-curing of the GelMA-rich phase. The microstructure of the resulting hydrogels is examined by confocal laser scanning microscopy (CLSM). The results show that the GelMA string phase and GelMA hydrogels with aligned bands can be formed depending on the concentration of dextran and the applied preshear. The influence of the pH of the ATPS is investigated and demonstrates the formation of multiple emulsions upon decreasing the charge density of GelMA. The preshearing of multiple emulsions, following gelation, leads to the formation of porous GelMA microgels. The diversity of the formed structures highlights the application potential of preshearing ATPS in the development of functional soft materials.
Collapse
Affiliation(s)
- Ghazi Ben Messaoud
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52074 Aachen, Germany.
- DWI-Leibniz Institute for Interactive Materials, Forckenbeckstrasse 50, 52074 Aachen, Germany
| | - Evdokia Stefanopoulou
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52074 Aachen, Germany.
- DWI-Leibniz Institute for Interactive Materials, Forckenbeckstrasse 50, 52074 Aachen, Germany
| | - Mattis Wachendörfer
- Department of Dental Materials and Biomaterials Research, RWTH Aachen University Hospital, 52074 Aachen, Germany
| | - Sanja Aveic
- Department of Dental Materials and Biomaterials Research, RWTH Aachen University Hospital, 52074 Aachen, Germany
| | - Horst Fischer
- Department of Dental Materials and Biomaterials Research, RWTH Aachen University Hospital, 52074 Aachen, Germany
| | - Walter Richtering
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52074 Aachen, Germany.
- DWI-Leibniz Institute for Interactive Materials, Forckenbeckstrasse 50, 52074 Aachen, Germany
| |
Collapse
|
10
|
Zhang Y, Chen H, Li J. Recent advances on gelatin methacrylate hydrogels with controlled microstructures for tissue engineering. Int J Biol Macromol 2022; 221:91-107. [DOI: 10.1016/j.ijbiomac.2022.08.171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/25/2022] [Accepted: 08/25/2022] [Indexed: 12/12/2022]
|
11
|
Shao L, Pan B, Hou R, Jin Y, Yao Y. User-friendly microfluidic manufacturing of hydrogel microspheres with sharp needle. Biofabrication 2022; 14. [PMID: 35193129 DOI: 10.1088/1758-5090/ac57a5] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 02/22/2022] [Indexed: 11/11/2022]
Abstract
Hydrogel microspheres are flexible microstructures with many fascinating functions, such as 3D cell culture, injection therapy, drug delivery, organoids and microtissues construction. The traditional methods of manufacturing hydrogel microspheres more or less have some shortcomings, such as atomization/emulsion method with uneven sizes; piezoelectric-/thermal-/electric-assisted inkjet with high cell damage and unknown cell growth effects; microfluidic manufacturing with sophisticated microdevices etc., which lead to poor user experiences. Here, we designed a user-friendly microfluidic device to generate hydrogel microspheres with sharp needles that can be replaced at will. Specifically, a commercial tapered opening sharp needle was inserted into a transparent silicone tube with the tapered opening facing the upper wall of the silicone tube. Then, GelMA solution and paraffin oil were pumped into the sharp needle and the silicone tube respectively. GelMA microdroplets were formed under the shear stress of the silicone tube and the oil phase, and after being photo-crosslinked in situ, GelMA microspheres with uniform and adjustable sizes can be generated. Due to the simplicity of our original device, heterogeneous microspheres such as Janus, core-shell and hollow microspheres can be easily manufactured by simple modification of the device. In addition, we demonstrated the strong flexibility and maneuverability of the microspheres through macroscopic free assembly. Finally, we prepared different cell-laden GelMA microspheres, and the cells showed stretching behavior similar to that in vivo after a short period culture, which indicated the high bioactivity of GelMA microspheres. Meanwhile, we cultured the Janus cell-laden GelMA microspheres and the assembly of cell-laden GelMA microspheres, where the cells stretched and interacted, demonstrating the potential of GelMA microspheres for co-culture and fabrication of large-scale tissue constructs. In view of the above results, our user-friendly microfluidic manufacturing method of hydrogel microspheres with sharp needles will provide great convenience to relevant researchers.
Collapse
Affiliation(s)
- Lei Shao
- Ningbo University, Ningbo University, 818 Fenghua Road, Jiangbei District, Ningbo, Zhejiang Province, China, Ningbo City, Zhejiang Province, 315211, CHINA
| | - Bingchu Pan
- Ningbo University, Ningbo University, 818 Fenghua Road, Jiangbei District, Ningbo, Zhejiang Province, China, Ningbo City, Zhejiang Province, 315211, CHINA
| | - Ruixia Hou
- Ningbo University, Ningbo University, 818 Fenghua Road, Jiangbei District, Ningbo, Zhejiang Province, China, Ningbo City, Zhejiang Province, 315211, CHINA
| | - Yuan Jin
- School of mechnical engineering and mechanics, Ningbo University, Ningbo University, 818 Fenghua Road, Jiangbei District, Ningbo, Zhejiang Province, China, Ningbo City, Zhejiang Province, 315211, CHINA
| | - Yudong Yao
- Ningbo University, Ningbo University, 818 Fenghua Road, Jiangbei District, Ningbo, Zhejiang Province, China, Ningbo City, Zhejiang Province, 315211, CHINA
| |
Collapse
|
12
|
Volpi M, Paradiso A, Costantini M, Świȩszkowski W. Hydrogel-Based Fiber Biofabrication Techniques for Skeletal Muscle Tissue Engineering. ACS Biomater Sci Eng 2022; 8:379-405. [PMID: 35084836 PMCID: PMC8848287 DOI: 10.1021/acsbiomaterials.1c01145] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 01/14/2022] [Indexed: 12/11/2022]
Abstract
The functional capabilities of skeletal muscle are strongly correlated with its well-arranged microstructure, consisting of parallelly aligned myotubes. In case of extensive muscle loss, the endogenous regenerative capacity is hindered by scar tissue formation, which compromises the native muscle structure, ultimately leading to severe functional impairment. To address such an issue, skeletal muscle tissue engineering (SMTE) attempts to fabricate in vitro bioartificial muscle tissue constructs to assist and accelerate the regeneration process. Due to its dynamic nature, SMTE strategies must employ suitable biomaterials (combined with muscle progenitors) and proper 3D architectures. In light of this, 3D fiber-based strategies are gaining increasing interest for the generation of hydrogel microfibers as advanced skeletal muscle constructs. Indeed, hydrogels possess exceptional biomimetic properties, while the fiber-shaped morphology allows for the creation of geometrical cues to guarantee proper myoblast alignment. In this review, we summarize commonly used hydrogels in SMTE and their main properties, and we discuss the first efforts to engineer hydrogels to guide myoblast anisotropic orientation. Then, we focus on presenting the main hydrogel fiber-based techniques for SMTE, including molding, electrospinning, 3D bioprinting, extrusion, and microfluidic spinning. Furthermore, we describe the effect of external stimulation (i.e., mechanical and electrical) on such constructs and the application of hydrogel fiber-based methods on recapitulating complex skeletal muscle tissue interfaces. Finally, we discuss the future developments in the application of hydrogel microfibers for SMTE.
Collapse
Affiliation(s)
- Marina Volpi
- Faculty
of Materials Science and Engineering, Warsaw
University of Technology, Warsaw 02-507, Poland
| | - Alessia Paradiso
- Faculty
of Materials Science and Engineering, Warsaw
University of Technology, Warsaw 02-507, Poland
| | - Marco Costantini
- Institute
of Physical Chemistry, Polish Academy of
Sciences, Warsaw 01-224, Poland
| | - Wojciech Świȩszkowski
- Faculty
of Materials Science and Engineering, Warsaw
University of Technology, Warsaw 02-507, Poland
| |
Collapse
|
13
|
Ouyang L. Pushing the rheological and mechanical boundaries of extrusion-based 3D bioprinting. Trends Biotechnol 2022; 40:891-902. [DOI: 10.1016/j.tibtech.2022.01.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/30/2021] [Accepted: 01/04/2022] [Indexed: 12/13/2022]
|