1
|
Liu H, Ban C, Fang C, Xia R, Qian J, Miao J, Cao M. Mutual boost between free radicals and photothermal effect for synergistic photothermal/thermodynamic antibacterial therapy. Colloids Surf B Biointerfaces 2025; 253:114742. [PMID: 40318395 DOI: 10.1016/j.colsurfb.2025.114742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 04/15/2025] [Accepted: 04/24/2025] [Indexed: 05/07/2025]
Abstract
Combined treatment is a promising strategy in antibacterial treatment, which could alleviate the shortcomings of monotherapy and achieve better therapeutic effects. In this work, mutual boost between free radical generation and photothermal effect for synergistic photothermal/thermodynamic antibacterial therapy was reported. Mesoporous silica nanoparticles were used as drug carrier for loading dibenzoyl peroxide (BPO). The pores of mesoporous silica nanoparticles were blocked by GSH-responsive polyethylenimine (PEI) layer. 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) was then adsorbed via electrostatic force to prepare the nanosystem. At the site of bacterial infection, the BPO was released and decomposed to aryl radicals. The aryl radicals oxidized ABTS to photothermal reagent of ABTS·+, which produced photothermal effect to enhance the antibacterial effect under 808 nm laser irradiation. Moreover, the photothermal effect accelerated the decomposition of BPO to boost the levels of free radicals as a return, further improved the antibacterial efficiency. The in vitro experiments indicated that the photothermal/thermodynamic therapeutic nanosystem have a synergistic antibacterial effect efficiency (˃95 %) for both E. coli and S. aureus, as well as biofilm disruption and inhibition. This mutual boost between free radical ion generation and photothermal effect provides a new and feasible strategy for the synergistic antibacterial therapy.
Collapse
Affiliation(s)
- Haimeng Liu
- Key Laboratory of Environment-Friendly Polymeric Materials of Anhui Province, School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, PR China
| | - Chengyang Ban
- Key Laboratory of Environment-Friendly Polymeric Materials of Anhui Province, School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, PR China
| | - Chen Fang
- Key Laboratory of Environment-Friendly Polymeric Materials of Anhui Province, School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, PR China
| | - Ru Xia
- Key Laboratory of Environment-Friendly Polymeric Materials of Anhui Province, School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, PR China
| | - Jiasheng Qian
- Key Laboratory of Environment-Friendly Polymeric Materials of Anhui Province, School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, PR China
| | - Jibin Miao
- Key Laboratory of Environment-Friendly Polymeric Materials of Anhui Province, School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, PR China.
| | - Ming Cao
- Key Laboratory of Environment-Friendly Polymeric Materials of Anhui Province, School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, PR China.
| |
Collapse
|
2
|
Hu L, Dong G, Li X, Li S, Lv Y. A free-radical initiator-based carrier-free smart nanobomb for targeted synergistic therapy of hypoxic breast cancer. RSC Adv 2025; 15:3098-3109. [PMID: 39885853 PMCID: PMC11780488 DOI: 10.1039/d4ra07841a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 01/15/2025] [Indexed: 02/01/2025] Open
Abstract
Thermodynamic therapy (TDT) is a promising alternative to photodynamic therapy (PDT) by absorbing heat through thermosensitive agents (TSAs) to generate oxygen-irrelevant highly toxic free radicals. Therefore, TDT can be a perfect partner for photothermal therapy (PTT) to achieve efficient synergistic treatment of anoxic tumors using a single laser, greatly simplifying the treatment process and overcoming hypoxia limitations. However, the issues of how to improve the stability and delivery efficiency of TSAs still need to be addressed urgently. Herein, polyethylene glycol-folic acid (PEG-FA)-modified and indocyanine green (ICG)-encapsulated nanoscale Zn2+ and 2'-azobis[2-(2-imidazolin-2-yl)propane] dihydrochloride (AIPH) coordinated nanomaterials (IANM-PEG-FA) were developed as a nanobomb for targeted photothermal/thermodynamic/ion-interference cancer therapy. Co-triggered by a single 808 nm laser and mildly acidic tumor microenvironment, the photothermal agent of ICG would induce rapid decomposition of AIPH to generate alkyl radicals and release ICG and Zn2+, resulting in effectively cascaded oxygen-independent photothermal/thermodynamic therapy and co-enhanced synergistic intracellular overload of Zn2+ interference. Additionally, PEG-FA enabled favorable stability and active targeting ability to achieve low side effects and efficient tumor enrichment for good photothermal/near-infrared fluorescence imaging-guided precise tumor therapy. Significantly, the IANM-PEG-FA nanosystem exhibited remarkable anticancer effects even at low doses in hypoxic breast cancer, achieving 80% tumor elimination. Our study might provide a highly effective strategy for developing a multifunctional carrier-free nanosystem with high performance in hypoxic cancer to meet the requirements in the clinic.
Collapse
Affiliation(s)
- Liefeng Hu
- School of Materials Science and Engineering, Hubei Key Laboratory for New Textile Materials and Applications, Wuhan Textile University Wuhan 430200 P. R. China
- State Key Laboratory for New Textile Materials & Advanced Processing Technology, Wuhan Textile University Wuhan 430200 P. R. China
| | - Ganlin Dong
- State Key Laboratory for New Textile Materials & Advanced Processing Technology, Wuhan Textile University Wuhan 430200 P. R. China
| | - Xiaohong Li
- State Key Laboratory for New Textile Materials & Advanced Processing Technology, Wuhan Textile University Wuhan 430200 P. R. China
| | - Shuting Li
- School of Physical Education, Equine Science Research and Doping Control Center, Wuhan Business University Wuhan 430056 China
| | - Yonggang Lv
- State Key Laboratory for New Textile Materials & Advanced Processing Technology, Wuhan Textile University Wuhan 430200 P. R. China
| |
Collapse
|
3
|
Wu Y, Yu H, Li C, Liu L, Zhang Y, Gong J, Sha R, Feng L, Yan H, Jiang G, Wang J, Tang BZ. Spacer Twisting Strategy to Realize Ultrabright Near-Infrared II Polymer Nanoparticles for Fluorescence Imaging-Guided Tumor Phototheranostics. ACS NANO 2024; 18:28178-28188. [PMID: 39360480 DOI: 10.1021/acsnano.4c07896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Conjugated polymers are becoming popular near-infrared II (NIR-II) phototheranostic agents (PTAs) due to their numerous advantages, such as high photostability, large molar extinction coefficients, and excellent photothermal properties. However, the strong π-π interactions between the chains of the conjugated polymers resulted in their generally low NIR-II emission quantum yields (QY). Therefore, the synthesis of conjugated polymers with high QY is an interesting but challenging task. Herein, we proposed a spacer twisting strategy to realize ultrabright NIR-II polymer nanoparticles for fluorescence imaging-guided tumor phototheranostics. Theoretical calculations indicated that the polymer PY-IT has the largest dihedral angle between the largely π-conjugated skeleton and the spacer, which can effectively inhibit intermolecular π-π stacking, resulting in an improved QY as high as 16.5% in nanoparticles. In addition, PY-IT NPs can effectively perform NIR-II imaging and photothermal treatment of tumors. The work presents some valuable guides for achieving ultrabright NIR-II polymeric PTAs with high QY.
Collapse
Affiliation(s)
- Yifan Wu
- College of Chemistry and Chemical Engineering, Inner Mongolia Key Laboratory of Fine Organic Synthesis, Inner Mongolia University, Hohhot 010021, China
| | - Han Yu
- Department of Chemistry and Hong Kong Branch of Chinese National Engineering Research, Center for Tissue Restoration and Reconstruction, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong, China
| | - Chunbin Li
- College of Chemistry and Chemical Engineering, Inner Mongolia Key Laboratory of Fine Organic Synthesis, Inner Mongolia University, Hohhot 010021, China
| | - Lingxiu Liu
- College of Chemistry and Chemical Engineering, Inner Mongolia Key Laboratory of Fine Organic Synthesis, Inner Mongolia University, Hohhot 010021, China
| | - Yue Zhang
- College of Chemistry and Chemical Engineering, Inner Mongolia Key Laboratory of Fine Organic Synthesis, Inner Mongolia University, Hohhot 010021, China
| | - Jianye Gong
- College of Chemistry and Chemical Engineering, Inner Mongolia Key Laboratory of Fine Organic Synthesis, Inner Mongolia University, Hohhot 010021, China
| | - Renmanduhu Sha
- College of Chemistry and Chemical Engineering, Inner Mongolia Key Laboratory of Fine Organic Synthesis, Inner Mongolia University, Hohhot 010021, China
| | - Lina Feng
- College of Chemistry and Chemical Engineering, Inner Mongolia Key Laboratory of Fine Organic Synthesis, Inner Mongolia University, Hohhot 010021, China
| | - He Yan
- Department of Chemistry and Hong Kong Branch of Chinese National Engineering Research, Center for Tissue Restoration and Reconstruction, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong, China
| | - Guoyu Jiang
- College of Chemistry and Chemical Engineering, Inner Mongolia Key Laboratory of Fine Organic Synthesis, Inner Mongolia University, Hohhot 010021, China
| | - Jianguo Wang
- College of Chemistry and Chemical Engineering, Inner Mongolia Key Laboratory of Fine Organic Synthesis, Inner Mongolia University, Hohhot 010021, China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen 518172, Guangdong, China
| |
Collapse
|
4
|
Chen K, Shi H, Li L, Yang M, Qian K, Xu W, Qu C, Cheng Z. Nature Products Chlorophyll Derivatives for NIR-II Fluorescence Bioimaging and Plant-Imaging. Chemistry 2024; 30:e202401805. [PMID: 38752446 DOI: 10.1002/chem.202401805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Indexed: 07/03/2024]
Abstract
The second near-infrared window (NIR-II, 1000-1700 nm) fluorescence imaging has attracted significant attention in research fields because of its unique advantages compared with conventional optical windows (400-900 nm). A variety of NIR-II fluorophores have been actively studied because they serve as a key component of fluorescence imaging. Among them, organic small molecule NIR-II fluorophores display outstanding imaging performance and many advantages, but types of small molecule NIR-II fluorophores with high biocompatibility are still quite limited. Novel molecular scaffolds based NIR-II dyes are highly desired. Herein, we hypothesized that chlorophyll is a new promising molecular platform for discovery NIR-II fluorophores. Thus, seven derivatives of derivatives were selected to characterize their optical properties. Interestingly, six chlorophyll derivatives displayed NIR-II fluorescence imaging capability. This characteristic allowed the successful NIR-II imaging of green leaves of various plants. Furthermore, most of these fluorophores showed capacity to monitor viscosity change because of their sensitive for viscosity. For demonstration of its biomedical applications, these probes were successfully used for NIR-II fluorescence-guided surgical resection of lymph nodes. In summary, chlorophylls are novel valuable tool molecules for NIR-II fluorescence imaging and have potential to expand their applications in biomedical field and plant science.
Collapse
Affiliation(s)
- Kaixin Chen
- Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China, University of Chinese Academy of Sciences, No.19 A Yuquan Road, Beijing, 100049, China
| | - Hui Shi
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China, University of Chinese Academy of Sciences, No.19 A Yuquan Road, Beijing, 100049, China
| | - Lei Li
- Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China, University of Chinese Academy of Sciences, No.19 A Yuquan Road, Beijing, 100049, China
| | - Mao Yang
- Macau University of Science and Technology, Avenida WaiLong, Taipa, Macau, 999078, China
| | - Kun Qian
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China, University of Chinese Academy of Sciences, No.19 A Yuquan Road, Beijing, 100049, China
| | - Wen Xu
- Department of Pediatrics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Chunrong Qu
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China, University of Chinese Academy of Sciences, No.19 A Yuquan Road, Beijing, 100049, China
| | - Zhen Cheng
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China, University of Chinese Academy of Sciences, No.19 A Yuquan Road, Beijing, 100049, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong, 264117, China
| |
Collapse
|
5
|
Sun C, Fan Q, Xie R, Luo C, Hu B, Wang Q. Tetherless Optical Neuromodulation: Wavelength from Orange-red to Mid-infrared. Neurosci Bull 2024; 40:1173-1188. [PMID: 38372931 PMCID: PMC11306867 DOI: 10.1007/s12264-024-01179-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 11/11/2023] [Indexed: 02/20/2024] Open
Abstract
Optogenetics, a technique that employs light for neuromodulation, has revolutionized the study of neural mechanisms and the treatment of neurological disorders due to its high spatiotemporal resolution and cell-type specificity. However, visible light, particularly blue and green light, commonly used in conventional optogenetics, has limited penetration in biological tissue. This limitation necessitates the implantation of optical fibers for light delivery, especially in deep brain regions, leading to tissue damage and experimental constraints. To overcome these challenges, the use of orange-red and infrared light with greater tissue penetration has emerged as a promising approach for tetherless optical neuromodulation. In this review, we provide an overview of the development and applications of tetherless optical neuromodulation methods with long wavelengths. We first discuss the exploration of orange-red wavelength-responsive rhodopsins and their performance in tetherless optical neuromodulation. Then, we summarize two novel tetherless neuromodulation methods using near-infrared light: upconversion nanoparticle-mediated optogenetics and photothermal neuromodulation. In addition, we discuss recent advances in mid-infrared optical neuromodulation.
Collapse
Affiliation(s)
- Chao Sun
- Key Laboratory of Spectral Imaging Technology, Xi'an Institute of Optics and Precision Mechanics (XIOPM), Chinese Academy of Sciences, Xi'an, 710119, China
- Key Laboratory of Biomedical Spectroscopy of Xi'an, Key Laboratory of Spectral Imaging Technology, XIOPM, Chinese Academy of Sciences, Xi'an, 710119, China
| | - Qi Fan
- Key Laboratory of Spectral Imaging Technology, Xi'an Institute of Optics and Precision Mechanics (XIOPM), Chinese Academy of Sciences, Xi'an, 710119, China
- Key Laboratory of Biomedical Spectroscopy of Xi'an, Key Laboratory of Spectral Imaging Technology, XIOPM, Chinese Academy of Sciences, Xi'an, 710119, China
| | - Rougang Xie
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Ceng Luo
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Bingliang Hu
- Key Laboratory of Biomedical Spectroscopy of Xi'an, Key Laboratory of Spectral Imaging Technology, XIOPM, Chinese Academy of Sciences, Xi'an, 710119, China
| | - Quan Wang
- Key Laboratory of Spectral Imaging Technology, Xi'an Institute of Optics and Precision Mechanics (XIOPM), Chinese Academy of Sciences, Xi'an, 710119, China.
- Key Laboratory of Biomedical Spectroscopy of Xi'an, Key Laboratory of Spectral Imaging Technology, XIOPM, Chinese Academy of Sciences, Xi'an, 710119, China.
| |
Collapse
|
6
|
Jin B, Lu K, Gao W, Liu Y, Wang M, Zhang X, Chen H, Zheng L, Zou M. Polydopamine-Based Targeted Nanosystem for Chemo/Photothermal Therapy of Retinoblastoma in a Mouse Orthotopic Model. Int J Nanomedicine 2024; 19:7799-7816. [PMID: 39099794 PMCID: PMC11297587 DOI: 10.2147/ijn.s467949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 07/21/2024] [Indexed: 08/06/2024] Open
Abstract
Background At present, the few photothermal/chemotherapy studies about retinoblastoma that have been reported are mainly restricted to ectopic models involving subcutaneous implantation. However, eyeball is unique physiological structure, the blood-retina barrier (BRB) hinders the absorption of drug molecules through the systemic route. Moreover, the abundant blood circulation in the fundus accelerates drug metabolism. To uphold the required drug concentration, patients must undergo frequent chemotherapy sessions. Purpose To address these challenges above, we need to develop a secure and effective drug delivery system (FA-PEG-PDA-DOX) for the fundus. Methods We offered superior therapeutic efficacy with minimal or no side effects and successfully established orthotopic mouse models. We evaluated cellular uptake performance and targeting efficiency of FA-PEG-PDA-DOX nanosystem and assessed its synergistic antitumor effects in vitro and vivo. Biodistribution assessments were performed to determine the retention time and targeting efficiency of the NPs in vivo. Additionally, safety assessments were conducted. Results Cell endocytosis rates of the FA-PEG-PDA-DOX+Laser group became 5.23 times that of the DOX group and 2.28 times that of FA-PEG-PDA-DOX group without irradiation. The fluorescence signal of FA-PEG-PDA-DOX persisted for more than 120 hours at the tumor site. The number of tumor cells (17.2%) in the proliferative cycle decreased by 61.6% in the photothermal-chemotherapy group, in contrast to that of the saline control group (78.8%). FA-PEG-PDA-DOX nanoparticles(NPs) exhibited favorable biosafety and high biocompatibility. Conclusion The dual functional targeted nanosystem, with the effects of DOX and mild-temperature elevation by irradiation, resulted in precise chemo/photothermal therapy in nude mice model.
Collapse
Affiliation(s)
- Bo Jin
- Department of Ophthalmology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Hennan, 450052, People’s Republic of China
| | - Kexin Lu
- BGI College, Zhengzhou University, Zhengzhou, 450052, People’s Republic of China
| | - Wenna Gao
- Department of Ophthalmology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Hennan, 450052, People’s Republic of China
| | - Yixian Liu
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450052, People’s Republic of China
| | - Mengfei Wang
- BGI College, Zhengzhou University, Zhengzhou, 450052, People’s Republic of China
| | - Xiaojun Zhang
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450052, People’s Republic of China
| | - Huiping Chen
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450052, People’s Republic of China
| | - Liyun Zheng
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450052, People’s Republic of China
| | - Min Zou
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450052, People’s Republic of China
| |
Collapse
|
7
|
Yi J, Liu L, Gao W, Zeng J, Chen Y, Pang E, Lan M, Yu C. Advances and perspectives in phototherapy-based combination therapy for cancer treatment. J Mater Chem B 2024; 12:6285-6304. [PMID: 38895829 DOI: 10.1039/d4tb00483c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Phototherapy, including photothermal therapy (PTT) and photodynamic therapy (PDT), has the advantages of spatiotemporal selectivity, non-invasiveness, and negligible drug resistance. Phototherapy has been approved for treating superficial epidermal tumors. However, its therapeutic efficacy is limited by the hypoxic tumor microenvironment and the highly expressed heat shock protein. Moreover, poor tissue penetration and focused irradiation laser region in phototherapy make treating deep tissues and metastatic tumors challenging. Combination therapy strategies, which integrate the advantages of each treatment and overcome their disadvantages, can significantly improve the therapeutic efficacy. Recently, many combination therapy strategies have been reported. Our study summarizes the strategies used for combining phototherapy with other cancer treatments such as chemotherapy, immunotherapy, sonodynamic therapy, gas therapy, starvation therapy, and chemodynamic therapy. Some research cases were selected to analyze the combination therapy effect, delivery platform feature, and synergetic anticancer mechanisms. Moreover, additional research cases are summarized in the tables. This review provides strong evidence that phototherapy-based combination strategies can enhance the anticancer effect compared with phototherapy alone. Additionally, the challenges and future perspectives associated with these combinational therapies are discussed.
Collapse
Affiliation(s)
- Jianing Yi
- Department of Breast and Thyroid Gland Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, 410005, China.
- Department of General Surgery, Sir Run Run Hospital of Nanjing Medical University, Nanjing, Jiangsu, 211166, China.
| | - Luyao Liu
- Department of Breast and Thyroid Gland Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, 410005, China.
| | - Wenjie Gao
- Department of General Surgery, Sir Run Run Hospital of Nanjing Medical University, Nanjing, Jiangsu, 211166, China.
| | - Jie Zeng
- Department of Breast and Thyroid Gland Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, 410005, China.
| | - Yongzhi Chen
- Department of Hepatobiliary surgery, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, 225000, China
| | - E Pang
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, China.
| | - Minhuan Lan
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, China.
| | - Chunzhao Yu
- Department of General Surgery, Sir Run Run Hospital of Nanjing Medical University, Nanjing, Jiangsu, 211166, China.
| |
Collapse
|
8
|
Du M, Liang T, Gu X, Liu Y, Wang N, Zhou W, Xie C, Fan Q. Carbonic anhydrase inhibitor-decorated semiconducting oligomer nanoparticles for active-targeting NIR-II fluorescence tumor imaging. NANOTECHNOLOGY 2023; 34:485101. [PMID: 37611549 DOI: 10.1088/1361-6528/acf321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 08/22/2023] [Indexed: 08/25/2023]
Abstract
Second near-infrared window (NIR-II) fluorescence imaging has shown great potential in the field of bioimaging. To achieve a better imaging effect, variety of NIR-II fluorescence probes have been designed and developed. Among them, semiconducting oligomers (SOs) have shown unique advantages including high photostability and quantum yield, making them promise in NIR-II fluorescence imaging. Herein, we design a SO nanoparticle (ASONi) for NIR-II fluorescence imaging of tumor. ASONi is composed of an azido-functionalized semiconducting oligomer as the NIR-II fluorescence emitter, and a benzene sulfonamide-ended DSPE-PEG (DSPE-PEG-CAi) as the stabilizer. Owing to the benzene sulfonamide groups on the surface, ASONi has the capability of targeting the carbonic anhydrase IX (CA IX) of MDA-MB-231 breast cancer cell. Compared with ASON without benzene sulfonamide groups on the surface, ASONi has a 1.4-fold higher uptake for MDA-MB-231 cells and 1.5-fold higher breast tumor accumulation after i.v. injection. The NIR-II fluorescence signal of ASONi can light the tumor up within 4 h, demonstrating its capability of active tumor targeting and NIR-II fluorescence imaging.
Collapse
Affiliation(s)
- Mingzhi Du
- State Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials IAM, Nanjing University of Posts and Telecommunications, Nanjing, 210023, People's Republic of China
| | - Tingting Liang
- State Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials IAM, Nanjing University of Posts and Telecommunications, Nanjing, 210023, People's Republic of China
| | - Xuxuan Gu
- State Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials IAM, Nanjing University of Posts and Telecommunications, Nanjing, 210023, People's Republic of China
| | - Yaxin Liu
- State Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials IAM, Nanjing University of Posts and Telecommunications, Nanjing, 210023, People's Republic of China
| | - Nana Wang
- State Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials IAM, Nanjing University of Posts and Telecommunications, Nanjing, 210023, People's Republic of China
| | - Wen Zhou
- State Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials IAM, Nanjing University of Posts and Telecommunications, Nanjing, 210023, People's Republic of China
| | - Chen Xie
- State Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials IAM, Nanjing University of Posts and Telecommunications, Nanjing, 210023, People's Republic of China
| | - Quli Fan
- State Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials IAM, Nanjing University of Posts and Telecommunications, Nanjing, 210023, People's Republic of China
| |
Collapse
|
9
|
Wu Z, Wang J, Zhao L, Li C, Lu Y. A novel donor-acceptor structured diketopyrrolopyrrole-based conjugated polymer synthesized by direct arylation polycondensation (DArP) for highly efficient antimicrobial photothermal therapy. Biomater Sci 2023; 11:2151-2157. [PMID: 36729407 DOI: 10.1039/d2bm02024f] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
A novel donor (D)-acceptor (A) structured conjugated polymer (PDPP-TP), which contains two alternating D-A pairs, namely thiophene (T)-diketopyrrolopyrrole (DPP) and thiophenen (T)-thieno[3,4-b]pyrazine (TP) along the main chain of the polymer, was synthesized by direct arylation polycondensation (DArP) for a highly efficient photothermal antibacterial treatment. The hydrophilic PDPP-TP-based nanoparticles (PTNPs) with a hydration diameter of about 120 nm were obtained by self-assembly using DSPE-mPEG2000 as the polymer matrix. PTNPs show strong near-infrared (NIR) absorbance with a λmax at 910 nm (ε = 2.25 × 104 L mol-1 cm-1) and NIR light-triggered photoactivity with a high photothermal conversion efficiency (PTCE) of 52.8% under 880 nm laser irradiation. Keeping the merits of excellent biocompatibility and photostability, PTNPs exhibited remarkable bacterial inhibition efficiency of almost 100% against Gram-negative E. coli and Gram-positive S. aureus with the help of an 880 nm laser (0.7 W cm-2, 6 min), demonstrating its great potential as photothermal materials with a broad spectrum of activity for the effective treatment of microbial infections.
Collapse
Affiliation(s)
- Zhihui Wu
- School of Materials Science & Engineering, Tianjin Key Laboratory for Photoelectric Materials and Devices, Key Laboratory of Display Materials &Photoelectric Devices, Ministry of Education, Tianjin University of Technology, Tianjin 300384, China.
| | - Jing Wang
- School of Materials Science & Engineering, Tianjin Key Laboratory for Photoelectric Materials and Devices, Key Laboratory of Display Materials &Photoelectric Devices, Ministry of Education, Tianjin University of Technology, Tianjin 300384, China.
| | - Linlin Zhao
- School of Materials Science & Engineering, Tianjin Key Laboratory for Photoelectric Materials and Devices, Key Laboratory of Display Materials &Photoelectric Devices, Ministry of Education, Tianjin University of Technology, Tianjin 300384, China.
| | - Chenxi Li
- Key Laboratory of Functional Polymer Materials, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yan Lu
- School of Materials Science & Engineering, Tianjin Key Laboratory for Photoelectric Materials and Devices, Key Laboratory of Display Materials &Photoelectric Devices, Ministry of Education, Tianjin University of Technology, Tianjin 300384, China.
| |
Collapse
|
10
|
He X, Zhang S, Tian Y, Cheng W, Jing H. Research Progress of Nanomedicine-Based Mild Photothermal Therapy in Tumor. Int J Nanomedicine 2023; 18:1433-1468. [PMID: 36992822 PMCID: PMC10042261 DOI: 10.2147/ijn.s405020] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/14/2023] [Indexed: 03/31/2023] Open
Abstract
With the booming development of nanomedicine, mild photothermal therapy (mPTT, 42-45°C) has exhibited promising potential in tumor therapy. Compared with traditional PTT (>50°C), mPTT has less side effects and better biological effects conducive to tumor treatment, such as loosening the dense structure in tumor tissues, enhancing blood perfusion, and improving the immunosuppressive microenvironment. However, such a relatively low temperature cannot allow mPTT to completely eradicate tumors, and therefore, substantial efforts have been conducted to optimize the application of mPTT in tumor therapy. This review extensively summarizes the latest advances of mPTT, including two sections: (1) taking mPTT as a leading role to maximize its effect by blocking the cell defense mechanisms, and (2) regarding mPTT as a supporting role to assist other therapies to achieve synergistic antitumor curative effect. Meanwhile, the special characteristics and imaging capabilities of nanoplatforms applied in various therapies are discussed. At last, this paper puts forward the bottlenecks and challenges in the current research path of mPTT, and possible solutions and research directions in future are proposed correspondingly.
Collapse
Affiliation(s)
- Xiang He
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, People’s Republic of China
| | - Shentao Zhang
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, People’s Republic of China
| | - Yuhang Tian
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, People’s Republic of China
| | - Wen Cheng
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, People’s Republic of China
| | - Hui Jing
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, People’s Republic of China
- Correspondence: Hui Jing; Wen Cheng, Department of Ultrasound, Harbin Medical University Cancer Hospital, No. 150, Haping Road, Nangang District, Harbin, 150081, People’s Republic of China, Tel +86 13304504935; +86 13313677182, Email ;
| |
Collapse
|
11
|
Li C, Jiang G, Yu J, Ji W, Liu L, Zhang P, Du J, Zhan C, Wang J, Tang BZ. Fluorination Enhances NIR-II Emission and Photothermal Conversion Efficiency of Phototheranostic Agents for Imaging-Guided Cancer Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2208229. [PMID: 36300808 DOI: 10.1002/adma.202208229] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/19/2022] [Indexed: 06/16/2023]
Abstract
Phototheranostics with second near-infrared (NIR-II) imaging and photothermal effect have become a burgeoning biotechnology for tumor diagnosis and precise treatment. As important parameters of phototheranostic agents (PTAs), fluorescence quantum yield (QY) and photothermal conversion efficiency (PCE) are usually considered as a pair of contradictions that is difficult to be simultaneously enhanced. Herein, a fluorination strategy for designing A-D-A type PTAs with synchronously improved QY and PCE is proposed. Experimental results show that the molar extinction coefficient (ε), NIR-II QY, and PCE of all fluorinated PTAs nanoparticles (NPs) are definitely improved compared with the chlorinated counterparts. Theoretical calculation results demonstrate that fluorination can maximize the electrostatic potential difference by virtue of the high electronegativity of fluorine, which may increase intra/intermolecular D-A interactions, tighten molecule packing, and further promote the increase of ε, ultimately leading to simultaneously enhanced QY and PCE. In these PTA NPs, FY6-NPs display NIR-II emission extended to 1400 nm with the highest NIR-II QY (4.2%) and PCE (80%). These features make FY6-NPs perform well in high-resolution imaging of vasculature and NIR-II imaging-guided photothermal therapy (PTT) of tumors. This study develops a valuable guideline for constructing NIR-II organic PTAs with high performance.
Collapse
Affiliation(s)
- Chunbin Li
- College of Chemistry and Chemical Engineering, Inner Mongolia Key Laboratory of Fine Organic Synthesis, Inner Mongolia University, Hohhot, 010021, P. R. China
| | - Guoyu Jiang
- College of Chemistry and Chemical Engineering, Inner Mongolia Key Laboratory of Fine Organic Synthesis, Inner Mongolia University, Hohhot, 010021, P. R. China
| | - Jia Yu
- College of Chemistry and Chemical Engineering, Inner Mongolia Key Laboratory of Fine Organic Synthesis, Inner Mongolia University, Hohhot, 010021, P. R. China
| | - Weiwei Ji
- College of Chemistry and Chemical Engineering, Inner Mongolia Key Laboratory of Fine Organic Synthesis, Inner Mongolia University, Hohhot, 010021, P. R. China
| | - Lingxiu Liu
- College of Chemistry and Chemical Engineering, Inner Mongolia Key Laboratory of Fine Organic Synthesis, Inner Mongolia University, Hohhot, 010021, P. R. China
| | - Pengfei Zhang
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, CAS Key Laboratory of Health Informatics, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Jian Du
- Department of Urology, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, 250000, P. R. China
| | - Chuanlang Zhan
- Key Laboratory of Advanced Materials Chemistry and Devices (AMC&DLab) of the Department of Education of Inner Mongolia Autonomous Region, College of Chemistry and Environmental Science, Inner Mongolia Normal University, Hohhot, 010022, P. R. China
| | - Jianguo Wang
- College of Chemistry and Chemical Engineering, Inner Mongolia Key Laboratory of Fine Organic Synthesis, Inner Mongolia University, Hohhot, 010021, P. R. China
| | - Ben Zhong Tang
- Shenzhen Institute of Aggregate Science and Technology, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, P. R. China
| |
Collapse
|
12
|
Ye Y, He J, Wang H, Li W, Wang Q, Luo C, Tang X, Chen X, Jin X, Yao K, Zhou M. Cell Wall Destruction and Internal Cascade Synergistic Antifungal Strategy for Fungal Keratitis. ACS NANO 2022; 16:18729-18745. [PMID: 36278973 DOI: 10.1021/acsnano.2c07444] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Fungal keratitis is one of the most common blindness-causing diseases, but clinical antifungal treatment remains a challenge. The fungal cell wall and biofilm matrix which severely confine the drug preparation are the critical obstructive factors to therapeutic effects. Herein, we report ethylenediaminetetraacetic acid (EDTA) modified AgCu2O nanoparticles (AgCuE NPs) to disrupt the cell wall and then eradicate C. albicans through the internal cascade synergistic effects of ion-released chemotherapy, chemodynamic therapy, photodynamic therapy, and mild photothermal therapy. AgCuE NPs exhibited excellent antifungal activity both in preventing biofilm formation and in destroying mature biofilms. Furthermore, AgCuE NP based gel formulations were topically applied to kill fungi, reduce inflammation, and promote wound healing, using optical coherence tomography and photoacoustic imaging to monitor nanogel retention and therapeutic effects on the infected murine cornea model. The AgCuE NP gel showed good biosafety and no obvious ophthalmic and systemic side effects. This study suggests that the AgCuE NP gel is an effective and safe antifungal strategy for fungal keratitis with a favorable prognosis and potential for clinical translation.
Collapse
Affiliation(s)
- Yang Ye
- Eye Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, People's Republic of China
- Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, 310009, People's Republic of China
| | - Jian He
- Eye Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, People's Republic of China
- Institute of Translational Medicine, Zhejiang University, Hangzhou, 310009, People's Republic of China
| | - Hanle Wang
- Eye Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, People's Republic of China
- Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, 310009, People's Republic of China
| | - Wenbo Li
- Eye Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, People's Republic of China
- Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, 310009, People's Republic of China
| | - Qingya Wang
- Eye Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, People's Republic of China
- Institute of Translational Medicine, Zhejiang University, Hangzhou, 310009, People's Republic of China
| | - Chenqi Luo
- Eye Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, People's Republic of China
- Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, 310009, People's Republic of China
| | - Xiajing Tang
- Eye Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, People's Republic of China
- Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, 310009, People's Republic of China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Xiuming Jin
- Eye Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, People's Republic of China
- Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, 310009, People's Republic of China
| | - Ke Yao
- Eye Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, People's Republic of China
- Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, 310009, People's Republic of China
| | - Min Zhou
- Eye Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, People's Republic of China
- Institute of Translational Medicine, Zhejiang University, Hangzhou, 310009, People's Republic of China
- Research Center for Life Science and Human Health, Binjiang Institute of Zhejiang University, Hangzhou 310053, People's Republic of China
- State Key Laboratory of Modern Optical Instrumentations, Zhejiang University, Hangzhou 310058, People's Republic of China
| |
Collapse
|
13
|
Yi X, Wang Z, Hu X, Yu A. Affinity probes based on small-molecule inhibitors for tumor imaging. Front Oncol 2022; 12:1028493. [PMID: 36387103 PMCID: PMC9647038 DOI: 10.3389/fonc.2022.1028493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/17/2022] [Indexed: 11/29/2022] Open
Abstract
Methods for molecular imaging of target areas, including optical imaging, radionuclide imaging, magnetic resonance imaging and other imaging technologies, are helpful for the early diagnosis and precise treatment of cancers. In addition to cancer management, small-molecule inhibitors are also used for developing cancer target probes since they act as the tight-binding ligands of overexpressed proteins in cancer cells. This review aims to summarize the structural designs of affinity probes based on small-molecule inhibitors from the aspects of the inhibitor, linker, dye and radionuclide, and discusses the influence of the modification of these structures on affinity and pharmacokinetics. We also present examples of inhibitor affinity probes in clinical applications, and these summaries will provide insights for future research and clinical translations.
Collapse
Affiliation(s)
| | | | - Xiang Hu
- *Correspondence: Aixi Yu, ; Xiang Hu,
| | - Aixi Yu
- *Correspondence: Aixi Yu, ; Xiang Hu,
| |
Collapse
|
14
|
Tong S, Yu Z, Yin F, Yang Q, Chu J, Huang L, Gao W, Qian M. Manganese-based Prussian blue nanoparticles inhibit tumor proliferation and migration via the MAPK pathway in pancreatic cancer. Front Chem 2022; 10:1026924. [PMID: 36353142 PMCID: PMC9638070 DOI: 10.3389/fchem.2022.1026924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 09/15/2022] [Indexed: 11/29/2022] Open
Abstract
Pancreatic cancer (PC) is one of the deadliest gastrointestinal malignancies. Advances in molecular biology and surgery have significantly improved survival rates for other tumors in recent decades, but clinical outcomes for PC remained relatively unchanged. Chemodynamic therapy (CDT) and Photothermal therapy (PTT) represent an efficient and relatively safe cancer treatment modality. Here, we synthesized Mn-doped Prussian blue nanoparticles (MnPB NPs) through a simple and mild method, which have a high loading capacity for drugs and excellent CDT/PTT effect. Cell line experiments in vitro and animal experiments in vivo proved the safety of MnPB NPs. We stimulated the PC cells with MnPB NPs and performed transwell migration assays. The migration of PC cells was reduced company with the decrease of two classical proteins: matrix metalloproteinase-2 (MMP-2) and matrix metalloproteinase-9 (MMP-9). Moreover, MnPB NPs induced ferroptosis, which mediated the MAPK pathway and achieved tumor elimination in nude mice. This effective and safe strategy controlled by irradiation represents a promising strategy for pancreatic cancer.
Collapse
Affiliation(s)
- Shanshi Tong
- Department of General Surgery, Shanghai tenth People’s Hospital, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Zhilong Yu
- Department of Gastroenterological Surgery, Peking University People’s Hospital, Beijing, China
| | - Fang Yin
- Shanghai Engineering Technology Research Center for the Functional Development of Human Intestinal Flora, Shanghai tenth People’s Hospital, Shanghai, China
| | - Qilin Yang
- Department of General Surgery, Shanghai tenth People’s Hospital, Shanghai, China
| | - Juhang Chu
- School of Medicine, Tongji University, Shanghai, China
| | - Luyao Huang
- Department of General Surgery, Shanghai tenth People’s Hospital, Shanghai, China
| | - Wenxue Gao
- Clinical Research Management Office, Shanghai tenth People’s Hospital, Shanghai, China
- *Correspondence: Wenxue Gao, ; Mingping Qian,
| | - Mingping Qian
- Department of General Surgery, Shanghai tenth People’s Hospital, Shanghai, China
- School of Medicine, Tongji University, Shanghai, China
- *Correspondence: Wenxue Gao, ; Mingping Qian,
| |
Collapse
|
15
|
Design of NIR-II high performance organic small molecule fluorescent probes and summary of their biomedical applications. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214609] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
16
|
Zhou W, Yin L, Zhang X, Liang T, Guo Z, Liu Y, Xie C, Fan Q. Recent advances in small molecule dye-based nanotheranostics for NIR-II photoacoustic imaging-guided cancer therapy. Front Bioeng Biotechnol 2022; 10:1002006. [PMID: 36246348 PMCID: PMC9556702 DOI: 10.3389/fbioe.2022.1002006] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 09/13/2022] [Indexed: 11/22/2022] Open
Abstract
Photoacoustic (PA) imaging in the second near-infrared (NIR-II) window has gained more and more attention in recent years and showed great potential in the field of bioimaging. Until now, numerous materials have been developed as contrast agents for NIR-II PA imaging. Among them, small molecule dyes hold unique advantages such as definite structures and capability of fast clearance from body. By virtue of these advantages, small molecule dyes-constructed nanoparticles have relatively small size and show promise in the clinical translation. Thus, in this minireview, we summarize recent advances in small molecule dyes-based nanotheranostics for NIR-II PA imaging and cancer therapy. Studies about NIR-II PA imaging-guided phototherapy are first introduced. Then, NIR-II PA imaging-guided phototherapy-based combination therapeutic systems are reviewed. Finally, the conclusion and perspectives of this field are summarized and discussed.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Chen Xie
- *Correspondence: Chen Xie, ; Quli Fan,
| | - Quli Fan
- *Correspondence: Chen Xie, ; Quli Fan,
| |
Collapse
|
17
|
Men X, Fang X, Liu Z, Zhang Z, Wu C, Chen H. Anisotropic assembly and fluorescence enhancement of conjugated polymer nanostructures. VIEW 2022. [DOI: 10.1002/viw.20220020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Xiaoju Men
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Academician Workstation Changsha Medical University Changsha Hunan China
| | - Xiaofeng Fang
- Department of Biomedical Engineering Southern University of Science and Technology Shenzhen Guangdong China
| | - Zhihe Liu
- Department of Biomedical Engineering Southern University of Science and Technology Shenzhen Guangdong China
| | - Zhe Zhang
- Department of Biomedical Engineering Southern University of Science and Technology Shenzhen Guangdong China
| | - Changfeng Wu
- Department of Biomedical Engineering Southern University of Science and Technology Shenzhen Guangdong China
| | - Haobin Chen
- Department of Biomedical Engineering, School of Basic Medical Sciences Central South University Changsha Hunan China
| |
Collapse
|
18
|
Chang T, Qiu Q, Ji A, Qu C, Chen H, Cheng Z. Organic single molecule based nano-platform for NIR-II imaging and chemo-photothermal synergistic treatment of tumor. Biomaterials 2022; 287:121670. [PMID: 35835000 DOI: 10.1016/j.biomaterials.2022.121670] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 06/29/2022] [Accepted: 07/05/2022] [Indexed: 12/20/2022]
Abstract
Integrating multiple functionalities of near-infrared second window fluorescence imaging (NIR-Ⅱ FLI), chemotherapy, and photothermal treatment (PTT) into a single molecule is desirable but still a highly challenging task. Herein, inspired by the results that hyperthermia can enhance the cytotoxicity of some alkylating agents, we designed and synthesized the novel compound NM. By introducing nitrogen mustard's active moiety bis(2-chlorethyl)amino into Donor-Acceptor-Donor (D-A-D) electronic structure, the unimolecular system not only behaviored as a chemotherapeutic agent but also exhibited good PTT and NIR-Ⅱ FLI abilities. The hydrophobic agent NM was encapsulated by DSPE-PEG2000 to generate the nano-platform NM-NPs. The current study on in vitro and in vivo experiments indicated that NM-NPs make vessels visualize clearly in the NIR-II zone and achieve complete tumor elimination through chemo-photothermal synergistic treatment. Overall, this study provides a new innovative strategy for developing superior, versatile phototheranostics for cancer theranostics.
Collapse
Affiliation(s)
- Tonghang Chang
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China
| | - Qing Qiu
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; School of Pharmacy, Nanchang University, 461 Bayi Road, Nanchang, 330006, China
| | - Aiyan Ji
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Chunrong Qu
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China.
| | - Hao Chen
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China.
| | - Zhen Cheng
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China; Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, China.
| |
Collapse
|
19
|
Zheng W, Li X, Zou H, Xu Y, Li P, Zhou X, Wu M. Dual-Target Multifunctional Superparamagnetic Cationic Nanoliposomes for Multimodal Imaging-Guided Synergistic Photothermal/Photodynamic Therapy of Retinoblastoma. Int J Nanomedicine 2022; 17:3217-3237. [PMID: 35924259 PMCID: PMC9339948 DOI: 10.2147/ijn.s364264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 07/16/2022] [Indexed: 11/23/2022] Open
Abstract
Background With high malignancy, retinoblastoma (RB) commonly occurs in infants and has incredible difficulty with the early diagnosis. In recent years, the integrated theranostics of multimodal imaging-guided therapy has shown promising potential for oncotherapy. Purpose To prepare folate/magnetic dual-target theranostic nanoparticles integrating with US/PA/MR imaging and the synergistic photothermal treatment (PTT)/photodynamic treatment (PDT) for the early diagnosis and timely intervention of RB cancer. Methods Folate/magnetic dual-target cationic nanoliposomes (CN) encapsulating indocyanine green (ICG) and perfluorohexane(PFH)(FA-CN-PFH-ICG-Fe3O4, FCNPIFE) were synthesized and characterized. Then we evaluated their targeting ability, US/PA/MR imaging effects, and the efficacy of synergistic PTT/PDT in vitro and in vivo. Finally, we explored the mechanism of synergistic PTT/PDT in Y79 tumor-bearing mice. Results FCNPIFEs were stable and uniform in 7 days. They showed excellent in vitro targeting ability with a 95.29% cell uptake rate. The in vitro US/PA/MRI imaging results of FCNPIFEs showed a concentration-dependent manner, and in vitro therapy FCNPIFEs exhibited an enhanced anticancer efficacy against Y79 cells. In vivo analysis confirmed that FCNPIFEs enabled a targeted synergistic PTT/PDT under US/PA/MR imaging guidance in Y79 tumor-bearing mice, achieving almost complete tumor regression. Immunofluorescence results displayed weaker fluorescence intensity compared with other single treatment groups, confirming that PTT/PDT synergistic therapy effect was achieved by down-regulating the expression of HIF-1α and HSP70. Conclusion FCNPIFEs were verified as promising theranostic nanoliposomes for RB oncotherapy and showed great potential in clinical application.
Collapse
Affiliation(s)
- Wendi Zheng
- Department of Ophthalmology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Institute of Ultrasound Imaging of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Xing Li
- Department of Ophthalmology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Institute of Ultrasound Imaging of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Hongmi Zou
- Department of Ophthalmology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Institute of Ultrasound Imaging of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Yan Xu
- Department of Ophthalmology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Pan Li
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Institute of Ultrasound Imaging of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Xiyuan Zhou
- Department of Ophthalmology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Mingxing Wu
- Department of Ophthalmology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
- Correspondence: Mingxing Wu; Xiyuan Zhou, Department of Ophthalmology, the Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, People’s Republic of China, Tel +86 183 2342 5867; +86 139 9628 6679, Email ;
| |
Collapse
|