1
|
Gu RF, Hronowski X, Shao Z, Gao B, Soucey K, Sun F, Tsai HH, Wei R. Dynamic Proteome Changes in Cuprizone-Induced Demyelination and Remyelination in the Mouse Brain. J Proteome Res 2025. [PMID: 40305778 DOI: 10.1021/acs.jproteome.4c01036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2025]
Abstract
This study aimed to gain insights into the dynamic proteome changes and underlying molecular mechanisms of de/remyelination in a cuprizone model, a widely used preclinical model of multiple sclerosis (MS). Longitudinal sampling of control or cuprizone-treated mouse brains was executed at 6 time points over 6 weeks. Data analysis included 8489 quantified proteins. Differential proteomic and GO analyses revealed that 5.9% of the quantified proteome was altered, including reported and novel de/remyelination-relevant protein changes and underlying pathways. We found that oligodendrocyte proteins (Fa2h and Ugt8) were significantly changed during demyelination, suggesting that dysregulated sphingolipid metabolism in MS may stem from oligodendrocyte pathology. Importantly, we showed that the cholesterol biosynthesis pathway was the most enriched biological process in a subset of significantly changed proteins, where myelination was highly enriched. We further validated the changes in the cholesterol biosynthesis pathway through targeted GC-MS analysis of intermediate sterols, supporting the critical role of cholesterol biosynthesis in de/remyelination. Unexpectedly, changes of myelin-associated proteins, Mbp and Plp1, were minimal, while Ermn showed significant reduction tracking with demyelination, indicating that some myelin protein changes are more sensitive to demyelination. Together with a list of significantly altered proteins, the results of this study could benefit future remyelination research.
Collapse
Affiliation(s)
- Rong-Fang Gu
- Chemical Biology and Proteomics, Biogen, Cambridge, Massachusetts 02142, United States
| | - Xiaoping Hronowski
- Chemical Biology and Proteomics, Biogen, Cambridge, Massachusetts 02142, United States
| | - Zhaohui Shao
- Multiple Sclerosis Immunology Research, Biogen, Cambridge, Massachusetts 02142, United States
| | - Benbo Gao
- Chemical Biology and Proteomics, Biogen, Cambridge, Massachusetts 02142, United States
| | - Kayla Soucey
- Multiple Sclerosis Immunology Research, Biogen, Cambridge, Massachusetts 02142, United States
| | - Fangxu Sun
- Chemical Biology and Proteomics, Biogen, Cambridge, Massachusetts 02142, United States
| | - Hui-Hsin Tsai
- Multiple Sclerosis Clinical Development, Biogen, Cambridge, Massachusetts 02142, United States
| | - Ru Wei
- Chemical Biology and Proteomics, Biogen, Cambridge, Massachusetts 02142, United States
| |
Collapse
|
2
|
Tumenbayar BI, Pham K, Biber JC, Tutino VM, Brazzo JA, Yao P, Bae Y. FAK and p130Cas Modulate Stiffness-Mediated Early Transcription and Cellular Metabolism. Cytoskeleton (Hoboken) 2025; 82:197-215. [PMID: 39651636 PMCID: PMC11906264 DOI: 10.1002/cm.21971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 11/20/2024] [Accepted: 11/22/2024] [Indexed: 12/11/2024]
Abstract
Cellular metabolism is influenced by the stiffness of the extracellular matrix. Focal adhesion kinase (FAK) and its binding partner, p130Cas, transmit biomechanical signals, such as substrate stiffness, to the cell to regulate a variety of cellular responses, but their roles in early transcriptional and metabolic responses remain largely unexplored. We cultured mouse embryonic fibroblasts with or without siRNA-mediated FAK or p130Cas knockdown and assessed the early transcriptional responses of these cells to placement on soft and stiff substrates by RNA sequencing and bioinformatics analyses. Exposure to the stiff substrate altered the expression of genes important for metabolic and biosynthetic processes, and these responses were influenced by knockdown of FAK and p130Cas. Our findings reveal that FAK-p130Cas signaling mechanotransduces substrate stiffness to early transcriptional changes that alter cellular metabolism and biosynthesis.
Collapse
Affiliation(s)
- Bat-Ider Tumenbayar
- Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA
| | - Khanh Pham
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA
| | - John C. Biber
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA
| | - Vincent M. Tutino
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA
- Department of Biomedical Engineering, School of Engineering and Applied Sciences, University at Buffalo, Buffalo, NY 14260, USA
- Department of Neurosurgery, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA
| | - Joseph A. Brazzo
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA
| | - Peng Yao
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Yongho Bae
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA
- Department of Biomedical Engineering, School of Engineering and Applied Sciences, University at Buffalo, Buffalo, NY 14260, USA
| |
Collapse
|
3
|
Ma MY, Deng G, Zhu WZ, Sun M, Jiang LY, Li WH, Liu YB, Guo L, Song BL, Zhao X. Defects in CYB5A and CYB5B impact sterol-C4 oxidation in cholesterol biosynthesis and demonstrate regulatory roles of dimethyl sterols. Cell Rep 2024; 43:114912. [PMID: 39489939 DOI: 10.1016/j.celrep.2024.114912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/13/2024] [Accepted: 10/09/2024] [Indexed: 11/05/2024] Open
Abstract
Cytochrome b5 (CYB5) is a hemoprotein crucial for electron transfer to oxygenases. Although microsomal CYB5A is required for sterol C4-demethylation in vitro, cholesterol biosynthesis remains intact in Cyb5a knockout mice. Here, we show that knockout of mitochondrial CYB5B, rather than CYB5A, blocks cholesterol biosynthesis at the sterol-C4 oxidation step in HeLa cells, causing an accumulation of testis meiosis-activating sterol (T-MAS) and dihydro-T-MAS. Surprisingly, liver-specific Cyb5b knockout (L-Cyb5b-/-) mice exhibit normal cholesterol metabolism. Further knockdown of Cyb5a in L-Cyb5b-/- (L-Cyb5b-/-/short hairpin [sh]Cyb5a) mice leads to a marked accumulation of T-MAS and dihydro-T-MAS, indicating that either CYB5A or CYB5B is required for sterol C4-demethylation. The L-Cyb5b-/-/shCyb5a mice are largely normal, with lower sterol regulatory element-binding protein (SREBP)-target gene expression during refeeding and higher liver triglyceride levels while fasting, as T-MAS and dihydro-T-MAS inhibit the SREBP pathway and activate the PPARγ pathway. In summary, CYB5A and CYB5B compensate for sterol C4-demethylation, and T-MAS and dihydro-T-MAS can modulate the SREBP and PPARγ pathways.
Collapse
Affiliation(s)
- Mei-Yan Ma
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430000, China
| | - Gang Deng
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430000, China
| | - Wen-Zhuo Zhu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430000, China
| | - Ming Sun
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430000, China
| | - Lu-Yi Jiang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430000, China
| | - Wei-Hui Li
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430000, China
| | - Yuan-Bin Liu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430000, China
| | - Lin Guo
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430000, China
| | - Bao-Liang Song
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430000, China.
| | - Xiaolu Zhao
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430000, China.
| |
Collapse
|
4
|
Skubic C, Trček H, Nassib P, Kreft T, Walakira A, Pohar K, Petek S, Režen T, Ihan A, Rozman D. Knockouts of CYP51A1, DHCR24, or SC5D from cholesterol synthesis reveal pathways modulated by sterol intermediates. iScience 2024; 27:110651. [PMID: 39262789 PMCID: PMC11387598 DOI: 10.1016/j.isci.2024.110651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 05/20/2024] [Accepted: 07/31/2024] [Indexed: 09/13/2024] Open
Abstract
Sterols from cholesterol synthesis are crucial for cholesterol production, but also have individual roles difficult to assess in vivo due to essentiality of cholesterol. We developed HepG2 cell models with knockouts (KOs) for three enzymes of cholesterol synthesis, each accumulating specific sterols. Surprisingly, KOs of CYP51, DHCR24, and SC5D shared only 9% of differentially expressed genes. The most striking was the phenotype of CYP51 KO with highly elevated lanosterol and 24,25-dihydrolanosterol, significant increase in G2+M phase and enhanced cancer and cell cycle pathways. Comparisons with mouse liver Cyp51 KO data suggest 24,25-dihydrolanosterol activates similar cell proliferation pathways, possibly via elevated LEF1 and WNT/NFKB signaling. In contrast, SC5D and DHCR24 KO cells with elevated lathosterol or desmosterol proliferated slowly, with downregulated E2F, mitosis, and enriched HNF1A. These findings demonstrate that increase of lanosterol and 24,25-dihydrolanosterol, but not other sterols, promotes cell proliferation in hepatocytes.
Collapse
Affiliation(s)
- Cene Skubic
- Center for Functional Genomics and Bio-Chips, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Zaloška cesta 4, 1000 Ljubljana, Slovenia
| | - Hana Trček
- Center for Functional Genomics and Bio-Chips, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Zaloška cesta 4, 1000 Ljubljana, Slovenia
| | - Petra Nassib
- Center for Functional Genomics and Bio-Chips, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Zaloška cesta 4, 1000 Ljubljana, Slovenia
| | - Tinkara Kreft
- Center for Functional Genomics and Bio-Chips, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Zaloška cesta 4, 1000 Ljubljana, Slovenia
| | - Andrew Walakira
- Center for Functional Genomics and Bio-Chips, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Zaloška cesta 4, 1000 Ljubljana, Slovenia
| | - Katka Pohar
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Sara Petek
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Tadeja Režen
- Center for Functional Genomics and Bio-Chips, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Zaloška cesta 4, 1000 Ljubljana, Slovenia
| | - Alojz Ihan
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Damjana Rozman
- Center for Functional Genomics and Bio-Chips, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Zaloška cesta 4, 1000 Ljubljana, Slovenia
| |
Collapse
|
5
|
Peeples ES, Mirnics K, Korade Z. Chemical Inhibition of Sterol Biosynthesis. Biomolecules 2024; 14:410. [PMID: 38672427 PMCID: PMC11048061 DOI: 10.3390/biom14040410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 03/22/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Cholesterol is an essential molecule of life, and its synthesis can be inhibited by both genetic and nongenetic mechanisms. Hundreds of chemicals that we are exposed to in our daily lives can alter sterol biosynthesis. These also encompass various classes of FDA-approved medications, including (but not limited to) commonly used antipsychotic, antidepressant, antifungal, and cardiovascular medications. These medications can interfere with various enzymes of the post-lanosterol biosynthetic pathway, giving rise to complex biochemical changes throughout the body. The consequences of these short- and long-term homeostatic disruptions are mostly unknown. We performed a comprehensive review of the literature and built a catalogue of chemical agents capable of inhibiting post-lanosterol biosynthesis. This process identified significant gaps in existing knowledge, which fall into two main areas: mechanisms by which sterol biosynthesis is altered and consequences that arise from the inhibitions of the different steps in the sterol biosynthesis pathway. The outcome of our review also reinforced that sterol inhibition is an often-overlooked mechanism that can result in adverse consequences and that there is a need to develop new safety guidelines for the use of (novel and already approved) medications with sterol biosynthesis inhibiting side effects, especially during pregnancy.
Collapse
Affiliation(s)
- Eric S. Peeples
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE 68198, USA;
- Child Health Research Institute, Omaha, NE 68198, USA;
- Division of Neonatology, Children’s Nebraska, Omaha, NE 68114, USA
| | - Karoly Mirnics
- Child Health Research Institute, Omaha, NE 68198, USA;
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Zeljka Korade
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE 68198, USA;
- Child Health Research Institute, Omaha, NE 68198, USA;
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
6
|
Dorel R, Sun D, Carruthers N, Castanedo GM, Ung PMU, Factor DC, Li T, Baumann H, Janota D, Pang J, Salphati L, Meklemburg R, Korman AJ, Harper HE, Stubblefield S, Payandeh J, McHugh D, Lang BT, Tesar PJ, Dere E, Masureel M, Adams DJ, Volgraf M, Braun MG. Discovery and Optimization of Selective Brain-Penetrant EBP Inhibitors that Enhance Oligodendrocyte Formation. J Med Chem 2024; 67:4819-4832. [PMID: 38470227 DOI: 10.1021/acs.jmedchem.3c02396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
The inhibition of emopamil binding protein (EBP), a sterol isomerase within the cholesterol biosynthesis pathway, promotes oligodendrocyte formation, which has been proposed as a potential therapeutic approach for treating multiple sclerosis. Herein, we describe the discovery and optimization of brain-penetrant, orally bioavailable inhibitors of EBP. A structure-based drug design approach from literature compound 1 led to the discovery of a hydantoin-based scaffold, which provided balanced physicochemical properties and potency and an improved in vitro safety profile. The long half-lives of early hydantoin-based EBP inhibitors in rodents prompted an unconventional optimization strategy, focused on increasing metabolic turnover while maintaining potency and a brain-penetrant profile. The resulting EBP inhibitor 11 demonstrated strong in vivo target engagement in the brain, as illustrated by the accumulation of EBP substrate zymostenol after repeated dosing. Furthermore, compound 11 enhanced the formation of oligodendrocytes in human cortical organoids, providing additional support for our therapeutic hypothesis.
Collapse
Affiliation(s)
- Ruth Dorel
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Dawei Sun
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Nicholas Carruthers
- Convelo Therapeutics, 11000 Cedar Avenue, Cleveland, Ohio 44106, United States
| | | | - Peter M-U Ung
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Daniel C Factor
- Convelo Therapeutics, 11000 Cedar Avenue, Cleveland, Ohio 44106, United States
| | - Tianbo Li
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Hannah Baumann
- Convelo Therapeutics, 11000 Cedar Avenue, Cleveland, Ohio 44106, United States
| | - Danielle Janota
- Convelo Therapeutics, 11000 Cedar Avenue, Cleveland, Ohio 44106, United States
| | - Jodie Pang
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Laurent Salphati
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Robert Meklemburg
- Convelo Therapeutics, 11000 Cedar Avenue, Cleveland, Ohio 44106, United States
| | - Allison J Korman
- Convelo Therapeutics, 11000 Cedar Avenue, Cleveland, Ohio 44106, United States
| | - Halie E Harper
- Convelo Therapeutics, 11000 Cedar Avenue, Cleveland, Ohio 44106, United States
| | | | - Jian Payandeh
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Daniel McHugh
- Convelo Therapeutics, 11000 Cedar Avenue, Cleveland, Ohio 44106, United States
| | - Bradley T Lang
- Convelo Therapeutics, 11000 Cedar Avenue, Cleveland, Ohio 44106, United States
| | - Paul J Tesar
- Convelo Therapeutics, 11000 Cedar Avenue, Cleveland, Ohio 44106, United States
| | - Edward Dere
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Matthieu Masureel
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Drew J Adams
- Convelo Therapeutics, 11000 Cedar Avenue, Cleveland, Ohio 44106, United States
| | - Matthew Volgraf
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | | |
Collapse
|
7
|
Tumenbayar BI, Tutino VM, Brazzo JA, Yao P, Bae Y. FAK and p130Cas modulate stiffness-mediated early transcription and cellular metabolism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.15.575789. [PMID: 38293187 PMCID: PMC10827115 DOI: 10.1101/2024.01.15.575789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Cellular metabolism is influenced by the stiffness of the extracellular matrix. Focal adhesion kinase (FAK) and its binding partner, p130Cas, transmit biomechanical signals about substrate stiffness to the cell to regulate a variety of cellular responses, but their roles in early transcriptional and metabolic responses remain largely unexplored. We cultured mouse embryonic fibroblasts with or without siRNA-mediated FAK or p130Cas knockdown and assessed the early transcriptional responses of these cells to placement on soft and stiff substrates by RNA sequencing and bioinformatics analyses. Exposure to the stiff ECM altered the expression of genes important for metabolic and biosynthetic processes, and these responses were influenced by knockdown of FAK and p130Cas. Our findings reveal that FAK-p130Cas signaling mechanotransduces ECM stiffness to early transcriptional changes that alter cellular metabolism and biosynthesis.
Collapse
Affiliation(s)
- Bat-Ider Tumenbayar
- Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA
| | - Vincent M. Tutino
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA
- Department of Biomedical Engineering, School of Engineering and Applied Sciences, University at Buffalo, Buffalo, NY 14260, USA
- Department of Neurosurgery, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA
| | - Joseph A. Brazzo
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA
| | - Peng Yao
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Yongho Bae
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA
- Department of Biomedical Engineering, School of Engineering and Applied Sciences, University at Buffalo, Buffalo, NY 14260, USA
| |
Collapse
|
8
|
Qian L, Scott NA, Capell-Hattam IM, Draper EA, Fenton NM, Luu W, Sharpe LJ, Brown AJ. Cholesterol synthesis enzyme SC4MOL is fine-tuned by sterols and targeted for degradation by the E3 ligase MARCHF6. J Lipid Res 2023; 64:100362. [PMID: 36958722 PMCID: PMC10176258 DOI: 10.1016/j.jlr.2023.100362] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 02/09/2023] [Accepted: 02/25/2023] [Indexed: 03/25/2023] Open
Abstract
Cholesterol biosynthesis is a highly regulated pathway, with over 20 enzymes controlled at the transcriptional and post-translational level. Whilst some enzymes remain stable, increased sterol levels can trigger degradation of several synthesis enzymes via the ubiquitin-proteasome system. Of note, we previously identified four cholesterol synthesis enzymes as substrates for one E3 ubiquitin ligase, membrane-associated RING-CH-type finger 6 (MARCHF6). Whether MARCHF6 targets the cholesterol synthesis pathway at other points is unknown. In addition, the post-translational regulation of many cholesterol synthesis enzymes, including the C4-demethylation complex (sterol-C4-methyl oxidase-like, SC4MOL; NAD(P) dependent steroid dehydrogenase-like, NSDHL; hydroxysteroid 17-beta dehydrogenase, HSD17B7) is largely uncharacterized. Using cultured mammalian cell-lines (human-derived and Chinese Hamster Ovary cells), we show SC4MOL, the first acting enzyme of C4-demethylation, is a MARCHF6 substrate, and is rapidly turned over and sensitive to sterols. Sterol depletion stabilizes SC4MOL protein levels, whilst sterol excess downregulates both transcript and protein levels. Furthermore, we found SC4MOL depletion by siRNA results in a significant decrease in total cell cholesterol. Thus, our work indicates SC4MOL is the most regulated enzyme in the C4-demethylation complex. Our results further implicate MARCHF6 as a crucial post-translational regulator of cholesterol synthesis, with this E3 ubiquitin ligase controlling levels of at least five enzymes of the pathway.
Collapse
Affiliation(s)
- Lydia Qian
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, New South Wales 2052, Australia
| | - Nicola A Scott
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, New South Wales 2052, Australia
| | - Isabelle M Capell-Hattam
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, New South Wales 2052, Australia
| | - Eliza A Draper
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, New South Wales 2052, Australia
| | - Nicole M Fenton
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, New South Wales 2052, Australia
| | - Winnie Luu
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, New South Wales 2052, Australia
| | - Laura J Sharpe
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, New South Wales 2052, Australia
| | - Andrew J Brown
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, New South Wales 2052, Australia.
| |
Collapse
|
9
|
Caprariello AV, Adams DJ. The landscape of targets and lead molecules for remyelination. Nat Chem Biol 2022; 18:925-933. [PMID: 35995862 PMCID: PMC9773298 DOI: 10.1038/s41589-022-01115-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 07/18/2022] [Indexed: 12/24/2022]
Abstract
Remyelination, or the restoration of myelin sheaths around axons in the central nervous system, is a multi-stage repair process that remains a major need for millions of patients with multiple sclerosis and other diseases of myelin. Even into adulthood, rodents and humans can generate new myelin-producing oligodendrocytes, leading to the therapeutic hypothesis that enhancing remyelination could lessen disease burden in multiple sclerosis. Multiple labs have used phenotypic screening to identify dozens of drugs that enhance oligodendrocyte formation, and several hit molecules have now advanced to clinical evaluation. Target identification studies have revealed that a large majority of these hits share the ability to inhibit a narrow range of cholesterol pathway enzymes and thereby induce cellular accumulation of specific sterol precursors to cholesterol. This Perspective surveys the recent fruitful intersection of chemical biology and remyelination and suggests multiple approaches toward new targets and lead molecules to promote remyelination.
Collapse
Affiliation(s)
| | - Drew J Adams
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA.
| |
Collapse
|
10
|
Sax JL, Hershman SN, Hubler Z, Allimuthu D, Elitt MS, Bederman I, Adams DJ. Enhancers of Human and Rodent Oligodendrocyte Formation Predominantly Induce Cholesterol Precursor Accumulation. ACS Chem Biol 2022; 17:2188-2200. [PMID: 35833657 PMCID: PMC9773236 DOI: 10.1021/acschembio.2c00330] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Regeneration of myelin in the central nervous system is being pursued as a potential therapeutic approach for multiple sclerosis. Several labs have reported small molecules that promote oligodendrocyte formation and remyelination in vivo. Recently, we reported that many such molecules function by inhibiting a narrow window of enzymes in the cholesterol biosynthesis pathway. Here we describe a new high-throughput screen of 1,836 bioactive molecules and a thorough re-analysis of more than 60 molecules previously identified as promoting oligodendrocyte formation from human, rat, or mouse oligodendrocyte progenitor cells. These studies highlight that an overwhelming fraction of validated screening hits, including several molecules being evaluated clinically for remyelination, inhibit cholesterol pathway enzymes like emopamil-binding protein (EBP). To rationalize these findings, we suggest a model that relies on the high druggability of sterol-metabolizing enzymes and the ability of cationic amphiphiles to mimic the transition state of EBP. These studies further establish cholesterol pathway inhibition as a dominant mechanism among screening hits that enhance human, rat, or mouse oligodendrocyte formation.
Collapse
Affiliation(s)
- Joel L Sax
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Samantha N Hershman
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Zita Hubler
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Dharmaraja Allimuthu
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Matthew S Elitt
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Ilya Bederman
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Drew J Adams
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, United States
| |
Collapse
|