1
|
Liu Y, Meng F, Feng W, Chen Z, Xing H, Zheng A. Oral DNA Vaccine Utilizing the Yeast Cell Wall for Dectin-1 Receptor-Mediated Enhancement of Mucosal Immunity. Mol Pharm 2025; 22:1241-1252. [PMID: 39960883 DOI: 10.1021/acs.molpharmaceut.4c00943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
Abstract
Mucosal vaccines can generate localized mucosal immunity, effectively preventing initial pathogen infection and providing more effective protection. Oral vaccines are an attractive option for inducing mucosal immunity. The yeast cell wall, primarily composed of natural β-1,3-d glucan, can be recognized by the apical membrane receptor, dectin-1, which has a high expression on macrophages and intestinal M cells. In this study, by using vortexing methods to break yeast cell walls into nanometer-sized fragments, which retain the negatively charged β-glucan components on their surface and employing electrostatic adsorption/coextrusion techniques, these fragments were attached onto the surface of PS-DNA NPs, as verified by a scanning electron microscope (SEM), a transmission electron microscope (TEM), and dynamic light scattering (DLS) data. YCW-coated NPs (YNPs) showed greater drug stability compared to NPs in a simulated gastrointestinal environment. In vitro cell evaluation further demonstrated that YNPs were rapidly and efficiently taken up by antigen-presenting cells via receptor dectin-1-mediated endocytosis. In vivo experiments revealed that the oral vaccine elicited high levels of RBD-specific antibodies and triggered extensive cellular immunity in the intestinal mucosa. This study provides new insights into mucosal vaccine research.
Collapse
Affiliation(s)
- Yingqi Liu
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Fan Meng
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Wanting Feng
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Zehong Chen
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Haonan Xing
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Aiping Zheng
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| |
Collapse
|
2
|
Shen T, Sun X, Yang S, Wang W, Chen Z, Lin Y, Li S, Peng H, Zeng L, Li G, Li X, Wang B, Ning J, Wen H, Lei B, Zhang L. Innovative Oral Nano/Gene Delivery System Based on Engineered Modified Saccharomyces cerevisiae for Colorectal Cancer Therapy. ACS NANO 2024; 18:28212-28227. [PMID: 39363565 DOI: 10.1021/acsnano.4c08044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
The efficient delivery of RNA-based drugs to solid tumors remains a formidable obstacle. We aim to develop a safe and efficient oral drug delivery system compatible with RNA-based drugs that is urgently needed to overcome challenges such as enzymatic degradation and gastrointestinal barriers to facilitate effective treatment for treating colorectal cancer (CRC). To address these challenges, we utilized engineered modified Saccharomyces cerevisiae to evaluate the delivery efficacy of miR21-antagomir for treating CRC in preclinical mouse models, including adenomatosis polyposis coli mutant transgenic mice ApcMin/+ and in situ tumor-bearing mice. An orally deliverable gene delivery system, YS@NPs21, was designed. This gene delivery system demonstrated effectively suppressed tumor growth in both ApcMin/+ and in situ tumor-bearing mice models. This system exhibited tumor-targeting capability, effective inhibition of tumor growth, and low toxicity toward nontumor cells. Successful implementation of this innovative oral drug delivery system could offer a straightforward, safe, and RNA drug-compatible approach to CRC treatment, ultimately improving patient outcomes and reducing medical costs.
Collapse
Affiliation(s)
- Tianli Shen
- Department of General Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Xuejun Sun
- Department of General Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Shuanying Yang
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Wei Wang
- Department of General Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Zilu Chen
- Department of General Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Yuyao Lin
- Department of Plastic, Aesthetic and Maxillofacial Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Sihua Li
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710054, China
| | - Hang Peng
- Department of General Surgery, Shaanxi Provincial People's Hospital of Xi'an Jiaotong University, Xi'an 710068, China
| | - Lizhong Zeng
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Gan Li
- Department of General Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Xuqi Li
- Department of General Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Bo Wang
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Jingya Ning
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Haimei Wen
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Bo Lei
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710054, China
| | - Long Zhang
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| |
Collapse
|
3
|
Freire Haddad H, Roe EF, Collier JH. Expanding opportunities to engineer mucosal vaccination with biomaterials. Biomater Sci 2023; 11:1625-1647. [PMID: 36723064 DOI: 10.1039/d2bm01694j] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Mucosal vaccines are receiving increasing interest both for protecting against infectious diseases and for inducing therapeutic immune responses to treat non-infectious diseases. However, the mucosal barriers of the lungs, gastrointestinal tract, genitourinary tract, nasal, and oral tissues each present unique challenges for constructing efficacious vaccines. Vaccination through each of these mucosae requires transport through the mucus and across specialized epithelia to reach tissue-specific immune cells and lymphoid structures, necessitating finely tuned and multifunctional strategies. Serving as inspiration for mucosal vaccine design, pathogens have evolved elaborate, diverse, and multipronged approaches to penetrate and infect mucosae. This review is focused on biomaterials-based strategies, many inspired by pathogens, for designing mucosal vaccine platforms. Passive and active technologies are discussed, along with the microbial processes that they seek to mimic.
Collapse
Affiliation(s)
- Helena Freire Haddad
- Theodore Kennedy Professor of Biomedical Engineering, Duke University, 101 Science Drive, Durham, NC 27708, USA.
| | - Emily F Roe
- Theodore Kennedy Professor of Biomedical Engineering, Duke University, 101 Science Drive, Durham, NC 27708, USA.
| | - Joel H Collier
- Theodore Kennedy Professor of Biomedical Engineering, Duke University, 101 Science Drive, Durham, NC 27708, USA.
| |
Collapse
|
4
|
Xu Y, Huang J, Fan Y, Long H, Liang M, Chen Q, Wang Z, Wu C, Wang Y. Macrophage-Targeted Berberine-Loaded β-Glucan Nanoparticles Enhance the Treatment of Ulcerative Colitis. Int J Nanomedicine 2022; 17:5303-5314. [PMID: 36406639 PMCID: PMC9673505 DOI: 10.2147/ijn.s379792] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 11/04/2022] [Indexed: 09/08/2024] Open
Abstract
Aim This study focuses on constructing of an anti-inflammatory drug delivery system by encapsulation of berberine in the β-glucan nanoparticles and evaluates its effect on treating ulcerative colitis. Methods β-Glucan and the anti-inflammatory drug berberine (BER) are self-assembled into nanoparticles to construct a drug delivery system (GLC/BER). The interaction between the drug and the carrier was characterized by circular dichroism, ultraviolet-visible spectroscopy, and dynamic light scattering. The anti-inflammatory effect of the GLC/BER was evaluated through a lipopolysaccharide (LPS)-induced RAW264.7 macrophage inflammation model and a sodium sulfate (DSS)-induced C57BL/6 mouse ulcerative colitis model. Results The GLC/BER nanoparticles have a particle size of 80-120 nm and a high encapsulation efficiency of 37.8±4.21%. In the LPS-induced RAW264.7 macrophage inflammation model, GLC/BER significantly promoted the uptake of BER by RAW264.7 cells. RT-PCR and ELISA assay showed that it could significantly inhibit the inflammatory factors including IL-1β, IL-6 and COX-2. Furthermore, GLC/BER shows inhibiting effect on the secretion of pro-inflammatory factors such as IL-1β and IL-6, down-regulating the production of nitrite oxide; in animal studies, GLC/BER was found to exert a relieving effect on mice colitis. Conclusion The study found that GLC/BER has an anti-inflammatory effect in vitro and in vivo, and the GLC carrier improves the potency and bioavailability of BER, providing a new type of nanomedicine for the treatment of colitis.
Collapse
Affiliation(s)
- Yuying Xu
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou, People’s Republic of China
| | - Jintao Huang
- Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
| | - Yapei Fan
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou, People’s Republic of China
| | - Haiyue Long
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou, People’s Republic of China
| | - Minting Liang
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou, People’s Republic of China
| | - Qunjie Chen
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou, People’s Republic of China
| | - Zhiping Wang
- Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
| | - Chaoxi Wu
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou, People’s Republic of China
| | - Yifei Wang
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou, People’s Republic of China
| |
Collapse
|
5
|
Wu L, Li L, Yin X, Li C, Xin W, Liu L, Hua Z. A SARS-CoV-2 oral vaccine development strategy based on the attenuated Salmonella type III secretion system. J Appl Microbiol 2022; 133:2484-2500. [PMID: 35858677 PMCID: PMC9350170 DOI: 10.1111/jam.15720] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/30/2022] [Accepted: 07/14/2022] [Indexed: 11/28/2022]
Abstract
AIMS This study aimed to provide a safe, stable and efficient SARS-CoV-2 oral vaccine development strategy based on the type III secretion system of attenuated Salmonella and a reference for the development of a SARS-CoV-2 vaccine. METHODS AND RESULTS The attenuated Salmonella mutant ΔhtrA-VNP was used as a vector to secrete the antigen SARS-CoV-2 based on the type III secretion system (T3SS). The Salmonella pathogenicity island 2 (SPI-2)-encoded T3SS promoter (sifB) was screened to express heterologous antigens (RBD, NTD, S2), and the SPI-2-encoded secretion system (sseJ) was employed to secrete this molecule (psifB-sseJ-antigen, abbreviated BJ-antigen). Both immunoblotting and fluorescence microscopy revealed effective expression and secretion of the antigen into the cytosol of macrophages in vitro. The mixture of the three strains (BJ-RBD/NTD/S2, named AisVax) elicited a marked increase in the induction of IgA or IgG S-protein Abs after oral gavage, intraperitoneal and subcutaneous administration. Flow cytometric analysis proved that AisVax caused T-cell activation, as shown by a significant increase in CD44 and CD69 expression. Significant production of IgA or IgG N-protein Abs was also detected by using psifB-sseJ-N(FL), indicating the universality of this strategy. CONCLUSIONS Delivery of multiple SARS-CoV-2 antigens using the type III secretion system of attenuated Salmonella ΔhtrA-VNP is a potential COVID-19 vaccine strategy. SIGNIFICANCE AND IMPACT OF THE STUDY The attenuated Salmonella strain ΔhtrA-VNP showed excellent performance as a vaccine vector. The Salmonella SPI-2-encoded T3SS showed highly efficient delivery of SARS-COV-2 antigens. Anti-loss elements integrated into the plasmid stabilized the phenotype of the vaccine strain. Mixed administration of antigen-expressing strains improved antibody induction.
Collapse
Affiliation(s)
- Leyang Wu
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life SciencesNanjing UniversityNanjingJiangsuChina
- Changzhou High‐Tech Research Institute of Nanjing University and Jiangsu TargetPharma Laboratories Inc.ChangzhouJiangsuChina
| | - Lin Li
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life SciencesNanjing UniversityNanjingJiangsuChina
| | - Xingpeng Yin
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life SciencesNanjing UniversityNanjingJiangsuChina
| | - Chenyang Li
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life SciencesNanjing UniversityNanjingJiangsuChina
| | - Wenjie Xin
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life SciencesNanjing UniversityNanjingJiangsuChina
| | - Lina Liu
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life SciencesNanjing UniversityNanjingJiangsuChina
| | - Zichun Hua
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life SciencesNanjing UniversityNanjingJiangsuChina
- Changzhou High‐Tech Research Institute of Nanjing University and Jiangsu TargetPharma Laboratories Inc.ChangzhouJiangsuChina
- School of BiopharmacyChina Pharmaceutical UniversityNanjingJiangsuChina
| |
Collapse
|
6
|
Tang S, Li M, Chen L, Dai A, Liu Z, Wu M, Yang J, Hao H, Liang J, Zhou X, Qian Z. Codelivery of SARS-CoV-2 Prefusion-Spike Protein with CBLB502 by a Dual-Chambered Ferritin Nanocarrier Potentiates Systemic and Mucosal Immunity. ACS APPLIED BIO MATERIALS 2022; 5:3329-3337. [PMID: 35737819 PMCID: PMC9236219 DOI: 10.1021/acsabm.2c00328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 06/13/2022] [Indexed: 11/29/2022]
Abstract
Thousands of breakthrough infections are confirmed after intramuscular (i.m.) injection of the approved vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Two major factors might contribute to breakthrough infections. One is the emergence of mutant variants of SARS-CoV-2, and the other is that i.m. injection has an inefficient ability to activate mucosal immunity in the upper respiratory tract. Here, we devised a dual-chambered nanocarrier that can codeliver the adjuvant CBLB502 with prefusion-spike (pre-S) onto a ferritin nanoparticle. This vaccine enabled enhanced systemic and local mucosal immunity in the upper and lower respiratory tract. Further, codelivery of CBLB502 with pre-S induced a Th1/Th2-balanced immunoglobulin G response. Moreover, the codelivery nanoparticle showed a Th1-biased cellular immune response as the release of splenic INF-γ was significantly heightened while the level of IL-4 was elevated to a moderate extent. In general, the developed dual-chambered nanoparticle can trigger multifaceted immune responses and shows great potential for mucosal vaccine development.
Collapse
Affiliation(s)
- Shubing Tang
- Shanghai Public Health Clinical Center,
Fudan University, 201058 Shanghai, China
| | - Min Li
- Shanghai Public Health Clinical Center,
Fudan University, 201058 Shanghai, China
| | - Lixiang Chen
- Shanghai Public Health Clinical Center,
Fudan University, 201058 Shanghai, China
| | - Aguang Dai
- CAS Key Laboratory of Molecular Virology &
Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences,
University of the Chinese Academy of Sciences, 200031 Shanghai,
China
| | - Zhi Liu
- CAS Key Laboratory of Molecular Virology &
Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences,
University of the Chinese Academy of Sciences, 200031 Shanghai,
China
| | - Mangteng Wu
- CAS Key Laboratory of Molecular Virology &
Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences,
University of the Chinese Academy of Sciences, 200031 Shanghai,
China
| | - Jingyi Yang
- Shanghai Public Health Clinical Center,
Fudan University, 201058 Shanghai, China
| | - Hongyun Hao
- Shanghai Public Health Clinical Center,
Fudan University, 201058 Shanghai, China
| | - Jingdan Liang
- State Key Laboratory of Microbial Metabolism, College of
Life Sciences and Biotechnology, Shanghai Jiao Tong University,
200030 Shanghai, China
| | - Xiaohui Zhou
- Shanghai Public Health Clinical Center,
Fudan University, 201058 Shanghai, China
| | - Zhikang Qian
- Shanghai Public Health Clinical Center,
Fudan University, 201058 Shanghai, China
| |
Collapse
|
7
|
Rampado R, Caliceti P, Agostini M. Latest Advances in Biomimetic Cell Membrane-Coated and Membrane-Derived Nanovectors for Biomedical Applications. NANOMATERIALS 2022; 12:nano12091543. [PMID: 35564251 PMCID: PMC9104043 DOI: 10.3390/nano12091543] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/25/2022] [Accepted: 04/28/2022] [Indexed: 01/27/2023]
Abstract
In the last decades, many nanovectors were developed for different diagnostic or therapeutic purposes. However, most nanosystems have been designed using a “bottom-up” approach, in which the basic components of the nanovector become assembled to achieve complex and specific behaviors. Despite the fine control of formulative conditions, the complexity of these systems often results cumbersome and difficult to scale-up. Recently, biomimetic materials emerged as a complementary or alternative design approach through a “top-down strategy”, using cell-derived materials as building blocks to formulate innovative nanovectors. The use of cell membranes as nanoparticle coatings endows nanomaterials with the biological identity and some of the functions of the cells they are derived from. In this review, we discuss some of the latest examples of membrane coated and membrane-derived biomimetic nanomaterials and underline the common general functions offered by the biomaterials used. From these examples, we suggest a systematic classification of these biomimetic materials based on their biological sources and formulation techniques, with their respective advantages and disadvantages, and summarize the current technologies used for membranes isolation and integration on nanovectors. We also discuss some current technical limitations and hint to future direction of the improvement for biomimetics.
Collapse
Affiliation(s)
- Riccardo Rampado
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Via Marzolo, 5, 35131 Padua, Italy; (R.R.); (P.C.)
- Nano-Inspired Biomedicine Lab, Insitute of Pediatric Research-Città della Speranza, Corso Stati Uniti 4, 35127 Padua, Italy
| | - Paolo Caliceti
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Via Marzolo, 5, 35131 Padua, Italy; (R.R.); (P.C.)
| | - Marco Agostini
- Nano-Inspired Biomedicine Lab, Insitute of Pediatric Research-Città della Speranza, Corso Stati Uniti 4, 35127 Padua, Italy
- General Surgery 3, Department of Surgical, Oncological and Gastroenterological Sciences, University of Padua, Via Nicolò Giustiniani 2, 35128 Padua, Italy
- Correspondence:
| |
Collapse
|